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Abstract: Accurately mapping the spatial distribution information of soil organic carbon (SOC) 
stocks is a key premise for soil resource management and environment protection. Rapid 
development of satellite remote sensing provides a great opportunity for monitoring SOC stocks at 
a large scale. In this study, based on 12 environmental variables of multispectral remote sensing, 
topography and climate and 236 soil sampling data, three different boosted regression tree (BRT) 
models were compared to obtain the most accurate map of SOC stocks covering the forest area of 
Lvshun District in the Northeast China. Four validation indexes, including mean absolute error 
(MAE), root mean square error (RMSE), coefficient of determination (R2), and Lin’s concordance 
correlation coefficient (LCCC) were calculated to evaluate the performance of the three models. The 
results showed that the full variable model performed the best, except the model using multispectral 
remote sensing variables. In the full variable model, the regional SOC stocks are primarily 
determined by multispectral remote sensing variables, followed by topographic and climatic 
variables, with the relative importance of variables in the model being 63%, 28%, and 9%, 
respectively. The average prediction results of full variables model and only multispectral remote 
sensing variables model were 8.99 and 9.32kg m-2, respectively. Our results indicated that there is 
a strong dependence of SOC stocks on multispectral remote sensing data when forest ecosystems 
have dense natural vegetation. Our study suggests that the multispectral remote sensing variables 
should be used to map SOC stocks of forest ecosystems in our study region. 

Keywords: soil organic carbon stocks; multispectral remote sensing; forestry ecology; spatial 
variation 

 

1. Introduction 

Forest ecosystems are the largest carbon pool in terrestrial ecosystems, which account for nearly 
half of the global total terrestrial carbon stocks [1]. They also maintain 73% of the global soil carbon 
pool and 86% of the global vegetation carbon pool, which is of great significance to the global carbon 
balance [2,3]. Compared with other terrestrial ecosystems, forest ecosystems demonstrate higher 
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productivity and constitute the largest contributor of primary productivity in the biosphere [4]. 
Accurately estimating the spatial distribution of soil organic carbon (SOC) stocks and clarifying its 
main controlling factors are of great practical significance in regional carbon management and 
formulating soil carbon sequestration policies [5]. The spatial distribution pattern of SOC stocks is 
affected by both natural and human factors [6]. It is a challenging task to accurately predict the SOC 
stock in the region. Also, due to the high cost for data collection, it is difficult to inventory SOC by 
intensive sampling. 

With the development of remote sensing (RS), global position system (GPS) and geographic 
information system (GIS) have opened up new approaches for the study of SOC stocks [7]. Those had 
been widely used in the field of global and regional SOC stocks, spatial distribution difference of 
organic carbon density and dynamic change of organic carbon [8]. The traditional research on carbon 
cycle is limited by a small number of measuring points [9]. In contrast, remote sensing data with real-
time information can be combined with sampling data to broaden the research scope [10]. A 
mathematical analysis is used to link the measured data and remote sensing imagery data to estimate 
SOC [11]. Each point in the remote sensing prediction method has its own pixel characteristic value 
[4]. After the inversion model is established, the eigenvalues of each pixel are calculated by the model. 
Different models to build the relationship between multispectral remote sensing data and sampling 
data have been used to predict SOC stocks [10]. For example, Chen et al. [12] analyzed the potential 
relationship between the topsoil SOC and the image element values of R, G and B bands of remote 
sensing images based on the data of 28 sampling points of the study area, and estimated the SOC 
content using the established logarithmic equation model. Fox et al. [13] collected the digital 
information of bare soil by means of digital photography system in the Midwest research area of the 
United States, and obtained the relationship between the Euclidean distance of pixel along the soil 
line and the content of organic matter in the topsoil. The soil collected by Hill and Schütt [14] was 
taken back to the laboratory for spectral analysis, and it was found that the characteristics of 0.35 μ 
m-1.4 μ m spectral band determined the SOC content. Although there are various methods and 
techniques for SOC stocks estimation, there are few researches based on tree model [8]. 

