Dr. Qianlai Zhuang - Department of Earth, Atmospheric, and Planetary Sciences - Purdue University
Skip to main content

Dr. Qianlai Zhuang

Dr. Qianlai Zhuang

Professor & University Faculty Scholar

Curriculum Vitae / Google Scholar
Associated Website(s): Geodata Science Initiative, Personal Website, Purdue Climate Change Research Center (PCCRC), Lab Website

Ph.D.- University of Alaska at Fairbanks

Research Interests
Dr. Zhuang's research focuses on the interactions among atmosphere, biosphere, and human dimension in the context of climate change, chemical element cycles, and policy-making. One of his major research activities is on carbon exchanges between terrestrial ecosystems and the atmosphere by investigating how changes of climate, soil physics (e.g., permafrost dynamics, change of soil moisture), atmospheric chemicals (e.g., CO2 and O3), land-use and land-cover (e.g., fire disturbances), affect the carbon assimilation and decomposition with both process-based and inversion modeling approaches. His second major research activity is on modeling CH4 exchanges between the atmosphere and terrestrial ecosystems. His third major research activity is on analyzing consequences of air pollutants for ecosystem services and the economy. In the Laboratory of Ecosystems and Biogeochemical Dynamics at Purdue, his research group will continue using numerical models combining lab, field, in-situ observations and remotely-sensed data to study:

  1. Dynamics of structure and functioning of ecosystems including agricultural ecosystems;
  2. Dynamics of major greenhouse gases cycling including CO2, CH4, and N2O;
  3. Feedbacks of ecosystems and biogeochemical dynamics to the climate and society.

Teaching Interests
Ecosystems Dynamics; Biogeochemical Dynamics; Large-Scale Ecology; Principles of Terrestrial Ecosystems; Global Change Biology; Interactions of Biosphere-Atmosphere

Awards and Honors

  • 08/1/2018- 07/30/2023, NSF - NNA: Collaborative Research: MSB-FRA: Peat Expansion in Arctic Tundra - Pattern, Process, and the Implication for the Carbon Cycle (TundraPEAT) (Award # 1802832, PI in collaboration with Julie Loisel, Texas A&M University; Philip Camill, Bowdoin College; Steve Frolking, University of New Hampshire; Zicheng Yu, Lehigh University), $304,493.
  • 07/1/2017- 06/30/2020, NASA/U. of Colorado, Boulder: Process-level investigation of revised global methane budget based on in situ and remote sensing of atmospheric composition and the land surface (PI in collaboration with Stefan Schwietzke, Sourish Basu; Lori Bruhwiler; Owen Sherwood; John Miller; Gabrielle Petron; Sylvia Englund Michel; Ed Dlugokencky; Pieter Tans; Giuseppe Etiope; Martin Schoell; Bell, Jennifer), $468,997 out of $1,282,569
  • 07/10/2017 – 07/09/2019, USGS: Quantifying Alaskan Landscape Changes and Their Impacts on Greenhouse Emissions of Carbon Dioxide and Methane (PI in collaboration with A. D. McGuire and H. Genet), $140,000.
  • 9/1/2017-8/31/2020NASA Earth and Space Science Fellowship, High Affinity Methanotrophs are an Important Overlooked Methane Sink in the Pan–Arctic Methane Budget (PI for Youmi Oh), $135,000
  • 9/2016-8/2019  NASA
    High-resolution mapping of dynamic inundation in boreal wetlands for carbon and hydrological studies on seasonal to interannual scales (Qianlai Zhuang, PI in collaboration with: Seung-bum Kim (NASA Jet Propulsion Laboratory)) $152,909 out of $450,280

  • 08/01/2015 – 07/31/2018, Department of Energy / Chapman University: Understanding mechanistic controls of heterotrophic CO 2 and CH4 fluxes in a peatland with deep soil warming and atmospheric CO2 enrichment (PI in collaboration with Scott Bridgham and Jason Keller), $416,551 out of $1,495,783
  • 05/01/2014 – April/30/2017 NSF, Collaborative Research: Forest Productivity and Hydrological Patterns Regulate Methane Fluxes From Peatlands in the Amazon Basin (Principal Investigator: Qianlai Zhuang, in collaboration with Hinsby Cadillo-Quiroz at Arizona State University and Joost van Haren at University of Arizona) $103,000 out of $729,999
  • 04/2014 - 04/2017, NASA-LCLUC: Regional and Global Climate and Societal Impacts of Land-Use and Land-Cover Change in Northern Eurasia: A Synthesis Study Using Remote Sensing Data and An Integrated Global System Model (Lead PI in collaboration with Jerry Melillo, John Reilly, Andrei Sokolov, David Kicklighter, Sergey Paltsev, Erwan Monier, Nadejda Tchebakova, Andrey Sirin, Elena Kukavskaya, Mikhail Glagolev), $855,934
  • 12/2013 - 11/2016, USGS, Assessing Wetland Methane Emissions in Alaska (PI: Qianlai Zhuang) $156,159
  • 08/01/2012 - 07/31/2015, Department of Energy / U. of Oregon, Understanding the Mechanisms Underlying Heterotrophic CO2 and CH4 Fluxes in a Peatland with Deep Soil Warming and Atmospheric CO2 Enrichment (PI in collaboration with Scott Bridgham and Jason Keller), $124,370
  • 09/2011-08/2014, Department of Energy, Collaborative Research: Quantifying Climate Feedbacks of the Terrestrial Biosphere under Thawing Permafrost Conditions in the Arctic (Lead PI in collaboration with C. A. Schlosser at MIT, J. M. Melillo at MBL, Woods Hole MA, and K. Anthony Walter at UAF), $540,000 out of $1,620,000
  • 09/2010-08/2014, NSF - CDI -Type II: Collaborative Research: A Paradigm Shift in Ecosystem and Environmental Modeling: An Integrated Stochastic, Deterministic, and Machine Learning Approach (Lead PI in collaboration with M. Crawford, H. Zhang, D. Xiu, J. Zhang at Purdue, J. Melillo at MBL, and J. Reilly at MIT), $1,591,428 out of $1,941,424
  • 08-2009-07/2012, NSF - Collaborative Research: Impacs of Climate Seasonality on Carbon Accumulation and Methane Emissions of Alaskan Ecosystems during the Holocene Thermal Maximum (PI in collaboration with Z. Yu, B. Felzer, and M. Jones), $292.918 out of $602,386
  • 04/2009-03/2012, NASA Land-Use and Land-cover Change Program - Changes of Land Cover and Land Use and Greenhouse Gas Emissions in Northern Eurasia: Impacts on Human Adaptation and Quality of Life at Regional and Global Scales (Lead PI with J. M. Melillo, D. Kicklighter, J. Reilly, A. Shvidenko, N. Tchebakova, E. Parfenova, A. Peregon, A. Sirin, S. Maksyutov, and G. Zhou), $824,701
  • 09/2008 -08/2013, Department of Energy / Lawrence Berkeley National Laboratory - Investigation of the Magnitudes and Probabilities of Abrupt Climate Transitions (IMPACTS) (In collaboration with Bill RIley, Mac Post, and Margaret Torn), $75,000
  • 07/2008-07/2011, Department of Energy — Quantifying Climate Feedbacks from Abrupt Changes in High-Latitude Trace-gas Emissions (PI in collaboration with A. Schlosser, J. Melillo, K. Walter), $89,999 out of $560,000.
  • 09/2007-09/2010, Department of Energy — Analysis of global economic and environmental impacts of a substantial increase in bioenergy production (PI in collaboration with Wally Tyner and Tom Hertel), $209,900 out of $659,783.
  • 09/2007-09/2010, NASA Earth System Science Fellowship: Improving a process-based biogeochemistry model using an atmospheric transport chemistry model and in-situ and remotely-sensed terrestrial and atmospheric data — Mr. Jinyun Tang, $84,000.
  • 01/2007-12/2011, NSF Biocomplexity - Carbon and Water in the Earth System: Collaborative Research: Impact of Permafrost Degradation on Carbon and Water in Boreal Ecosystems. Lead PI with Jennifer Harden, Robert Striegl, Yuri Shur, and Torre Jorgenson. Award amount: $756,578 out of $1,693,883.
  • 08/2005-09/2008, NSF - Collaborative Research: Synthesis of Artic System Carbon Cycle Research through Model-Data Fusion Studies Using Atmospheric Inversion and Process-Based Approaches. PI with Dave McGuire, Jerry Melillo, and Michael Follows. Award amount: $245,883 out of $1,179,591.
  • 01/2006-01/2008, NSF - National Center for Ecological Analysis and Synthesis (NCEAS). Toward an Adequate Quantification of CH4 Emissions from Land Ecosystems: Integrating Field and In-situ Observations, Satellite Data, and Modeling. Lead PI with Jerry Melillo, Ron Prinn, and Dave McGuire. Award Amount: $103,350.
  • 01/2007-12/2007, The Energy Center, Discovery Park, Purdue University - Global Biomass and Bioenergy Supply in a Coupled Natural and Human System. Lead PI with Wally Tyner. Award amount: $50,000.
  • 01/2007-12/2007, The Center for Environment, Purdue University - Quantifying Carbon Sequestrations across Indiana's Forest Landscapes. PI with Guofan Shao, Phillip Pope, Charles Michler, Melba Crawford. Award amount: $30,000.
  • 1997, Award of the Excellence (First Place) of Advances of Science and Technology of China for the project "The Scientific Database and Management Systems", Beijing, P. R. China.

