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A B S T R A C T

Using the DeNitrification-DeComposition (DNDC, version 9.5) model, we investigated the soil organic
carbon (SOC) changes from 1980 to 2009 in Eastern China's upland-crop fields in northern Jiangsu
Province. A currently most detailed high-resolution soil database, containing 17,024 polygons at a scale of
1:50,000, derived from 983 unique upland soil profiles, was used. A coarser county-level soil database
was also used for a pair-wise simulation for comparison. We found that SOC changes modeled with the
county-level soil database differ significantly from those with high-resolution soil data, with the
deviation ranging from �64% to 8.0% in different counties. This implies that coarse soil data may lead to
large biases in SOC simulation. With the high-resolution database, the model estimates a SOC increase of
37.89 Tg C in the top soils (0–50 cm) over the study area of 3.93 Mha for the past three decades, with an
average rate of 322 kg C ha�1 year�1. The SOC accumulation in the study region accounts for 10.2% of
annual national carbon sequestration of upland soils, compared with the fraction of 3.7% in the total
upland area of China. This underscores its significance to national climate mitigation. The annual SOC
change varied between 61 to 519 kg C ha�1 year�1, mainly driven by the variations in N-fertilizer and
manure applications. This study highlights the significance of high-resolution soil databases in
quantifying SOC changes. Our high-resolution estimates of SOC will support farming and carbon
management in this region.
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1. Introduction

Soils play a pivotal role in global carbon (C) budget because they
store over 1550 Pg of soil organic carbon (SOC) in the terrestrial
ecosystem, which is 2–3 times larger than that in the atmospheric
pool with 750 Pg and biotic pool with 500–600 Pg (Batjes, 1996).
The SOC storage in the global agroecosystem (140–170 Pg)
accounts for �10% of the total terrestrial SOC storage and plays
a significant role in adopting appropriate soil conservation
measures and greenhouse gas mitigation strategies (Buringh,
1984). Therefore, quantification of regional SOC changes in
agroecosystem is crucial for assessing and mitigating global
climate change (Li et al., 2011).
* Corresponding author.
** Corresponding author.
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Nationwide, China possesses �140 million ha of agricultural
lands, including 110 Mha of upland-crop fields and 30 Mha of
paddy rice fields (Li et al., 2010). The SOC pool of upland soil is
about 3.5 times larger than that of paddy fields (Wang et al., 2011a).
Upland soil thus plays an important role in sequestrating carbon
and mitigating climate change, because of its vast area and
tremendous amount of SOC. Winter wheat-maize rotation is one of
the most popular cropping systems in upland soil of China, which
is widely distributed across wide ranges of climatic zones and
geographic regions. Among these regions, the Huang-Huai-Hai
region is the most important one, providing 99.77 million tons of
grain and �27.5% of the total crop production in China (Lei et al.,
2006). The upland soil region of northern Jiangsu Province is
located in the lower reaches of the Huang-Huai-Hai region of
China. It is considered to be a typical area of winter wheat-maize
rotation because of the long history of cultivation and intensified
agricultural management (Yang et al., 2009). Accurate estimation
of SOC dynamics for upland soils in the northern Jiangsu Province
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is therefore vital in understanding the contribution of the Huang-
Huai-Hai region in the national carbon inventory.

Due to the complexity of carbon turnover processes and the
dynamic response of carbon to environmental conditions, process-
based models are extensively used to simulate the dynamics of SOC
in agricultural system (Paustian and Álvaro-Fuentes, 2011;
Gottschalk et al., 2012; Goglio et al., 2014). The DeNitrification-
DeComposition (DNDC) model is one of the most widely accepted
agroecosystem model in the world (Gilhespy et al., 2014).
Encouraging performances of the DNDC model have been
demonstrated at the plot scale through long-term applications
in Asia (Wang et al., 2008), America (Tonitto et al., 2007) and
Europe (Abdalla et al., 2011). It has also been used to upscale
estimates of SOC changes from local sites to regional scales.
However, most of these studies were conducted with county- or
town-based soil databases that were characterized with relatively
coarse resolution (e.g., 1:14,000,000 soil map was widely used for
the simulations in China) or large spatial simulation units with a
resolution about 0.5� � 0.5� (Li, 2000; Pathak et al., 2005; Tang
et al., 2006; Gao et al., 2014). Large uncertainties may exist in these
simulations, as areal averaging of soil properties for each county/
town ignores the impacts of soil heterogeneity within a county
(Pathak et al., 2005; Giltrap et al., 2010; Xu et al., 2013). Another
drawback of the county scale model simulations is that soil type-
specific crop management practices cannot be identified because
the coarse soil database is unable to differentiate soil types (Zhang
et al., 2009). With high spatial heterogeneity, the qualities of soil
data (e.g. resolution) critically determine the accuracies of regional
model results (Kersebaum et al., 2007). Thus, the model results
driven by coarse soil data may fail to efficiently inform the field
management strategies that aim at SOC increase. Therefore,
improving the accuracy of soil information and resolution of
simulation unit are essential for enhancing the accuracy of SOC
simulations with process-based models (e.g. DNDC) at regional
scale.