Tree-based learning algorithm has high accuracy and is easy to explain [15]. Different from the 
linear model, the tree-based model can well express the nonlinear relationship [8]. Therefore, tree-
based model as a classical machine learning algorithm is widely used in the spatial prediction of soil 
properties [8,16,17]. In general, it is unrealistic to build a single tree to accurately predict soil 
properties, so researchers introduce bagging, boosting and random subspace methods into the tree 
model to improve the model performance [16]. Boosted regression tree (BRT) is based on the 
traditional classification regression tree algorithm, which generates multiple regression trees by 
continuous random selection and self-learning, thus improving the stability and prediction accuracy 
of the model [8]. In the process of operation, a certain amount of data is randomly selected through 
repeated iterations to analyze the influence of independent variables on dependent variables [17]. 
The rest of the data is used for cross validation of fit results. Finally, the averages value of the 
generated multiple regression trees and output is obtained. The model can calculate the relationship 
between the independent variable and the dependent variable when other independent variables 
take the mean value or remain unchanged. The biggest advantage of BRT is that there is no need to 
consider the interaction between independent variables [8]. BRT model can be flexible to deal with 
linear, polynomial, exponential, logistic, periodic, or general nonlinear problems. As a data mining 
method, BRT model has many advantages, including its limited number of user-defined parameters 
and ability to model nonlinear relationships. It also can effectively manage both of qualitative and 
quantitative variables. The model is also robust when there is an absence of data and outliers and 
reduces over fitting [7]. 

With these advantages, the BRT model is widely used in many fields, such as environmental 
science [18], medicine [19], ecology [20], remote sensing [21], genetics [22], and soil science [7]. For 
soil science, remote sensing technology is widely used in soil sampling and the characterization of 
soil properties [23]. Compared with the traditional method of soil type or land type assignment to 
estimate SOC stocks in the region, multispectral remote sensing data is low-cost, faster and more 
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accurate [24]. Most importantly, there are few researches on the prediction of SOC stocks using the 
BRT model combined with multispectral remote sensing technology [17]. 

This study compared three BRT models with different combinations of environmental variables 
to map the SOC stocks of forest ecological topsoil (0–30cm) in the coastal area of Northeast China. 
The special research objectives were to: (1) construct three BRT models based on 236 sampled data 
and 12 environmental variables to predict SOC stocks; (2) explore potential utilization value in the 
prediction of SOC stocks, and (3) evaluate the potential application of this method for similar 
landscape areas. 

2. Materials and Methods 

2.1. Study Area 

The study area is located in Lushun District (38.72°–38.97° N, 121.08°–121.47° E)), Liaoning 
Province, Northeast China (Figure 1), and the southernmost part of Liaodong Peninsula. It is a 
municipal area of Dalian City, with a total area of 512 km2. The terrain is low in the southwest and 
high in the northeast. Its elevation is 0–466 m above sea level. There are a number of geomorphic 
types in the area including middle and low mountains, hills, platforms, plains, and beaches. Its mean 
average temperature is 8–11 ℃, which is the warmest area in Northeast China. Its mean annual 
precipitation is between 550–1000mm, more in the east than in the west, more in the north than in the 
south, increasing from southwest to northeast. The area is dominated by forests, accounting for 53% 
of the total area. In addition, it is also a national scenic spot, National Nature Reserve and National 
Forest Park. Its main plant communities are coniferous forest, coniferous broad-leaved mixed forest, 
deciduous broad-leaved forest, artificial broad-leaved forest, deciduous broad-leaved shrub, shrub 
grass, non-zonal vegetation and agricultural vegetation. Its main soil types in this area are Cambisols 
(59%) and Fluvisols (17%) (World soil resource reference base) [25]. 



Remote Sens. 2020, 12, 393 4 of 19 

 

 
Figure 1. Location of the study area and sampling points, which are superimposed on a 30-m 
resolution remote sensing image. 

2.2. Sampling Strategy and Experimental Method 

Due to the abundant forest area (53.1% of the area) and the limited funding and rough roads, 
extensive field sampling is impractical. In order to truly and accurately reflect the spatial 
characteristics of SOC stocks, the purpose sampling method [26] is used to design sampling points in 
this study. According to the corresponding relationship between soil properties and soil forming 
environment, the method assumes that the soil formed in a similar environment is similar [27]. The 
fuzzy c-means clustering method is used to cluster the main environmental factors such as slope 
gradient, slope aspect, elevation, mean annual temperature, mean annual precipitation and 
normalized vegetation index. According to the fuzzy membership value of each point in the 
combination of environmental factors, the representative grid of the corresponding category of 
environmental combination of each point and the accessibility degree of sample points are 
determined [28]. Finally, the high representative points are selected as the design sample points in 
combination with the vegetation type map [27]. Twenty-four clustering results were generated, and 
8–10 samples were collected in each category, we obtained a total of 236 points in 2016. In order to 
determine the bulk density of soil, the undisturbed samples of 100 cm3 cores were collected in the 
center of soil layer. The samples were numbered and bagged respectively, and brought back to the 
laboratory for air drying before sample treatment; the bagged soil sample was dried by natural air, 
weighed, ground and passed through a nylon screen with a diameter of 2 mm. Soil samples were 
pretreated and measured in the Key Laboratory of agricultural resources and environment of 
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Liaoning Province to determine SOC (Potassium dichromate sulfuric acid digestion method). Cores 
were dried at 105 ℃ for 48 h for soil bulk density measurement. 