Professional Experience

  • 2014 - present: Professor, Departments of Earth & Atmospheric Sciences, and Agronomy, Purdue University, West Lafayette, IN
  • 2010 - 2014: Associate Professor, Departments of Earth & Atmospheric Sciences, and Agronomy, Purdue University, West Lafayette, IN
  • 2005 - 2010: Assistant Professor, Departments of Earth & Atmospheric Sciences, and Agronomy, Purdue University, West Lafayette, IN
  • 2001 - 2005: Post-Doctoral Scientist, theEcosystems Center of Marine Biological Laboratory, Woods Hole, MA; Associate Professor, (January - June 2005), Institute of Atmospheric Sciences, South Dakota School of Mines and Technology
  • 1997 - 2001: Research Assistant, Department of Biology and Wildlife, the Institute of Arctic Biology, University of Alaska at Fairbanks
  • 1988 - 1997: Research Assistant in the Institute of Botany, Chinese Academy of Sciences, Beijing, P. R. China, System Engineer and Analyst, the information Center of Ministry of Personnel of P. R. China

Selected Publications - Google Scholar Page for a complete list of publications

  • Kicklighter, D. W., J. M. Melillo, E. Monier, A. P. Sokolov, and Q. Zhuang (2019) Future nitrogen availability and its effect on carbon sequestration in Northern Eurasia. Nature Communications 10, 3024, doi: 10.1038/s41467-019-10944-0.PDF
  • Qi, L., Wang, S.Zhuang, Q., Yang, Z., Bai, S., Jin, X., Lei, G. (2019), Spatial-Temporal Changes in Soil Organic Carbon and pH in the Liaoning Province of China: A Modeling Analysis Based on Observational Data, Sustainability, 11(13): 3569. doi:10.3390/su11133569 PDF
  • Bian, z., X. Guo, S. WangQ. Zhuang, X. Jin, Q. Wang & S. Jia (2019): Applying statistical methods to map soil organic carbon of agricultural lands in northeastern coastal areas of China, Archives of Agronomy and Soil Science, DOI: 10.1080/03650340.2019.1626983. PDF
  • Yu, T., and Q. Zhuang (2019), Quantifying global N2O emissions from natural ecosystem soils using trait-based biogeochemistry models. Biogeosciences 16(2): 207-222. https://www.biogeosciences.net/16/207/2019/bg-16-207-2019.pdf 
  • Qu, Yang, and Q. Zhuang, Evapotranspiration in North America: implications for water resources in a changing climate, Mitigation and Adaptation Strategies for Global Change (2019): 1-16. https://doi.org/10.1007/s11027-019-09865-6 PDF
  • Zhu, P., Q. Zhuang, L. Welp, P. Ciais, M. Heimann, B. Peng, W. Li, C. Bernacchi, C. Roedenbeck, and T.F. Keenan (2019), Recent warming has resulted in smaller gains in net carbon uptake in northern high latitudes. J. Climate, https://doi.org/10.1175/JCLI-D-18-0653.1 
  • Zhu, P., Zhuang, Q., Archontoulis, SV, Bernacchi, C., Müller, C., Dissecting the nonlinear response of maize yield to high temperature stress with model-data integration. Glob Change Biol. 2019; 00:1-15. https://doi.org/10.1111/gcb.14632 PDF
  • Wang, S., Zhuang, Q., Lähteenoja, O., Draper, F., and Cadillo-Quiroz, H (2018), Potential shift from a carbon sink to a source in Amazonian peatlands under a changing climate, Proceedings of the National Academy of Sciences Nov 2018, 201801317; DOI: 10.1073/pnas.1801317115 PDF
  • Xu-Ri, Wang, Y., Wang, Y. Niu, H., Liu, Y., and Zhuang, Q. (2018), Estimating N2O emissions from soils under natural vegetation in China Plant and Soil; https://doi.org/10.1007/s11104-018-3856-6PDF
  • Li, W., Zhuang, Q., Wu, W., Wen, X., Han, J., and Liao, Y. :Effects of ridge–furrow mulching on soil CO2 efflux in a maize field in the Chinese Loess Plateau, Agricultural and Forest Meteorology, Volume 264, 2019, Pages 200-212, ISSN 0168-1923, https://doi.org/10.1016/j.agrformet.2018.10.009.PDF
  • Zha, J. and Zhuang, Q.: Microbial decomposition processes and vulnerable arctic soil organic carbon in the 21st century, Biogeosciences, 15, 5621-5634, https://doi.org/10.5194/bg-15-5621-2018, 2018.PDF
  • Alejandro Salazar, Adriana Sanchez, Juan Camilo Villegas, Juan F Salazar, Daniel Ruiz Carrascal, Stephen Sitch, Juan Darío Restrepo, Germán Poveda, Kenneth J Feeley, Lina M Mercado, Paola A Arias, Carlos A Sierra, Maria del Rosario Uribe, Angela M Rendón, Juan Carlos Pérez, Guillermo Murray Tortarolo, Daniel Mercado-Bettin, José A Posada, Qianlai Zhuang, and Jeffrey S Dukes, The ecology of peace: preparing Colombia for new political and planetary climates, Front Ecol Environ 2018; 16(9): 1–7, doi: 10.1002/fee.1950PDF
  • Treat C., M. E. Marushchak, C. Voigt, Y. Zhang, Z. Tan, Q. Zhuang, T. A. Virtanen, A. Räsänen, C. Biasi, G. Hugelius, D. Kaverin, P. A. Miller, M. Stendel, V. Romanovsky, F. Rivkin, P. J. Martikainen, and N. J. Shurpali, Tundra landscape heterogeneity, not interannual variability, controls the decadal regional carbon balance in the Western Russian Arctic. Glob Change Biol. 2018;00:1–17. https://doi.org/10.1111/gcb.14421PDF
  • Yun, H., Wu, Q., Zhuang, Q., Chen, A., Yu, T., Lyu, Z., Yang, Y., Jin, H., Liu, G., Qu, Y., and Liu, L.: Consumption of atmospheric methane by the Qinghai–Tibet Plateau alpine steppe ecosystem, The Cryosphere, 12, 2803-2819, https://doi.org/10.5194/tc-12-2803-2018, 2018.PDF
  • Zhu, P., Jin, Z., *Zhuang, Q., Ciais, P., Bernacchi, B., Wang, X., Makowski, D., Lobell, D. The important but weakening maize yield benefit of grain filling prolongation in the US Midwest. Glob Change Biol. 2018;00:1–13. https://doi.org/10.1111/gcb.14356
  • McGuire, A. D., Genet, H., Lyu, Z. , Pastick, N. , Stackpoole, S. , Birdsey, R. , D'Amore, D. , He, Y. , Rupp, T. S., Striegl, R. , Wylie, B. K., Zhou, X. , Zhuang, Q. and Zhu, Z. (2018), Assessing historical and projected carbon balance of Alaska: A synthesis of results and policy/management implications. Ecol Appl. . doi:10.1002/eap.1768
  • Tan, Z., Yao, H., & *Zhuang, Q. (2018). A small temperate lake in the 21st century: Dynamics of water temperature, ice phenology, dissolved oxygen, and chlorophyll a. Water Resources Research, 54. https://doi.org/10.1029/2017WR022334
  • Qu, Y., Maksyutov, S., and *Zhuang, Q. Technical Note: An efficient method for accelerating the spin-up process for process-based biogeochemistry models, Biogeosciences, 15, 3967–3973, 2018 https://doi.org/10.5194/bg-15-3967-2018PDF
  • Lyu, Z. and *Zhuang, Q. (2018), Quantifying the effects of snowpack on soil thermal and carbon dynamics of the Arctic terrestrial ecosystems. Journal of Geophysical Research: Biogeosciences, 123. https://doi.org/10.1002/ 2017JG003864.PDF
  • Lyu, Z. , Genet, H. , He, Y. , *Zhuang, Q. , McGuire, A. D., Bennett, A. , Breen, A. , Clein, J. , Euskirchen, E. S., Johnson, K. , Kurkowski, T. , Pastick, N. J., Rupp, T. S., Wylie, B. K. and Zhu, Z. (2018), The role of environmental driving factors in historical and projected carbon dynamics of wetland ecosystems in Alaska. Ecol Appl. . doi:10.1002/eap.1755