Driven by the needs of decreasing model uncertainty derived
from input soil database, the primary objective of this study is to
improve the accuracy of model estimate and analyze the annual-,
and total SOC changes in upland soils of the northern Jiangsu
Province from 1980 to 2009. To that end, we conducted a pair-wise
experiment with two sets of DNDC model simulations to
Fig. 1. Geographical location o
investigate the soil-induced model uncertainties: one used the
county-based soil database and the other one used the high-
resolution polygon-based 1:50,000 soil database (hereafter
referred to as county- and polygon-based database, respectively).
The goal of the pair-wise simulations was to examine how far the
results from the coarse soil data deviate from those of the fine one
– the uncertainty induced from difference in simulation unit and
representation of soil heterogeneity. Next, the set of more desirable
simulation with high-resolution soil data was then used to analyze
the SOC changes for this region. Strategies for improving the
biogeochemical model application at the regional scale were also
discussed.

2. Materials and methods

2.1. Study area

The study area, an upland soil region of northern Jiangsu
Province (116�210–120�540E, 32�430–35�070 N), is located in the
lower reaches of the Huang-Huai-Hai plain of China. This region
includes five cities of Xuzhou, Lianyungang, Suqian, Yancheng and
Huaian, and encompasses 29 counties. It covers a total area of
52,300 km2 (Fig. 1) (Yang et al., 2009). It is located in a climate
transitional zone from warm temperate to subtropical, with annual
rainfall of 800–1200 mm, mean temperature of 13–16 �C, and
average annual sunshine of 2000–2600 h. The frost-free period is
about 220 days. The study area is one of the oldest agricultural
regions in China, and upland soils cover about 85% of the cropland
area – 3.93 Mha (Yang et al., 2009). Most cropland in the region is
managed as a summer maize- winter wheat rotation. Maize is
planted in June and harvested in September and wheat is planted
in October and harvested in June of the next year. The upland soils
are derived mostly from Yellow River flood alluvial, river alluvium,
lacustrine deposit, fluvio-marine deposit and loess deposits.

2.2. Description of the DNDC model

The DNDC (DeNitrification-DeComposition) model version
9.5 is a biogeochemical model of the plant–soil system that
simulates carbon-nitrogen dynamics and greenhouse gas (GHG)
emissions in agroecosystems. It integrates crop growth and soil
f the study area in China.
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biogeochemical processes on a daily or sub-daily time step. The
model consists of two components, which describe the generation,
decomposition, and transformation of organic matter (Li et al.,
1994; Smith et al., 2010). The first component includes soil,
climate, crop growth and decomposition sub-models, predicting
soil moisture, temperature, redox potential (Eh), pH and substrate
concentration profiles driven by ecological factors (e.g., soil,
climate, vegetation and anthropogenic activity). The second
component includes nitrification, denitrification and fermentation
sub-models, predicting emissions of GHG from the plant-soil
systems. These sub-models consist of a series of functional
equations derived from classical laws of physics, chemistry and
biology theories and from empirical equations generated from
laboratory studies. More details are described in previous
publications (e.g., Li, 2007a; Gilhespy et al., 2014).

The default setting of basic spatial simulation unit in the DNDC
model is county (Li et al., 2004). In this study, we also used polygon
as a substitute to conduct the pair-wise experiment (see Section 1).
The polygon-based database includes information of specific soil
types (Zhang et al., 2009), which accounts for the effects of spatial
heterogeneity in soil characteristics. The SOC simulation was
conducted for the top 50 cm of soils (Tang et al., 2006).

2.3. Database construction

The inputs required for the DNDC model include data of soil
properties, daily weather, cropping systems and agricultural
management practices.