2.3. Environmental Data 

In this study, 12 environmental variables representing multispectral remote sensing, topography 
and climate were selected. Since the data were obtained from different departments, we resampled 
them to raster data with a 30 m spatial resolution in ArcGIS 10.2. High precision environment variable 
is one of the essential conditions for accurate prediction of SOC stocks. The environment variable 
with high spatial resolution can provide more detailed attribute information, but the 30 m of spatial 
resolution is enough to reflect the distribution characteristics of SOC stocks in the area. 

2.3.1. Multispectral Remote Sensing Variables 

L1T level Landsat-8 imageries were acquired from one image (Path-row: 120-33) downloaded 
from the United States Geological Survey (USGS) covering the spatial domain of study area from July 
to September 2016. In order to ensure image quality and avoid the interference of cloud on model 
prediction, the cloudiness value error of the downloaded image data is controlled within less 10%. 
The Environment for Visualizing Images (ENVI) Fast Line-of-sight Atmospheric Analysis of Spectral 
Hypercubes (FLAASH) atmospheric correction method was used to correct the multispectral remote 
sensing data. We used a bilinear interpolation method to resample these data to raster format with a 
30m spatial resolution in ArcGIS 10.2. The bilinear interpolation method takes the distance from the 
sampling point to the surrounding 4 neighborhood pixels to calculate the grid value. The grid value 
of the pixel is obtained by interpolation in Y direction (or X direction) and then in X direction (or Y 
direction). The boundary cleaning and main filtering tools were used to generalize the edges of the 
regions in the grid. According to the value of the neighborhood in each position, the edge was 
smoothed by expanding and contracting the boundary, or increasing or reducing the area [29]. The 
selected multispectral remote sensing variables include green band (BGREEN) (0.52–0.60 μm), red band 
(BRED) (0.63–0.69μm), near-infrared band (BNIR) (0.77–0.90 μm), normalized difference vegetation 
Index (NDVI), and soil adjusted vegetation index (SAVI). Three selected bands were attributed to the 
fact that they could represent the growth and biomass of vegetation, and the images of ground objects 
were rich, distinct, and well-organized, and were used for vegetation classification and water body 
recognition [16]. NDVI is widely used in the detection of vegetation growth state, and the closer its 
value is to 1, the better the vegetation growth. Huete [30] proposed soil adjusted vegetation index 
(SAVI) based on NDVI and a large number of observation data to reduce the impact of soil 
background. Huete’s research [30] was conducted for the grassland and cotton fields, when L is 0.5, 
SAVI had a better effect on eliminating soil reflectance. NDVI and SAVI were calculated as follows: 

( ) ( )/NIR RED NIR REDNDVI B B B B= − +  (1) 

( )( ) ( )1 /NIR RED NIR REDSAVI B B L B B L= − + + +  L = 0.5 (2) 

where BNIR and BRED were expressed as near-infrared band and red band; L is a parameter with the 
change of vegetation density, the value range is 0–1, the value for this study is set to 0.5. 

2.3.2. Topographic Variables 

Topographic variables data come from the Shuttle Radar Topography Mission and Digital 
Elevation Model (SRTM DEM) with a 30 m resolution. Due to the limitation of the accuracy of Space 
Surveying and mapping, only medium and small scale map data could be produced in the past. 
SRTM is a joint measurement mission carried out by the National Aeronautics and Space 
Administration (NASA), the national imaging and Mapping Agency (NIMA) of the United States 
Department of defense, Italy and Germany. From 11 to 22 February 2000, this survey mission 
acquired radar image data of about 119 million km2 between 60° N and 60° S, covering more than 
80% of the global land surface. Five terrain variables are selected in this study. Based on SRTM DEM 
data, four terrain variables are derived by using Arc GIS 10.2 software, which are elevation, slope 
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gradient, slope aspect, and plan curvature. Topographic wetness index (TWI) is extracted by system 
for automated geoscientific analysis (SAGA) GIS [31] software. 