  • Liu, L., *Zhuang, Q., Zhu, Q., Liu, S., van Asperen, H., and Pihlatie, M.: Global soil consumption of atmospheric carbon monoxide: an analysis using a process-based biogeochemistry model, Atmos. Chem. Phys., 18, 7913-7931, https://doi.org/10.5194/acp-18-7913-2018, 2018.
  • Lu, X., Zhou, Y., Zhuang, Q., Prigent, C., Liu, Y., & Teuling, A. (2018). Increasing methane emissions from natural land ecosystems due to sea-level rise. Journal of Geophysical Research: Biogeosciences, 123. https://doi.org/10.1029/2017JG004273
  • McGuire, A.D., D.M. Lawrence, C. Koven J.S. Clein, E. Burke, G. Chen, E. Jafarov, A.H. MacDougall, S. Marchenko, D. Nicolsky, S. Peng, A. Rinke, P. Ciais, I. Gouttevin, D.J. Hayes, D. Ji, G. Krinner, J.C. Moore, V.E. Romanovsky, C. Schädel, K. Schaefer, E.A.G. Schuur, and Q. Zhuang. 2018. The dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proceedings of the National Academy of Sciences, 6 pages, doi:10.1073/pnas.1719903115.
  • Qu, Y., and Q. Zhuang* (2018). Modeling leaf area index in North America using a process-based terrestrial ecosystem model. Ecosphere 9(1):e02046. 10.1002/ecs2.2046
  • Liao, C., & *Zhuang, Q. (2017). Quantifying the role of snowmelt
in stream discharge in an Alaskan watershed: An analysis using a spatially distributed surface hydrology model. Journal of Geophysical Research: Earth Surface, 122. https://doi.org/10.1002/2017JF004214
  • Groisman, P., H. Shugart, D. Kicklighter, G.Henebry, N. Tchebakova, S. Maksyutov, E. Monier, G. Gutman, S. Gulev, J. Qi, A. Prishchepov, E. Kukavskaya, B. Porfiriev, A. Shiklomanov, T. Loboda, N. Shiklomanov, S. Nghiem, K. Bergen, J. Albrechtová, J. Chen, M. Shahgedanova, A. Shvidenko, N. Speranskaya, A. Soja, K. de Beurs, O. Bulygina, J. McCarty, Q. Zhuang and O. Zolina, Northern Eurasia Future Initiative (NEFI): facing the challenges and pathways of global change in the twenty-first century, Progress in Earth and Planetary Science 20174:41, https://doi.org/10.1186/s40645-017-0154-5
  • Genet, H., He, Y., Lyu, Z., McGuire, A. D., Zhuang, Q., Clein, J., D'Amore, D., Bennett, A., Breen, A., Biles, F., Euskirchen, E. S., Johnson, K., Kurkowski, T., (Kushch) Schroder, S., Pastick, N., Rupp, T. S., Wylie, B., Zhang, Y., Zhou, X. and Zhu, Z. (2017), The role of driving factors in historical and projected carbon dynamics of upland ecosystems in Alaska. Ecol Appl. doi:10.1002/eap.1641
  • Song, L., Q. Zhuang*, Y. Yin, S. Wu, and X. Zhu, 2017: Intercomparison of Model-Estimated Potential Evapotranspiration on the Tibetan Plateau during 1981–2010. Earth Interact., 21, 1–22, https://doi.org/10.1175/EI-D-16-0020.1
  • Wang, S., *Zhuang, Q., Jia S., Jin X., Wang Q., Spatial variations of soil organic carbon stocks in a coastal hilly area of China, Geoderma, Volume 314, 15 March 2018, Pages 8-19, ISSN 0016-7061, https://doi.org/10.1016/j.geoderma.2017.10.052.
  • Tan, Z., *Zhuang, Q, Shurpali, N. J, Marushchak, M. E, Biasi, C, Eugster, W, and Anthony, K. W (2017), Modeling CO2 emissions from Arctic lakes: Model development and site-level study, J. Adv. Model. Earth Syst., 9, doi:10.1002/2017MS001028.
  • Qin Z, *Zhuang Q, Cai X, He Y, Huang Y, Jiang D, Lin E, Liu Y, Tang Y, Wang MQ. 2017. Biomass and biofuels in China: Toward bioenergy resource potentials and their impacts on the environment. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2017.08.073
  • Monier, E., Kicklighter, D., Sokolov, A., Zhuang, Q., Sokolik, I., Lawford, R., ... & Groisman, P. (2017). A Review of and Perspectives on Global Change Modeling for Northern Eurasia, Environ. Res. Lett. 12 (2017) 083001. 
  • Zhu, P., Q. Zhuang, P. Ciais, L. Welp,W. Li, and Q. Xin (2017), Elevated atmospheric CO2negatively impacts photosynthesis through radiative forcing and physiology-mediated climate feedback, Geophys. Res. Lett.,44, doi:10.1002/2016GL071733. PDF
  • Thonat, T., Saunois, M., Bousquet, P., Pison, I., Tan, Z., Zhuang, Q., Crill, P. M., Thornton, B. F., Bastviken, D., Dlugokencky, E. J., Zimov, N., Laurila, T., Hatakka, J., Hermansen, O., and Worthy, D. E. J.: Detectability of Arctic methane sources at six sites performing continuous atmospheric measurements, Atmos. Chem. Phys., 17, 8371-8394, https://doi.org/10.5194/acp-17-8371-2017, 2017.
  • Wang, S., Q. Zhuang, Wang, Q., Jin, X., Han, C. Mapping stocks of soil organic carbon and soil total nitrogen in Liaoning Province of China, Geoderma, Volume 305, 1 November 2017, Pages 250-263, ISSN 0016-7061, https://doi.org/10.1016/j.geoderma.2017.05.048. PDF
  • Xu, X., G. Yang, Y. Tan, X. Tang, H. Jiang, X. Sun, Q. Zhuang, and H. Li (2017), Impacts of land use changes on net ecosystem production in the Taihu Lake Basin of China from 1985 to 2010, J. Geophys. Res. Biogeosci., 122, doi:10.1002/2016JG003444. PDF
  • Liao, C., and Zhuang, Q. (2017) Quantifying the Role of Permafrost Distribution in Groundwater and Surface Water Interactions Using a Three-Dimensional Hydrological Model. Arctic, Antarctic, and Alpine Research: February 2017, Vol. 49, No. 1, pp. 81-100. PDF
  • Jin, Z., Zhuang, Q., Wang, J., Archontoulis, S. V., Zobel, Z. and Kotamarthi, V. R. (2017), The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO2. Glob Change Biol. doi:10.1111/gcb.13617. PDF
  • Song, L. Q. Zhuang, Y. Yin, X. Zhu and S. Wu (2017), Spatio-temporal dynamics of evapotranspiration on the Tibetan Plateau from 2000 to 2010, Environ. Res. Lett. 12, (2017) 014011, doi:10.1088/1748-9326/aa527d
  • Wang, S., Zhuang, Q., and Yu, Z.: Quantifying soil carbon accumulation in Alaskan terrestrial ecosystems during the last 15 000 years, Biogeosciences, 13, 6305-6319, doi:10.5194/bg-13-6305-2016, 2016. PDF
  • Jin, Z., Prasad, R., Shriver, and Q. Zhuang (2016), Crop model- and satellite imagery-based recommendation tool for variable rate N fertilizer application for the US Corn system, Precision Agric., doi:10.1007/s11119-016-9488-zPDF
  • Xu, X., G. Yang, Y. Tan, Q. Zhuang, X. Tang, K. Zhao, S. Wang, Factors influencing industrial carbon emissions and strategies for carbon mitigation in the Yangtze River Delta of China, Journal of Cleaner Production, Available online 21 October 2016, ISSN 0959-6526, http://dx.doi.org/10.1016/j.jclepro.2016.10.107.PDF
  • Jiang, Y., Rastetter, E. B., Shaver, G. R., Rocha, A. V., Zhuang, Q. and Kwiatkowski, B. L. (2016), Modeling long-term changes in tundra carbon balance following wildfire, climate change, and potential nutrient addition. Ecol Appl. doi:10.1002/eap.1413  PDF
  • Tan, Z., Q. Zhuang, D. K. Henze, C. Frankenberg, E. Dlugokencky, C. Sweeney, A. J. Turner, M. Sasakawa, and T. Machida (2016). Inverse modeling of pan-Arctic methane emissions at high spatial resolution: what can we learn from assimilating satellite retrievals and using different process-based wetland and lake biogeochemical models? Atmos. Chem. Phys., 16, 12649-12666. PDF