2.3.1. Soil data
A spatially-explicit and polygon-based soil database (1:50,000)

was developed to support the DNDC simulations for the study
region. The digital soil database contains 17,024 upland soil
polygons, which was derived from 983 unique upland soil profiles.
The resolution of this database is far higher than that of the
1:1,000,000 soil map of China, which was the most detailed digital
soil database at the national scale to date (Yu et al., 2007; Xu et al.,
2012, 2013). According to the Genetic Soil Classification of China
(GSCC) system, upland soils in northern Jiangsu Province are
classified into 8 soil groups, 22 soil subgroups, 85 soil families and
338 soil species, which were represented in the 1:50,000 digital
soil map. The 8 soil groups in GSCC nomenclature based on the
World Reference Base Soil Taxonomy (WRB) system include: Fluvo-
aquic soil (Fluvisols), Cinnamon soil (Eutric Cambisols), Lime
concretion black soil (Eutric Acrisols), Limestone soils (Regosols/
leptisols), Lithosols soil (Regosols/leptisols), Saline soil (Chloridic
Solonchaks), Purplish soil (Cambisols), and Brown soil (Haplic
Luvisols) (Shi et al., 2010).

The soil attributes assignment in the polygon-based soil
database was compiled using the Pedological Knowledge Based
(PKB) method (Zhao et al., 2006) or the GisLST (Gis linkage based
on soil type) method (Yu et al., 2007). The soil properties of
983 upland soil profiles were collected in the Second Soil Survey of
China in 1980s–1990s, which is the most comprehensive and
detailed study of Chinese soil characteristics to date (Xu et al.,
2013). This database contains many soil properties for each
polygon, such as soil names, profile locations, bulk density, total N,
soil organic carbon, available P, texture and pH, etc.
Table 1
Characteristics of the field site in northern Jiangsu Province, China.

Site Location (province) Latitude Time span Cropping sys

Tongshan Jiangsu 32.3�N 1999–2007 Maize–wheat
The county-based soil data was built from the default method
developed for DNDC (Li et al., 2000), in which the maximum and
minimum values of soil texture, pH, bulk density, and soil organic
carbon were recorded for each county. For the pair-wise
simulations, soil parameters in the county-based database were
the same as those of the polygon-based soil database of 50,000.
After regional runs with the county-based soil database, the DNDC
model produced two SOC change resulting from two runs with the
maximum and minimum soil values for a specific county. In this
paper we present the mean results (average of maximum and
minimum estimates) (Tang et al., 2006).

2.3.2. Climate data
Daily climate data (i.e., precipitation, maximum and minimum

air temperature) for 1980 to 2009 from 7 weather stations in
northern Jiangsu Province were obtained from the China Meteo-
rological Administration (China Meteorological Administration,
2011). The climate data of the nearest weather station was
assigned to each county.

2.3.3. Crop data
Summer maize-winter wheat rotation system was assigned for

each county based on the agricultural census data. Phenological
and physiological parameters (e.g., maximum yield, biomass
partitions, C/N ratio, water requirement, and cumulative thermal
degree days) for each crop were obtained from sample tests that
reflected the typical conditions of the northern Jiangsu Province
(Li, 2007b).

2.3.4. Farming management data
In the regional simulation, agricultural management data were

needed, including growing period, planting and harvest dates,
application rates of N fertilizer and manure, and crop residue.
These data at the county level from 1980 to 2009 were obtained
from the Resources and Environmental Scientific Data Center,
Chinese Academy of Sciences (Xu et al., 2013). The main measures
of farming management in the study area included: (1) tillage:
conventional tillage was conducted twice at 20 cm for maize and
20 cm for wheat on planting days; (2) manure application: annual
manure wastes were estimated based on the local livestock
numbers and agricultural population (40, 2.3, 5.1, and 5.3 kg N
head�1 year�1 for cattle, sheep, swine and human, respectively),
and 20% of the annual livestock wastes and 10% of that of human
were used as farmyard manure; (3) crop residue management: 15%
of the above ground crop residue was returned to the soil annually
(Tang et al., 2006; Zhang et al., 2014).

2.4. Field measurements for DNDC model verification

A set of 9-years ground measurements from a field site, which is
located in the west of the study region (see Fig. 1), was used for
model validation. The soil type at the validation site is fluvo-aquic
soil, which is dominant soil type in the study region. The DNDC
input parameters for this site are presented in Table 1, and the
current management practices are listed in Table 2.

Three statistical metrics – root mean square error (RMSE), mean
absolute error (MAE) and relative error (E) were used to measure
the differences between observed and model predicted SOC values
tem Soil group Bulk density
(g cm�3)

pH SOC
(g kg�1)

Clay (%)

 Fluvo-aquic soil 1.26 5.2 13.8 14.0



Table 2
Management practices baseline for the field site in northern Jiangsu Province, China.