2.3.3. Climatic Variables 

Climate data were obtained from China Meteorological Science Data Sharing Service System 
(http://cdc.cma.gov.cn/), including MAP and MAT. Through collecting the MAT and MAP of 673 
meteorological stations in China in 30 years (from 1980 to 2020 calculated by monthly average value), 
the raster data with 1 km resolution is generated by Kriging interpolation. Finally, the raster data 
were resampled to generate a resolution of 30 m by using the nearest neighbor principle, and the 
altitude data were used to correct it in ArcGIS 10.2. 

2.4. Boosted Regression Tree 

In this study, the BRT model proposed by Friedman et al. [16] was selected to predict the topsoil 
SOC stocks of a forest ecosystem in Northeast China. The BRT method had two technical components: 
boosting technology and regression tree [15]. Regression tree (RT) uses a set of predictive variables 
to analyze response variables, and applies binary segmentation to fit the simple model to each result 
part [17]. Boosting technology is to iterate multiple regression trees to make common decisions [7]. 
When the square error loss function is used, each regression tree drew conclusions and provided 
residuals of all previous trees, and a current residuals regression tree is obtained by fitting. 
Regression tree is the accumulation of regression trees generated in the whole iterative process [16]. 
The BRT model is more accurate and fast through gradient lifting technology and multiple data 
optimization. 

In this study, the BRT model was constructed by “gem” package [32] in R language environment. 
In BRT model, four parameters required users to set: learning rate (LR), tree complexity (TC), bag 
fraction (BF), and tree number (TN) [17]. LR represents the contribution of each tree to the growth of 
the model [16]. TC represents the scale of the control tree and the interaction between variables [8]. 
BF sets the observation proportion for selecting variables [16]. NT represents the scale of the tree 
based on the combination of LR and TC [17]. We tested different combinations of LR, TC, BF, and 
NT. The optimal parameter combination was the one that provided the minimum predictive 
deviation. Finally, we determined the optimal parameter settings LR, TC, BF, and NT as 0.025, 12, 
0.75, and 1200, respectively, so that the model demonstrated the best performance. 

2.5. Model Evaluation 

In order to evaluate the prediction performance of the three constructed BRT models on the 
spatial distribution of SOC stocks, we choose a common test method, namely the 10-fold cross 
validation technology. The dataset was divided into ten parts, nine of which were used as training 
data and one as test data in turn. In order to evaluate the performance of the BRT model, four indexes 
are calculated, including error (MAE), root mean square error (RMSE), coefficient of determination 
(R2) and Lin’s concordance correlation coefficient (LCCC) [33], in R software 3.2.2. Their specific 
formulae are as follows: 
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where xi and y, represent the predicted value and measured value at point i; x and y  are the mean 
of the predicted and measured values; ∂x and ∂y represent the variance of the predicted and measured 
values; n is the number of sampling sits; r is the correlation coefficient between the predicted value 
and the measured value. 

3. Results 

3.1. Descriptive Statistics 

The statistical results between SOC stocks and environmental variables at each sampling site are 
shown in Table 1. The average value of SOC stocks is 9.07 kg m−2, and the coefficient of skewness is 
0.37 kg m−2, indicating that SOC presents a slightly skewed distribution. In addition, since SOC stocks 
are not evenly distributed on both sides of the average values, we Ln-transformed the SOC data s for 
later modeling and simulation. The SD of the sampling point is 3.95 kg m−2, and it is lower than the 
average value. 

In order to explore the relationship between Log-SOC stocks and environmental variables, we 
calculated the Pearson correlation coefficient among them, as shown in Table 2. NDVI (r = 0.71), SAVI 
(r = 0.63), elevation (r = 0.70), slope gradient (r = 0.68), and MAP (r = 0.28) were positively correlated 
with SOC stocks. Correspondingly, SOC stocks was negatively correlated with BGREEN (r = −0.57), BRED 
(r = −0.33), BNIR (r = −0.61), TWI (r = −0.59), and MAT (r = −0.35). Surprisingly, the correlation between 
multispectral remote sensing variables and SOC stocks was significant in this study. 

Table 1. Summary statistics of soil organic carbon (SOC) stocks (0–30 cm) and environmental 
variables at samples sites. 