  • Meng, L., N. Roulet, Q. Zhuang, T. R. Christensen and S. Frolking (2016), Focus on the impact of climate change on wetland ecosystems and carbon dynamics, Environ. Res. Lett. 11 100201PDF
  • Wang, S.Q. Zhuang, Z. Yu, S. Bridgham, and J. K. Keller (2016), Quantifying peat carbon accumulation in Alaska using a process-based biogeochemistry model, J. Geophys. Res. Biogeosci., 121, doi:10.1002/2016JG003452. http://onlinelibrary.wiley.com/doi/10.1002/2016JG003452/pdf
  • Liu, S., Zhuang, Q., Chen, M., Gu, L., 2016. Quantifying spatially and temporally explicit CO2 fertilization effects on global terrestrial ecosystem carbon dynamics. Ecosphere 7(7). doi:10.1002/ecs2.1391 PDF
  • Jin, Z.Zhuang, Q., Dukes, J.S., He, J.-S., Sokolov, A.P., Chen, M., Zhang, T., Luo, T., 2016. Temporal variability in the thermal requirements for vegetation phenology on the Tibetan plateau and its implications for carbon dynamics. Clim. Change 1–16. doi:10.1007/s10584-016-1736-8. PDF
  • Jin, Z., Zhuang, Q., Tan, Z., Dukes, J.S., Zheng, B., Melillo, J.M., 2016. Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches. Glob. Chang. Biol. doi:10.1111/gcb.13376. PDF
  • Jiang, Y., Zhuang, Q., Sitch, S., O’Donnell, J.A., Kicklighter, D., Sokolov, A., Melillo, J. (2016), Importance of soil thermal regime in terrestrial ecosystem carbon dynamics in the circumpolar north. Glob. Planet. Change 142, 28–40. doi:10.1016/j.gloplacha.2016.04.011. PDF
  • Zhu, X., Zhuang, Q., 2016. Relative importance between biogeochemical and biogeophysical effects in regulating terrestrial ecosystem-climate feedback in northern high latitudes. J. Geophys. Res. Atmos. 121, 5736–5748. doi:10.1002/2016JD024814. PDF
  • Lu, X., Zhuang, Q., Liu, Y., Zhou, Y., Aghakouchak, A., 2016. A large-scale methane model by incorporating the surface water transport. J. Geophys. Res. Biogeosciences 121, 1657–1674. doi:10.1002/2016JG003321. PDF
  • Zhu, P.Zhuang, Q., Eva, J., Bernacchi, C., 2016. Importance of biophysical effects on climate warming mitigation potential of biofuel crops over the conterminous United States. GCB Bioenergy. doi:10.1111/gcbb.12370. PDF
  • McGuire, A.D., Koven, C., Lawrence, D.M., Clein, J.S., Xia, J., Beer, C., Burke, E., Chen, G., Chen, X., Delire, C., Jafarov, E., MacDougall, A.H., Marchenko, S., Nicolsky, D., Peng, S., Rinke, A., Saito, K., Zhang, W., Alkama, R., Bohn, T.J., Ciais, P., Decharme, B., Ekici, A., Gouttevin, I., Hajima, T., Hayes, D.J., Ji, D., Krinner, G., Lettenmaier, D.P., Luo, Y., Miller, P.A., Moore, J.C., Romanovsky, V., Schädel, C., Schaefer, K., Schuur, E.A.G., Smith, B., Sueyoshi, T., Zhuang, Q., 2016. Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009. Global Biogeochem. Cycles. doi:10.1002/2016GB005405. PDF
  • Liu, S., Zhuang, Q., He, Y., Noormets, A., Chen, J., and Gu, L. (2016), Evaluating atmospheric CO2 effects on gross primary productivity and net ecosystem exchanges of terrestrial ecosystems in the conterminous United States using the AmeriFlux data and an artificial neural network approach. Agricultural and Forest Meteorology, 220, 38–49. http://doi.org/10.1016/j.agrformet.2016.01.007PDF.
  • Zhang, L., Zhuang, Q., He, Y., Liu, Y., Yu, D., Zhao, Q., Shi, X., Xing, S., Wang, G., (2016), Toward optimal soil organic carbon sequestration with effects of agricultural management practices and climate change in Tai-Lake paddy soils of China. Geoderma 275, 28–39. doi: http://dx.doi.org/10.1016/j.geoderma.2016.04.001.PDF
  • Xu, X., Yang, G., Tan, Y., Zhuang, Q., Li, H., Wan, R., Su, W., Zhang, J. (2016), Ecological risk assessment of ecosystem services in the Taihu Lake Basin of China from 1985 to 2020. Sci. Total Environ. 554, 7–16. doi:10.1016/j.scitotenv.2016.02.120. PDF.
  • Yang, J., He, Y., Aubrey, D. P., Zhuang, Q. and Teskey, R. O. (2016), Global patterns and predictors of stem CO2 efflux in forest ecosystems. Glob Change Biol, 22: 1433–1444. doi:10.1111/gcb.13188. PDF.
  • Zhang, L., Zhuang, Q., Zhao, Q., He, Y., Yu, D., Shi, X., and Xing, S., (2016). Uncertainty of organic carbon dynamics in Tai-Lake paddy soils of China depends on the scale of soil maps. Agric. Ecosyst. Environ. 222, 13–22. http://doi:10.1016/j.agee.2016.01.049. PDF.
  • Liu, S., Chen, M., and Zhuang, Q. (2016). Direct radiative effects of tropospheric aerosols on changes of global surface soil moisture. Climatic Change, 1-13. http://doi.org/10.1007/s10584-016-1611-7 PDF
  • Liu, S., Zhuang, Q., He, Y., Noormets, A., Chen, J., and Gu, L. (2016). Evaluating atmospheric CO2 effects on gross primary productivity and net ecosystem exchanges of terrestrial ecosystems in the conterminous United States using the AmeriFlux data and an artificial neural network approach. Agricultural and Forest Meteorology, 220, 38–49. http://doi.org/10.1016/j.agrformet.2016.01.007. PDF
  • Zhang, L., Zhuang, Q., Li, X., Zhao, Q., Yu, D., Liu, Y., Shi, X., Xing, S., and Wang, G., (2016). Carbon sequestration in the uplands of Eastern China: an analysis with high-resolution model simulations. Soil and Tillage Research. 158: 165-176. http://dx.doi.org/10.1016/j.still.2016.01.001PDF
  • Wang, G., Zhang, L., Zhuang, Q., Yu, D., Shi, X., Xing, S., Xiong, D., Liu, Y. Quantification of the soil organic carbon balance in the Tai-Lake paddy soils of China, Soil and Tillage Research, Volume 155, January 2016, Pages 95-106, ISSN 0167-1987, http://dx.doi.org/10.1016/j.still.2015.08.003.
  • Liao, C and Zhuang, Q., (2015), Reduction of Global Plant Production due to Droughts from 2001 to 2010: An Analysis with a Process-Based Global Terrestrial Ecosystem Model. Earth Interact., 19, 1–21. doi: http://dx.doi.org/10.1175/EI-D-14-0030.1 PDF
  • Zhu, Q., and Q. Zhuang. (2015). Ecosystem biogeochemistry model parameterization: Do more flux data result in a better model in predicting carbon flux? Ecosphere 6(12):283. http://dx.doi.org/10.1890/ES15-00259.1 http://www.esajournals.org/doi/pdf/10.1890/ES15-00259.1
  • Tan, Z., and Zhuang, Q., (2015), Methane emissions from pan-Arctic lakes during the 21st century: An analysis with process-based models of lake evolution and biogeochemistry, J. Geophys. Res. Biogeosci., 120, doi:10.1002/2015JG003184. PDF
  • He, Y., Yang, J., Zhuang, Q., Harden, J. W., McGuire, A. D., Liu, Y., Wang, G., and Gu, L., (2015), Incorporating microbial dormancy dynamics into soil decomposition models to improve quantification of soil carbon dynamics of northern temperate forests, J. Geophys. Res. Biogeosci., 120, doi:10.1002/2015JG003130. PDF
  • Lu, X., and Zhuang, Q., (2015), An integrated Dissolved Organic Carbon Dynamics Model (DOCDM 1.0): model development and a case study in the Alaskan Yukon River Basin, Geosci. Model Dev. Discuss., 8, 10411-10454, doi:10.5194/gmdd-8-10411-2015. PDF