Category Property Unit Min. Median Mean Max. SD Skewness Kurtosis 
Soil SOC stocks kg m−2 1.37 9.30 9.07 20.86 3.95 0.37 −0.93 

Remote sensing 
imagery 

BGREEN digital number 0.00 45.72 71.92 217.13 66.14 0.70 −0.93 
BRED digital number 5.97 182.90 162.89 253.22 68.31 −0.58 −0.84 
BNIR digital number 0.00 38.77 64.57 218.68 63.73 0.92 −0.43 

NDVI  0.15 0.38 0.40 0.56 0.08 −0.18 0.30 
SAVI  0.12  0.46  0.43  0.77  0.15  −0.43  0.58  

Topography 

Elevation m 4.96 52.63 65.51 272.63 49.78 1.66 3.56 
Slope gradient degree 0.00 6.81 9.33 34.10 8.20 1.03 0.38 
Slope aspect degree 0.00 223.20 194.53 350.83 101.29 −0.44 −0.94 

Plan_cur  −1.83 0.00 0.03 1.51 0.49 −0.44 2.73 
TWI  2.45 4.27 4.70 10.07 1.51 1.00 1.32 

Climate 
MAT degree celsius 9.44 10.43 10.34 10.84 0.23 −1.32 2.73 
MAP mm 600.95 602.64 606.05 618.14 3.85 1.53 1.85 

Notes: SOC, Soil organic carbon; BGREEN, green band; BRED, red band 4; BNIR, near-infrared band; NDVI, normalized difference 

vegetation index; SAVI, soil adjusted vegetation index; Plan_cur, plan curvature; TWI, topographic wetness index; MAP, mean 

annual precipitation; MAT, mean annual temperature; SD, standard deviation; Min., minimum; Max., maximum. 
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Table 2. Pearson correlation analysis between Ln-transformed SOC stocks and environmental variables based on 236 samples. 

Property SOC 
stocks 

BGREEN BRED BNIR NDVI SAVI Elevation Slope gradient Slope aspect Plan_cur TWI MAT 

BGREEN −0.57 **            

BRED −0.33 ** 0.33 **           

BNIR −0.61 ** 0.63 * 0.31 **          

NDVI 0.71 ** −0.71 ** 0.52 ** −0.47 **         

SAVI 0.63 ** −0.63 ** 0.44 ** −0.36 ** 0.67 **        

Elevation 0.70 ** −0.43 ** −0.23 * −0.49 ** 0.17 0.16       

Slope gradient 0.68 ** −0.52 ** −0.12 −0.53 ** 0.08 0.09 0.63 **      

Slope aspect 0.17 −0.06 0.06 −0.14 −0.05 −0.08 0.19 0.17     

Plan_cur 0.07 −0.09 −0.08 −0.04 0.14 0.13 0.13 0.05 −0.07    

TWI −0.59 ** 0.53 ** 0.24 * 0.41 ** −0.06 −0.06 −0.53 ** −0.73 ** −0.21 * −0.19   

MAT −0.35 ** 0.27 ** −0.06 0.21 * −0.16 * 
−0.21 

** 
−0.37 ** −0.34 ** 0.09 0.07 0.21 *  

MAP 0.28 ** −0.13 0.22 * −0.14 0.15 * 0.23 ** 0.31 ** 0.45 ** 0.16 −0.04 −0.27 * −0.13 
Notes: p < 0.05 shown in “*”; p < 0.01 shown in “**”; SOC, Soil organic carbon; BGREEN, green band; BRED, red band 4; BNIR, near-infrared band; NDVI, normalized 
difference vegetation index; SAVI, soil adjusted vegetation index; Plan_cur, plan curvature; TWI, topographic wetness index; MAP, mean annual precipitation; 
MAT, mean annual temperature. 
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3.2. Model Performance 

We compared the spatial prediction performance of three BRT models with different variable 
combinations to predict the topsoil SOC stocks in Lushun, where is mainly controlled by forest 
ecosystems. The accuracy verification results are shown in Table 3. Among all models, the full 
variable model presents the best prediction performance, followed by the only multispectral remote 
sensing data model, and the finally topographic and climatic variables model, which could explain 
the spatial variation of 65%, 61%, and 53% SOC stocks in the region, respectively. The results showed 
that, using the multispectral remote sensing variable, the prediction model (MAE = 0.11, RMSE = 0.13, 
R2 = 0.61, and LUCC = 0.81) could catch up with the full-variable prediction model (MAE = 0.06, RMSE 
= 0.07, R2 = 0.65, and LUCC = 0.87). Model A and Model C were significantly better than model B (no 
multispectral remote sensing data). The density distribution map of the observed and predicted 
values of the sampling sites further confirms this finding (Figure 2). Model A and Model C showed 
a similar distribution trend, while Model C showed a steeper distribution pattern. 