  • Tan, Z., Zhuang, Q., Henze, D. K., Frankenberg, C., Dlugokencky, E., Sweeney, C., and Turner, A. J. Mapping pan-Arctic methane emissions at high spatial resolution using an adjoint atmospheric transport and inversion method and process-based wetland and lake biogeochemical models, Atmos. Chem. Phys. Discuss., 15, 32469-32518, doi:10.5194/acpd-15-32469-2015, 2015. PDF
  • Hao, G., Zhuang, Q., Zhu, Q., He, Y., Jin, Z., and Shen, W. (2015). Quantifying microbial ecophysiological effects on the carbon fluxes of forest ecosystems over the conterminous United States. Climatic Change, 1-14. doi: 10.1007/s10584-015-1490-3 PDF
  • Jiang, Y., Rocha, A. V., Rastetter, E. B., Shaver, G. R., Mishra, U., Zhuang, Q., and Kwiatkowski, B. L (2015), C–N–P interactions control climate driven changes in regional patterns of C storage on the North Slope of Alaska, Landscape Ecol. DOI 10.1007/s10980-015-0266-5.
  • Zhuang, Q., X. Zhu, Y. He, C. Prigent, J. M. Melillo, A. D. McGuire, R. G. Prinn, and D. W. Kicklighter, Influence of Changes in Wetland Inundation Extent on Net Fluxes of Carbon Dioxide and Methane in Northern High Latitudes from 1993 to 2004, Environ. Res. Lett. 10 (2015) 095009. Environ. Res. Lett.
  • Jin, Z., *Zhuang, Q., He, J. S., Zhu, X. and Song, W. (2015). Net exchanges of methane and carbon dioxide on the Qinghai-Tibetan Plateau from 1979 to 2100.Environmental Research Letters, 10(8), 085007.
  • Liu, Y., Pan, Z., *Zhuang, Q., Miralles, D., Teuling, A., Zhang, T., An, P., Dong, Z., Zhang, J., He, D., Wang L., Pan, X., Bai, W and D. Niyogi (2015), Agriculture intensifies soil moisture decline in Northern China. Sci. Rep. 5, 11261; doi: 10.1038/srep11261.
  • Song, W., Wang, H., Wang, G., Chen, L., Jin, Z., Zhuang, Q. and He, J. S. (2015). Methane emissions from an alpine wetland on the Tibetan Plateau: Neglected but vital contribution of non?growing season. J. Geophys. Res. Biogeosci., 120, doi:10.1002/2015JG003043.
  • Tan, Z., and Zhuang, Q. (2015), Arctic lakes are continuous methane sources to the atmosphere under warming conditions. Environ. Res. Lett.10 054016 doi:10.1088/1748-9326/10/5/054016. PDF
  • Tan, Z., Zhuang, Q., and Walter Anthony, K. (2015). Modeling methane emissions from arctic lakes: Model development and site-level study. Journal of Advances in Modeling Earth Systems. doi:10.1002/2014MS000344. PDF
  • Liu, Y., Zhuang, Q., Miralles, D., Pan, Z., Kicklighter, D., Zhu, Q., He, Y., Chen, J., Tchebakova, N., Sirin, A., Niyogi, D., & Melillo, J. (2015). Evapotranspiration in Northern Eurasia: Impact of forcing uncertainties on terrestrial ecosystem model estimates. Journal of Geophysical Research: Atmospheres, doi:10.1002/2014JD022531. PDF
  • Jiang, Y., A. V. Rocha, J. A. O'Donnell, J. A. Drysdale, E. B. Rastetter, G. R. Shaver, and Q. Zhuang (2015), Contrasting soil thermal responses to fire in Alaskan tundra and boreal forest, Journal of Geophyshysical Reseach: Earth Surface, 120, doi:10.1002/2014JF003180PDF
  • Bohn, T. J., J. R. Melton, A. Ito, T. Kleinen, R. Spahni, B. D. Stocker, B. Zhang, X. Zhu, R. Schroeder, M. V. Glagolev, S. Maksyutov, V. Brovkin, G. Chen, S. N. Denisov, A. V. Eliseev, A. Gallego-Sala, K. C. McDonald, M. A. Rawlins, W. J. Riley, Z. M. Subin, H. Tian, Q. Zhuang, and J. O. Kaplan (2015), WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia, Biogenscience-Discussion. doi:10.5194/bgd-12-1907-2015.
  • He, Y., Q. Zhuang, J. W. Harden, A. D. McGuire, Z. Fan, Y. Liu and K. P. Wickland (2014), The implications of microbial and substrate limitation for the fates of carbon in different organic soil horizon types of boreal forest ecosystems: a mechanistically based model analysis. Biogeoscience, 11, 4477-4491, doi:10.5194/bg-11-4477-2014. PDF
  • Zhu, Q., Q. Zhuang, D. Henze, K. Bowman,  M. Chen, Y. Liu, Y. He, H. Matsueda, T. Machida, Y. Sawa, and W. Oechel (2014). Constraining terrestrial ecosystem CO2 fluxes by integrating models of biogeochemistry and atmospheric transport and data of surface carbon fluxes and atmospheric CO2 concentrations. Atmos. Chem. Phys. Discuss., 14, 22587-22638, doi:10.5194/acpd-14-22587-2014. PDF
  • Liu, S., M. Chen and Q. Zhuang. (2014) Aerosol effects on global land surface energy fluxes during 2003-2010, Geophys. Res. Lett., 41, doi:10.1002/2014GL061640. PDF
  • He, Y., J. Yang, Q. Zhuang, A. D. McGuire, Q. Zhu, Y. Liu, and R. O. Teskey (2014), Uncertainty in the fate of soil organic carbon: A comparison of three conceptually different decomposition models at a larch plantation, J.Geophys. Res. Biogeosci., 119, doi:10.1002/2014JG002701. PDF
  • Qin, Z. and Zhuang, Q. (2014) Estimating Water Use Efficiency in Bioenergy Ecosystems Using a Process-Based Model, in Remote Sensing of the Terrestrial Water Cycle (eds V. Lakshmi, D. Alsdorf, M. Anderson, S.Biancamaria, M. Cosh, J. Entin, G. Huffman, W. Kustas, P. van Oevelen, T. Painter, J. Parajka, M. Rodell and C. Rüdiger), John Wiley & Sons, Inc, Hoboken, NJ. doi: 10.1002/9781118872086.ch30. PDF
  • Liu, Y., Q. Zhuang, Z. Pan, D. Miralles, N. Tchebakova, D. Kicklighter, J. Chen, A. Sirin, Y. He, G. Zhou, J. Melillo (2014). Response of evapotranspiration and water availability to the changing climate in Northern Eurasia. Climatic Change: 1-15. PDF
  • Zhang, T. and Q. Zhuang (2014), On the local odds ratio between points and marks in marked point processes. Spatial Statistics. Volume 9, Pages 20-37, ISSN 2211-6753, http://dx.doi.org/10.1016/j.spasta.2013.12.002PDF
  • He, X., X. Zhu, H. Zhang and Q. Zhuang (2014), Linear models of different scales. International Journal of Research and Reviews in Applied Sciences. IJRRAS 18 1, 2014. PDF
  • Hao, G., Q. Zhuang, J. Pan, Z. Jin, X. Zhu and S. Liu (2014), Soil thermal dynamics of terrestrial ecosystems of the conterminous United States from 1948 to 2008: an analysis with a process-based soil physical model and AmeriFluxdata. Climatic Change. doi: 10.1007/s10584-014-1196-y PDF
  • Chen, M., Q. Zhuang and Y. He (2014), An Efficient Method of Estimating Downward Solar Radiation Based on the MODIS Observations for the Use of Land Surface Modeling. Remote Sens. 2014, 6, 7136-7157. PDF
  • Qin, Z., Q. Zhuang and X. Cai (2014), Bioenergy crop productivity and potential climate change mitigation from marginal lands in the United States: An ecosystem modeling perspective. GCB Bioenergy.doi: 10.1111/gcbb.12212. PDF
  • Zhu, X., Q. Zhuang, X. Lu and L. Song (2014), Spatial scale-dependent land–atmospheric methane exchanges in the northern high latitudes from 1993 to 2004, Biogeosciences, 11, 1693-1704, doi:10.5194/bg-11-1693-2014. PDF
  • Kicklighter, D. W., Y. Cai, Q. Zhuang, E. I. Parfenova, S. Paltsev, A. P. Sokolov, J. M. Melillo, J. M. Reilly, N. M. Tchebakova and X. Lu (2014), Potential influence of climate-induced vegetation shifts on future land use and associated land carbon fluxes in Northern Eurasia. Environmental Research Letters, 9, 035004, doi: 10.1088/1748-9326/9/3/035004. PDF
  • Zhu, Q., and Q. Zhuang (2014), Parameterization and sensitivity analysis of a process-based terrestrial ecosystem model using adjoint method, J. Adv. Model. Earth Syst 6, doi: 10.1002/2013MS000241. PDF
  • Chen, M., and Q. Zhuang (2014), Evaluating aerosol direct radiative effects on global terrestrial ecosystem carbon dynamics from 2003 to 2010 Tellus B 2014, 66, 21808, http://www.tellusb.net/index.php/tellusb/article/view/21808PDF
  • Hayes, D. J., D. W. Kicklighter, A. D. McGuire, M. Chen, Q. Zhuang, F. Yuan, J. M. Melillo and S. D. Wullschleger (2014), The impacts of recent permafrost thaw on land–atmosphere greenhouse gas exchange Environ. Res. Lett.9 045005 doi:10.1088/1748-9326/9/4/045005. PDF
  • He, Y., M.C. Jones, Q. Zhuang, C. Bochicchio, B. S. Felzer, E. Mason, Z. Yu, Evaluating CO2 and CH4 dynamics of Alaskan ecosystems during the Holocene Thermal Maximum, Quaternary Science Reviews, Volume 86, 15 February 2014, Pages 63-77, ISSN 0277-3791, http://dx.doi.org/10.1016/j.quascirev.2013.12.019.
  • Kanevskiy, M., Jorgenson, T., Shur, Y., O'Donnell, J. A., Harden, J. W., Zhuang, Q. and Fortier, D. (2014), Cryostratigraphy and Permafrost Evolution in the Lacustrine Lowlands of West-Central Alaska. Permafrost Periglac. Process. doi:10.1002/ppp.1800 PDF
  • He, Y., Q. Zhuang, J. W. Harden, A. D. McGuire, Z. Fan, Y. Liu, and K. P. Wickland (2014), The implications of microbial and substrate limitation for the fates of carbon in different organic soil horizon types: a mechanistically based model analysis, Biogeosciences Discuss., 11, 2227-2266, doi:10.5194/bgd-11-2227-2014. PDF
  • Liu, Y., Q. Zhuang*, M. Chen, Z. Pan, N. Tchebakova, A. Sokolov, D. Kicklighter, J. Melillo, A. Sirin, G. Zhou, Y. He, J. Chen, L. Bowling, D. Miralles, and E. Parfenova (2013), Response of evapotranspiration and water availability to changing climate and land cover on the Mongolian Plateau during the 21st century, Global and Planetary Change, Volume 108, September 2013, Pages 85-99, ISSN 0921-8181.
  • Zhu, X., Q. Zhuang*, X. Gao, A. Sokolov and A. Schlosser (2013), Pan-Arctic land–atmospheric fluxes of methane and carbon dioxide in response to climate change over the 21st century, Eenviron. Res. Lett., doi:10.1088/1748-9326/8/4/045003.
  • Qin, Z., Q. Zhuang*, and X. Zhu (2013b), Carbon and nitrogen dynamics in bioenergy ecosystems: 2. Potential greenhouse gas emissions and global warming intensity in the conterminous United States, GCB Bioenergy, doi: 10.1111/gcbb.12106.
  • Qin, Z., Q. Zhuang*, and X. Zhu (2013a), Carbon and nitrogen dynamics in bioenergy ecosystems: 1. Model development, validation and sensitivity analysis, GCB Bioenergy, doi: 10.1111/gcbb.12107.
  • Qin, Z., Y. Huang, and Q. Zhuang* (2013), Soil organic carbon sequestration potential of cropland in China, Global Biogeochem. Cycles, 27, doi:10.1002/gbc.20068.
  • Zhu, Q. and Q. Zhuang* (2013), Modeling the effects of organic nitrogen uptake by plants on the carbon cycling of boreal ecosystems, Biogeosciences Discuss., 10, 13455–13490, www.biogeosciences-discuss.net/10/13455/2013/doi:10.5194/bgd-10-13455-2013.
  • Zhuang, Q., M. Chen, K. Xu, J. Tang, E. Saikawa, Y. Lu, J. M. Melillo, R. G. Prinn, and A. D. McGuire (2013), Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition, Global Biogeochem. Cycles, 27, doi:10.1002/gbc.20057.
  • Jorgenson, M. T., J. Harden, M. Kanevskiy, J. O'Donnell, K. Wickland, S. Ewing, K. Manies, Q. Zhuang, Y.Shur, R. Striegl and J. Koch (2013), Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes, Environ. Res. Lett. 8 035017 doi:10.1088/1748-9326/8/3/035017.
  • Gao, X., C. A. Schlosser, A. Sokolov, K. W. Anthony, Q. Zhuang and D. Kicklighter (2013), Permafrost degradation and methane: low risk of biogeochemical climate-warming feedback, Environ. Res. Lett. 8 035014 doi:10.1088/1748-9326/8/3/035014.
  • Zhu, Q. and Q. Zhuang (2013). Improving the quantification of terrestrial ecosystem carbon dynamics over the United States using an adjoint method. Ecosphere 4:118. http://dx.doi.org/10.1890/ES13-00058.1
  • He, Y., Q. Zhuang*, A. D. McGuire, Y. Liu, and M. Chen (2013), Alternative ways of using field-based estimates to calibrate ecosystem models and their implications for carbon cycle studies, JGR: Biogeosciences 118, 1-11, doi:10.1002/jgrg.20080.
  • Zhu, X., Q. Zhuang*, Z. Qin, M. Glagolev, and L. Song (2013), Estimating wetland methane emissions from the northern high latitudes from 1990 to 2009 using artificial neural networks, Global Biogeochemical Cycles 27, doi:10.1002/gbc.20052.
  • Jin, Z., Q. Zhuang*, J. He, T. Luo, and Y. Shi (2013) Phenology shift from 1989 to 2008 on the Tibetan Plateau: an analysis with a process-based soil physical model and remote sensing data. Climatic Change. 10.1007/s10584-013-0722-7.
  • Chen, M., and Q. Zhuang* (2013) Modeling temperature acclimation effects on carbon dynamics of forest ecosystems in the conterminous United States, Tellus B, 65, 19156
  • Zhuang, Q., Z. Qin, and M. Chen (2013) Biofuel, land and water: maize, switchgrass or Miscanthus? Environ. Res. Lett., 8, 015020.
  • Bridgham, S. D., H. Cadillo-Quiroz, J. K. Keller, and Q. Zhuang (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales, Global Change Biology, doi: 10.1111/gcb.12131.
  • Taheripour, F., Q. Zhuang, W. E. Tyner and X. Lu (2013) Biofuels, cropland expansion, and the extensive margin, Energy, Substainability and Society, 2: 25
  • Lu, X. and Q. Zhuang* (2012) Modeling methane emissions from the Alaskan Yukon River basin, 1986-2005, by coupling a large-scale hydrological model and a process-based methane model, Journal of Geophysical Research - Biogeoscience, doi: 10.1029/2011JG001843.
  • Zhuang Q. (2012) Editorial: Hydrological Dynamics are Critical to Greenhouse Gas Cycling. J Geol Geosci 1:e103. DOI:10.4172/jgg.1000e103
  • Tan, Z. and Q. Zhuang (2012), An analysis of atmospheric CH4 concentrations from 1984 to 2008 with a single box atmospheric chemistry model, Atmos. Chem. Phys. Discuss., 12, 30259-30282, doi:10.5194/acpd-12-30259-2012, 2012.
  • pSui,X., G.  Zhou, and Q. Zhuang (2012) Sensitivity of carbon budget to historical climate variability and atmospheric CO2 concentration in temperate grassland ecosystems in China, Climatic Change, doi 10.1007/s10584-012-0533-2.
  • Jiang, Y., Q. Zhuang* and O'Donnell, A. J. (2012) Modeling thermal dynamics of active layer soils and near-surface permafrost using a fully coupled water and heat transport model, Journal of Geophysical Research, Vol. 117, No. D11, D11110.
  • *Zhuang, Q., Y. Lu, and M. Chen (2012), An inventory of global N2O emissions from the soils of natural terrestrial ecosystems, Atmospheric Environment, 1352-2310, doi: 10.1016/j.atmosenv.2011.11.036.