In order to further evaluate the performance of the model, we calculated the absolute residuals 
of Model A and Model B at all sampling sites. We found that only a small part of the sampling sites 
showed a decreasing trend and showed a small variation (Figure 3). In addition, we subtracted the 
final prediction results of Model A and Model C using raster calculation module in ArcGIS 10.1, and 
formed the prediction difference diagram of the two methods. The average and SD values of the 
difference results were 0.32 kg m−2 and 4.67 kg m−2 respectively, which further showed that the 
difference between Model A and Model C in the prediction of SOC stocks was not obvious in the 
region. 

Table 3. Predictive quality of three boosted regression trees (BRT) models for SOC stocks. 

Model Index Min. 1st Quartile Median Mean 3rd Quartile Max. 

Model A 

MAE 0.05  0.06  0.06  0.06  0.06  0.06  
RMSE 0.07  0.07  0.07  0.07  0.08  0.08  

R2 0.64  0.65  0.65  0.65  0.66  0.67  
LUCC 0.86  0.87  0.87  0.87  0.87  0.87  

Model B 

MAE 0.14  0.15  0.15  0.15  0.15  0.15  
RMSE 0.18  0.19  0.19  0.19  0.19  0.20  

R2 0.51  0.52  0.53  0.53  0.54  0.55  
LUCC 0.70  0.71  0.72  0.72  0.72  0.73  

Model C 

MAE 0.10  0.10  0.10  0.11  0.11  0.11  
RMSE 0.12  0.13  0.13  0.13  0.13  0.13  

R2 0.59  0.60  0.61  0.61  0.63  0.64  
LUCC 0.80  0.81  0.81  0.81  0.81  0.81  

Notes: Model A, full variables model (multispectral remote sensing variables + topographic variable 
+ climatic variables); Model B, only topographic and climatic variables; Model C, only multispectral 
remote sensing variables; MAE, the mean absolute error; RMSE, the root mean squared error; R2, the 
coefficient of determination; LCCC, Lin’s concordance correlation coefficient. 
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Figure 2. Density plots of soil organic carbon stocks (kg m−2) derived from three boosted regression 
trees (BRT) models. 
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Figure 3. Difference of absolute residual values between full variable model (Model A) and only 
topographic and climatic variables model (Model B). Decreased: prediction accuracy decreased; 
Improved: prediction accuracy increased. 

To further evaluate the prediction potential of multispectral remote sensing variables, we 
calculated the difference between the spatial mapping results of full variable model and only 
multispectral remote sensing variables mode (Figure 4). As shown in Figure 4, only some areas 
showed a downward trend, and the differences between them were slight. In addition, we also 
calculated the standard deviation (SD) of a hundred iterations of the three models to further evaluate 
the performance and uncertainty. From Figure 5, it could be seen that all models produce lower SD. 
The mean SD of Model A, Model B and Model C were 0.17, 0.36, and 0.23 kg m−2, respectively. 

 
Figure 4. Difference map of soil organic carbon stocks (kg m−2) derived from full variable model 
(Model A) and only multispectral remote sensing variables (Model C). 
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Figure 5. Standard deviation maps obtained by using three BRT models iterated 100 times. (a) full 
variables model (Model A); (b) topography and climate variables (Model B); and (c) only 
multispectral remote sensing variables (Model C); (d–f) areas covered with black boxes are detailed 
on the right. 

3.3. Relative Importance of Environment Variables 

Model A (full environment variable) was iterated 100 times and the mean relative importance 
(RI) of each environment variable was calculated. For the convenience of analysis, the relative 
importance of each environment variable was reduced to 100%. From Figure 6a, we found that NDVI, 
SAVI, B3, elevation, TWI and MAP were the main environmental variables (accounting for 75% of 
the total relative importance) that affect the spatial variation of SOC stocks in this region. In addition, 
multispectral remote sensing variables played an important role in Model A (63%), followed by 
topographic variables (28%) and climatic variables (9%). In addition, in Model C with only 
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multispectral variables, BGREEN (31%) showed the highest relative importance, followed by NDVI 
(27%), SAVI (22%), BNIR (11%), and BRED (9%) (Figure 6b). 

 
Figure 6. Relative importance of each prediction variable in full variable model (Model A) (a) and 
only multispectral remote sensing variables (Model C) (b). BGREEN, green band; BRED, red band 4; BNIR, 
near-infrared band; NDVI, normalized difference vegetation index; SAVI, soil adjusted vegetation 
index; Plan_cur, plan curvature; TWI, topographic wetness index; MAP, mean annual precipitation; 
MAT, mean annual temperature. 