  • Chen, M., and Q. Zhuang* (2012) Evaluating Carbon dynamics of forest ecosystems in the conterminous United States based on a spatially explicit parameterization method, Earth Interactions, doi: http://dx.doi.org/10.1175/EI400.1.
  • Jiang, Y., Q. Zhuang*, and D. Mandallaz (2012). Modeling Large Fire Frequency and Burned Area in Canadian Terrestrial Ecosystems with Poisson Models, Environ Model Assess, DOI 10.1007/s10666-012-9307-5.ng,
  • Y., Q. Zhuang*, S. Schaphoff, S. Sitch, A. Sokolov, D. Kicklighter, and J. Melillo (2012). Uncertainty analysis of vegetation distribution in the northern high latitudes during the 21st century with a dynamic vegetation model, Ecology and Evolution, doi: 10.1002/ece3.85. 
  • Chen, M., Q. Zhuang*, Cook, D. R., Coulter, R., Pekour, M., Scott, R. L., Munger, J. W., and Bible, K. (2011) Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data, Biogeosciences, 8, 2665-2688, doi:10.5194/bg-8-2665-2011
  • Qin Z., Q. Zhuang*, Zhu X., Cai X., and Zhang X (2011). Carbon consequences and agricultural implications of growing biofuel crops on marginal agricultural lands in China. Environ. Sci. Technol.. DOI: 10.1021/es2024934.
  • Zhu X., Q. Zhuang*, Chen M., Sirin A., Melillo J., Kicklighter D., Sokolov A., Song L. (2011), Rising methane emissions in response to climate change in Northern Eurasia during the 21st century. Environ. Res. Lett. 6 045211 doi:10.1088/1748-9326/6/4/045211
  • Qin, Z., Q. Zhuang*, and M. Chen (2011), Impacts of land use change due to biofuel crops on carbon balance, bioenergy production, and agricultural yield, in the conterminous United States, Glob Change Biol Bioenergy, 1757-1707, http://dx.doi.org/10.1111/j.1757-1707.2011.01129.x, DO - 10.1111/j.1757-1707.2011.01129.x 
  • Tang, J. and Q. Zhuang* (2011), Technical Note: Propagating correlations in atmospheric inversions using different Kalman update smoothers, Atmos. Chem. Phys., 11, 921-929, doi:10.5194/acp-11-921-2011.
  • Jiang, Y., and Q. Zhuang* (2011), Extreme value analysis of wildfires in Canadian boreal forest ecosystems, Canadian Journal of Forest Research, 41:1836-1851, 10.1139/x11-102.
  • Lu, X. and Q. Zhuang* (2011), Areal changes of land ecosystems in the Alaskan Yukon River Basin from 1984-2008, Environ. Res. Lett. 6 034012,doi:10.1088/1748-9326/6/3/034012
  • pXiao, J., Q. Zhuang*, Beverly E. Law, Dennis D. Baldocchi, Jiquan Chen, Andrew D. Richardson, Jerry M. Melillo, Kenneth J. Davis, David Y. Hollinger, Sonia Wharton, Ram Oren, Asko Noormets, Marc L. Fischer, Shashi B. Verma, David R. Cook, Ge Sun, Steve McNulty, Steven C. Wofsy, Paul V. Bolstad, Sean P. Burns, Peter S. Curtis, Bert G. Drake, Matthias Falk, David R. Foster, Lianhong Gu, Julian L. Hadley, Gabriel G. Katul, Marcy Litvak, Siyan Ma, Timothy A. Martin, Roser Matamala, Tilden P. Meyers, Russell K. Monson, J. William Munger, Walter C. Oechel, U. Kyaw Tha Paw, Hans Peter Schmid, Russell L. Scott, Gregory Starr, Andrew E. Suyker, Margaret S. Torn (2011), Assessing net ecosystem carbon exchange of U.S. terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations, Agricultural and Forest Meteorology, Volume 151, Issue 1, 15 January 2011, Pages 60-69, ISSN 0168-1923, DOI: 10.1016/j.agrformet.2010.09.002.
  • Tang, J. and Q. Zhuang* (2010), Modeling soil thermal and hydrological dynamics and changes of growing season in Alaskan terrestrial ecosystems, Climatic Change, DOI 10.1007/s10584-010-9988-1 
  • Tang, J., Q. Zhuang*, Shannon, R. D., and White, J. R. (2010), Quantifying wetland methane emissions with process-based models of different complexities, Biogeosciences, 7, 3817-3837, doi:10.5194/bg-7-3817-2010
  • Anthony, K. M. W., D. A. Vas, L. Brosius, F. S. Chapin III, S. A. Zimov, and Q. Zhuang (2010), Estimating methane emissions from northern lakes using ice bubble surveys, Limnol. Oceanogr.: Methods, 8, 592–609.
  • Xiong, X., C. D. Barnet, Q. Zhuang, T. Machida, C. Sweeney, and P. K. Patra (2010), Mid-upper tropospheric methane in the high Northern Hemisphere: Spaceborne observations by AIRS, aircraft measurements, and model simulations, J. Geophys. Res., 115, D19309, doi:10.1029/2009JD013796. 
  • McGuire, A.D., D.J. Hayes, D.W. Kicklighter, M. Manizza, Q. Zhuang, M. Chen, M. J. Follows, K. R. Gurney, J. W. McClelland, J. M. Melillo, B. J. Peterson, and R. G. Prinn (2010), An analysis of the carbon balance of the Arctic Basin from 1997 to 2006, Tellus, DOI: 10.1111/j.1600-0889.2010.00497.x.
  • Zhuang Q., J. He, Y. Lu, L. Ji, J. Xiao, T. Luo, Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau during the 20th century: an analysis with a process-based biogeochemical mode, Global Ecology and Biogeography,19,5, 649-662,2010. DOI: 10.1111/j.1466-8238.2010.00559.x.
  • McGuire, A.D., D.J. Hayes, D.W. Kicklighter, M. Manizza, Q. Zhuang, M. Chen, M. J. Follows, K. R. Gurney, J. W. McClelland, J. M. Melillo, B. J. Peterson, and R. G. Prinn, An analysis of the carbon balance of the Arctic Basin from 1997 to 2006, Tellus, DOI: 10.1111/j.1600-0889.2010.00497.x.
  • Zhuang Q., J. He, Y. Lu, L. Ji, J. Xiao, T. Luo, Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau during the 20th century: an analysis with a process-based biogeochemical mode, Global Ecology and Biogeography,19,5, 649-662,2010. DOI: 10.1111/j.1466-8238.2010.00559.x.
  • McGuire, A.D., D.J. Hayes, D.W. Kicklighter, M. Manizza, Q. Zhuang, M. Chen, M. J. Follows, K. R. Gurney, J. W. McClelland, J. M. Melillo, B. J. Peterson, and R. G. Prinn, An analysis of the carbon balance of the Arctic Basin from 1997 to 2006, Tellus, DOI: 10.1111/j.1600-0889.2010.00497.x.
  • Lu, X., and Q. Zhuang, Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data, Remote Sensing of Environment, 114, 9, 1924-1939, DOI: 10.1016/j.rse.2010.04.001.
  • Xiao, J., Q. Zhuang, D. D. Baldocchi, B. E. Law, A. D. Richardson, J. Chen, R. Oren, G. Starr, A. Noormets, S. Ma, S. B. Verma, S. Wharton, S. C. Wofsy, P V. Bolstad, S. P. Burns, D. R. Cook, P. S. Curtis, B. G. Drake, M. Falk, M. L. Fischer, D. R. Foster, L. Gu, J. L. Hadley, D. Y. Hollinger, G. G. Katul, M. Litvak, T. A. Martin, R. Matamala, S. McNulty, T. P. Meyers, R. K. Monson, J. W. Munger, W. C. Oechel, K. T. Paw U, H. P. Schmid, R. L. Scott, G. Sun, A. E. Suyker, M. S. Torn, (2010). A Continuous Measure of Gross Primary Productivity for the Conterminous U.S. Derived from MODIS and AmeriFlux Data, Remote Sensing of Environment 114, 576-591.
  • Lu, X. and Q. Zhuang (2010), Evaluating climate impacts on carbon balance of the terrestrial ecosystems in the Midwest of the United States with a process-based ecosystem model, Mitigation and Adaptation Strategies for Global Change,15, 5, 467-487,10.1007/s11027-010-9228-z.