3.4. Spatial Distribution of SOC Stocks 

Different from a single linear model, the results of each iteration with the BRT model were 
different. Therefore, we selected the three BRT models by iterating 100 times and calculating their 
average values as the final prediction results. Figure 7 showed the final prediction results of the three 
models. The average prediction results of Model A, Model B, and Model C were 8.99, 10.22, and 9.32 
kg m−2, respectively. 

4. Discussion 

4.1. Effect of Multispectral Remote Sensing Variables on SOC Stocks 

Multispectral remote sensing variables were the powerful and effectual variables in the full 
variables model, which showed that multispectral remote sensing data can predict forest topsoil SOC 
stocks, which is consistent with many previous research results [23,24,34–38]. In the Bale Mountains, 
Ethiopia, Yimer et al. [24] concluded that vegetation was the main source of SOC stocks and affected 
its distribution, and there was a significant positive correlation between vegetation and SOC stocks, 
which has been certified in this study (Table 2). BGREEN and NDVI were efficient variables to 
characterize vegetation density and biomass, so they were important predictors in predicting of SOC 
stocks [17]. SAVI is very sensitive to the change of soil background [30]. Many studies showed that 
there were some potential applications of multispectral remote sensing data in SOC stocks mapping 
with better natural vegetation coverage areas [7,17,34–39]. BGREEN is a better predictor than NDVI and 
SAVI in the full variable model, although many scholars considered NDVI was a more effective and 
powerful predictor [35,Error! Reference source not found.]. Therefore, BGREEN should be 
recommended as an influential factor in the future studies, especially in the areas with dense 
vegetation coverage. In addition, the Pearson correlation coefficients of BGREEN, NDVI, and SAVI with 
SOC stocks are −0.57, 0.71, and 0.63, respectively, which indirectly proved that they had potential 



Remote Sens. 2020, 12, 393 14 of 19 

 

value in mapping of SOC stocks. In Liaoning Province, China, Qi et al. [7] pointed out that SAVI was 
a highly effective and powerful predictor in the prediction of topsoil SOC in forest ecosystem. Yang 
et al. [17] found BGREEN and NDVI were the most important remote sensing variables in the prediction 
of topsoil SOC in the Tibetan Plateau. Gomez et al. [38] conducted multispectral remote sensing data 
were effective to deduce the spatial characteristics information of SOC stocks. Kim and Grunwald 
[23] also proved that multispectral remote sensing related variables could represent the spatial 
variability and quantity of soil carbon. In Tanzania, Winowiecki et al. [39] found that the spatial 
distribution pattern of SOC stocks was closely related to vegetation types and coverage. However, 
we would like to point out that, due to low-density sampling, the sampling in the study may not be 
representative. The results might overemphasize the importance of some variables in the model and 
increased the uncertainty of model prediction. 
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Figure 7. Distribution maps of topsoil (0–30cm) organic carbon stocks (kg m−2) derived from three 
boosted regression tree (BRT) models. (a) full variables model (Model A); (b) topography and climate 
variables (Model B); and (c) only multispectral remote sensing variables (Model C); (d–f) areas 
covered with black boxes are detailed on the right. 

Terrain related variables are good predictors of SOC stocks in complex terrain change areas 
[8,17]. As one of the five soil-forming factors [40], topographic variables as a common variable in 
digital soil mapping (DSM) were selected as the main prediction factor in this study. In the process 
of SOC stocks prediction, the relative importance of terrain related variable was lower than that of 
multi spectral remote sensing related variable, which was consistent with previous research results 
[7,8,17,34]. Yang et al. [17] considered that, in the area with abundant vegetation, the influence of 
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terrain elements on SOC stocks was integrated by remote sensing variables. Elevation had the most 
important influence on the spatial distribution of SOC stocks among all topographic variables. It was 
observed that the terrain was highly variable in the region, and the elevation could adjust the role of 
local microclimate [38]. Our research confirmed that the climate characteristics affected by elevation 
were significantly correlated with MAP (0.35) and MAT (−0.28) 