  • Ping, X., G. Zhou, Q. Zhuang, Y. Wang, W. Zuo, G. Shi, X. Lin and Y. Wang, (2010). Effects of sample size and position from monolith and core methods on the estimation of total root biomass in a temperate grassland ecosystem in Inner Mongolia. Geoderma 155(3-4): 262-268.
  • Xu, K., , C. Kong, , G. Liu, , C. Wu, , H. Deng, , Y. Zhang , and Q. Zhuang, Changes of urban wetlands in Wuhan, China, from 1987 to 2005, Progress in Physical Geography 2010 34: 207-220.
  • Tang, J., and Q. Zhuang (2009), A global sensitivity analysis and Bayesian inference framework for improving the parameter estimation and prediction of a process-based Terrestrial Ecosystem Model, J. Geophys. Res., 114, D15303, doi:10.1029/2009JD011724.
  • Jiang Y., Zhuang Q., Flannigan M. D., Little J. M. (2009), Characterization of wildfire regimes in Canadian boreal terrestrial ecosystems. International Journal of Wildland Fire 18, 992-1002. doi:10.1071/WF08096.
  • Lu, Y.,  Q. Zhuang, G. Zhou, A. Sirin, J. Melillo and D. Kicklighter (2009) Possible decline of the carbon sink in the Mongolian Plateau during the 21st century, Environ. Res. Lett. 4 045023 (8pp)   doi: 10.1088/1748-9326/4/4/045023<http://dx.doi.org/10.1088/1748-9326/4/4/045023>.
  • Xiao, J., Q. Zhuang, E. Liang, A.D. McGuire, A. Moody, D.W. Kicklighter, X. Shao, and J.M. Melillo, 2009: Twentieth-Century Droughts and Their Impacts on Terrestrial Carbon Cycling in China. Earth Interactions, 13, 1-31.
  • Zhuang, Q., J. M. Melack, S. Zimov, K. M. Walter, C. L. Butenhoff, and M. A. K. Khalil, (2009), Global methane emissions from wetlands, rice paddies, and lakes,  Eos, 90(5), 37-38.
  • Zhuang, Q., J. M. Melack, S. Zimov, K. M. Walter, C. L. Butenhoff, and M. A. K. Khalil (2009), Correction to "Global methane emissions from wetlands, rice paddies, and lakes", Eos Trans. AGU, 90(11), doi:10.1029/2009EO110019.
  • Tang, J., and Q. Zhuang (2008), Equifinality in parameterization of process-based biogeochemistry models: A significant uncertainty source to the estimation of regional carbon dynamics, J. Geophys. Res., 113, G04010, doi:10.1029/2008JG000757.
  • Xiao, J., Zhuang, Q., D.D. Baldocchi, B.E. Law, A.D. Richardson, J. Chen, R. Oren, G. Starr, A. Noormets, S.Ma, S.B. Verma, S. Wharton, S.C. Wofsy, P.V. Bolstad, S.P. Burns, D.R. Cook, P.S. Curtis, B.G. Drake, M. Falk, M.L. Fischer, D.R. Foster, L. Gu, J.L. Hadley, D.Y. Hollinger, G.G. Katul, M. Litvak, T.A. Martin, R. Matamala, S. McNulty, T.P. Meyers, R.K. Monson, J.W. Munger, W.C. Oechel, K.T. Paw U, H.P. Schmid, R.L. Scott, G. Sun, A.E. Suyker, M.S. Torn, 2008. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data. Agricultural and Forest Meteorology, 148 (11), 1827-1847.
  • Zhuang, Q. , T. Zhang, J. Xiao, and T. Luo, Quantification of Net Primary Production of Chinese Forest Ecosystems with Spatial Statistical Approaches, Mitigation and Adaptation Strategies for Global Change, DOI 10.1007/s11027-008-9152-7, 2008.
  • Zhuang, Q., and W. S. Reeburgh, Introduction to special section on Synthesis of Recent Terrestrial Methane Emission Studies, J. Geophys. Res., 113, G00A02, doi:10.1029/2008JG000749, 2008.
  • Xiao, J., and Q. Zhuang, Drought effects on large fire activity in Canadian and Alaskan forests, Environ. Res. Lett. 2 044003 (6pp)   doi:10.1088/1748-9326/2/4/044003, 2007.
  • Balshi M.S., A.D.McGuire, Q. Zhuang, J.M.Melillo, D.W. Kicklighter, E.Kasischke, C. Wirth, M. Flannigan, J.Harden, J.S.Clein, T.J. Burnside, J.McAllister, W.A.Kurz, M.Apps, and A. Shvidenko, The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: A process-based analysis. J. Geophys. Res, 112, G02029, 2007.
  • Zhuang, Q., J. M. Melillo, A. D. McGuire, D. W. Kicklighter, R. G. Prinn, P. A. Steudler, B. S. Felzer, and S. Hu,  Net emissions of CH4 and CO2 in Alaska: implications for the region's greenhouse gas budget ,  Ecological Applications: Vol. 17, No. 1, pp. 203-212,  2007. <http://web.ics.purdue.edu/%7Eqzhuang/Dr_%20Qianlai%20Zhuang_files/Zhuang%20et%20al-EA-2007.pdf>
  • Sitch, S.,   A.D. McGuire,  J. Kimball,  N. Gedney,  J. Gamon,  R. Rengstrom, A. Wolf,   Q. Zhuang,  J. Clein,   and  K. C. McDonald,  Assessing the carbon balance of circumpolar arctic tundra using remote sensing and process modeling, Ecological Applications, 17 (1), 2007, 213-234, 2007.
  • Zhuang, Q., J. M. Melillo, M. C. Sarofim, D W. Kicklighter, A. D. McGuire, B. S. Felzer, A. Sokolov, R. G. Prinn, P. A. Steudler, and S. Hu, CO2 and CH4 exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st century, Geophys. Res. Lett., 33, L17403, doi:10.1029/2006GL026972, 2006.
  • Euskirchen, E.S., A.D. McGuire, D.W. Kicklighter, Q. Zhuang, J.S. Clein, R.J. Dargaville, D.G. Dye, J.S. Kimball, K.C. McDonald,  J.M. Melillo, V.E. Romanovsky, N.V. Smith,  Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystem, Global Change Biology, 12, 731-750, doi:10.1111/j.1365-2486.2006.01113.x, 2006.
  • Felzer B., J. Reilly, J. Melillo, D. Kicklighter, C. Wang, R. Prinn, M. Sarofim, Q. Zhuang, Past and future effects of ozone on net primary production and carbon sequestration using a global biogeochemical model, Climatic Change 73:345-373, doi:10.1007/S10584-005-6776-4, 2005.
  • Zhuang, Q., J. M. Melillo, D. W. Kicklighter, R. G. Prinn, D. A. McGuire, P. A. Steudler, B. S. Felzer, and S. Hu, Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model, Global Biogeochemical Cycles, 18, GB3010, doi:10.1029/2004GB002239, 2004.
  • Felzer B., D. Kicklighter, J. Melillo, C. Wang, Q. Zhuang, and R. Prinn, Ozone effects on net primary production and carbon sequestration in the conterminous United States using a Biogeochemistry Model. Tellus 56B, 230-248, 2004.
  • Zhuang, Q., A. D. McGuire, J. M. Melillo, J. S. Clein, R. J. Dargaville, D. W. Kicklighter, R. B. Myneni, J. Dong, V. E. Romanovsky, J. Harden, and J. E. Hobbie, Carbon cycling in extratropical terrestrial ecosystems of the Northern Hemisphere during the 20th Century: A modeling analysis of the influences of soil thermal dynamics, Tellus, 55B, 751-776, 2003.
  • Zhuang, Q., A. D. McGuire, K. P. O'Neill, J. W. Harden, V. E. Romanovsky, J. Yarie. Modeling the soil thermal and carbon dynamics of a fire chronosequence in Interior Alaska, J. Geophy. Res., 107, 8147, doi:10.1029/2001JD001244, 2002. [Printed 108(D1), 2003].
  • Zhuang, Q., V. E. Romanovsky, A. D. McGuire, Incorporation of a permafrost model into a large-scale ecosystem model: Evaluation of temporal and spatial scaling issues in simulating soil thermal dynamics, J. Geophys. Res., 106, D24, 33,649-33,670, 2001.

Earth, Atmospheric, and Planetary Sciences, 550 Stadium Mall Drive, West Lafayette, IN 47907 • Phone: (765) 494-3258 • Fax: (765) 496-1210 • Contact Us

Copyright © 2018 Purdue University | An equal access/equal opportunity university | Copyright Complaints

Trouble with this page? Disability-related accessibility issue? Please contact the College of Science.