As the main climatic factors, MAP and MAT were widely used in the spatial simulation of SOC 
stocks [8,36]. MAP was the fourth most important predictor in the full variable BRT model (Figure 3) 
and played a more important role than MAT in predicting SOC stocks. In the mountain ecosystem, 
the hydrothermal condition affected the decomposition and accumulation of organic matter, 
indirectly impacting the spatial distribution characteristics of SOC stocks in those regions [17]. At the 
micro-level, the increase of forest productivity means a large amount of input of soil organic matter 
[Error! Reference source not found.]. However, low temperature will slow down the decomposition 
rate of SOC. Although SOC stocks had a good correlation with MAP and MAT (Table 2), they were 
generated by data interpolation of 673 meteorological stations in China. Its spatial resolution was 
1000 m, which is too coarse to characterize the spatial distribution of SOC stocks. In contrast, high 
spatial resolution remote sensing data could improve the spatial distribution characteristics of SOC 
stocks in the prediction area, because the data contain more detailed, higher resolution vegetation 
coverage information. 

Our research concluded that the multispectral remote sensing data are effective to map SOC 
stocks in high-density vegetation coverage area. Many studies have a similar conclusion regarding 
the major controls of SOC distribution [7,34–37]. For instance, in the Qilian Mountains of China, Yang 
et al. [17] used three bands of Landsat-5 TM (BGREEN, BRED, and BNIR) and random forest to predict SOC 
and obtain higher prediction accuracy in the natural field (R2 = 0.72). Similarly, we used three 
multispectral remote sensing bands (BGREEN, BRED, and BNIR), NDVI and SAVI constructed a BRT model 
to predict the spatial distribution of SOC stocks in this densely covered natural vegetation with a 
high prediction accuracy. 

4.2. Uncertainty in Current Research 

The uncertainty of the three BRT model predictions was shown in Figure 5. These results 
revealed that the BRT model had excellent performance in predicting the spatial distribution of SOC 
stocks. However, there were still some uncertainties in this study. First, this study was divided into 
different groups to collect and analyze samples, so there might be sampling errors and experimental 
errors. Second, all environment variables were resampled to 30 m spatial resolution in ArcGIS 10.2 
using a bilinear interpolation method, which will cause some method errors. Third, the accuracy and 
scale of the environment data obtained from different platforms were different, which resulted in 
subsequent modeling errors. Finally, this study was limited to the estimation of SOC in the topsoil 
(0–30 cm) forest, which will lead to the underestimation of SOC stocks in the region. In the forest 
ecosystem, the SOC stocks were generally stored in the deeper soil. 

In addition, despite the success of using multispectral remote sensing data in this study, there 
were still some aspects worthy of special attention. These include: (1) affected by the terrain and 
clouds, the high-altitude areas were prone to produce shadows in the process of segmentation, so 
these reflectivity errors were large in satellite imageries data; (2) terrain variables have proved to be 
a powerful predictor of the spatial distribution of SOC stocks, especially in the forest ecosystem with 
obvious terrain change and dense vegetation coverage. Therefore, we recommend that the terrain 
related variables shall be added to the remote sensing prediction model for future forest organic 
carbon stock mapping. 

Although the environmental conditions, sampling strategies, and sampling methods in this 
study were different from previous studies, the performance of the BRT model prediction was 
comparable to those studies. In Denmark, Adhikari et al. [41] used a regression kriging model and 18 
environmental variables as predictors to model the vertical distribution of SOC content, and which 
only explained 23%–43% of SOC content variability. Were et al. [42] used the RF model to predict the 
SOC stocks and concluded that the RF model could explain 52% of the spatial changes of SOC in an 
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Afromontane landscape. In Liaoning Province of China, Wang et al. [43] used a BRT model and nine 
environmental variables to predict the spatial distribution of SOC stocks of topsoil forests and could 
explain 58% of the spatial change of SOC stocks. 

5. Conclusions 

By comparing three BRT models, the best prediction model of topsoil SOC stocks in Liaoning 
coastal forest ecosystem was obtained. We found that using multispectral remote sensing variables 
alone, the model was not inferior to the full variable model, suggesting that using the remote sensing 
data is efficient and robust for predicting topsoil SOC stocks. The addition of climatic and 
topographic variables could improve the performance of the prediction model to some extent. In the 
selection of environmental variables, the use of multispectral remote sensing variables had a high 
practical significance in the spatial simulation of topsoil SOC stocks. Our study suggests that, in the 
future mapping of topsoil SOC stocks, especially in the forest ecosystem area with dense vegetation, 
appropriate multispectral remote sensing variables should be selected. Our accurate mapping of SOC 
stocks shall have great significance for studying the carbon cycle, soil fertility maintenance, and the 
ecological environment protection of forest ecosystems in our study region. 
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