Site Cropping system Planting date a Harvest date a Tillage date a N application rate
(kg N ha�1)

N application times

Tongshan Maize–wheat 8/6, 4/10 20/9, 6/6 8/6, 4/10 211, 316 2, 3

a Dates are expressed as Day/Month system.

Fig. 2. Comparison between observed and simulated SOC dynamics from upland
soil in Tongshan County of the northern Jiangsu Province.
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at the field site, as recommended by Loague and Green (1991),
Zhang et al. (2012) and Whitmore et al. (1997). They are defined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðVoi � VpiÞ2
vuut ð1Þ

MAE ¼ 1
n

Xn
i¼1

ABSðVoi � VpiÞ ð2Þ

E ¼ 100
n

�
Xn
i¼1

Voi � Vpi

Voi
ð3Þ

where Voi are the observed values, Vpi are the predicted values, Voi

is the mean of the observed data, Vpi is the mean of the predicted
data, n is the number in the sequence of the observed and
predicted data pairs. The lower the RMSE or MAE, the better is the
agreement between model predicted and measured SOC values. By
contrast, higher RMSE or MAE value indicates lower prediction
accuracy. If E is less than 5%, the modeling at the experimental site
is considered to be satisfactory; and if E is greater than 5% and less
than 10%, the modeling is acceptable; otherwise, the modeling is
deemed to be unacceptable (Whitmore et al., 1997).

2.5. Statistical analysis

Area of upland soils (APS, ha), average annual SOC change
(AASC, kg C ha�1 year�1) that represents a region aggregated long-
term average, and total SOC change (TSC, Tg C) during the study
period for the study region were calculated using Eqs. (4), (6) and
(7), respectively:

APS ¼
Xn
i¼1

APSi ð4Þ

AMSC ¼
Xh

f ¼1

ASCf ð5Þ

TSC ¼
Xn
i¼1

ðAPSi � AMSCiÞ ð6Þ

AASC (kg C ha�1 year�1) = TSC/APS/30 (7)

where APSi is the area of i-th polygon of upland soil; ASCf
(kg C ha�1 year�1) is the annual SOC change in a specific polygon, as
estimated by the DNDC modeling; AMSCi (kg C ha�1 year�1) is the
accumulated annual SOC change in a specific polygon from 1980 to
2009; n is the polygon number; and h is the order of simulation
year from 1980 to 2009 (h = 1, 2, 3 . . . . . . 30).

Previous studies indicated that the effect of soil properties (e.g.
SOC content, texture, bulk density, and pH) on simulating SOC
changes at regional scale is a major source of uncertainty for use of
DNDC model (Li et al., 2004; Pathak et al., 2005). In order to better
evaluate the most sensitive factor of soil properties in affecting
SOC, the correlation between AASC and soil properties was
determined by using Pearson's test and multiple stepwise
regression analysis (Santiago-Martín et al., 2014). All of the
statistical analyses were performed using the Statistical Package
for Social Sciences (SPSS) statistical software (Leech et al., 2008).

The relative deviation (y) of polygon- and county-based
databases of 1:50, 000 was calculated by the Eq. (8) (Zhang
et al., 2014):

y ¼ ðxs � x0Þ=x0 � 100 ð8Þ
where x0 is an average annual- (or total-) SOC change of polygon-
based database, and xs is an average annual- (or total-) SOC change
of county-based database.

3. Results and discussion

3.1. Evaluation of the DNDC model

The pattern of the simulated SOC changes matches well with
the observations (Fig. 2). Specifically, the average simulated SOC
content was 13.66 g kg�1 from 1999 to 2007, close to 13.13 g kg�1

reported by the observations. Furthermore, a relative error (E) of
4.34% indicated that the DNDC model was satisfactory for
modeling SOC of the study region. Likewise, the low values of
RMSE and MAE reflected encouraging model performance (Fig. 2).

3.2. Comparison of SOC changes modeled with polygon- and county-
based soil databases

A pair-wise model experiment with polygon- and county-based
soil data, where the former contains 17,024 polygons with unique
soil information as opposed to 29 polygons representing the
29 counties in the latter, were conducted to investigate the
uncertainty derived from soil data. Counties are used as the basic
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simulation unit for regional simulations in the DNDC model as the
default method (Li, 2000), where the county-based database
usually requires relatively less soil data with a resolution of about
0.5� � 0.5� (Li et al., 2004). Detailed Descriptions of the default
method in the DNDC model can be found in Zhang et al. (2014). As a
result, the default method produces higher uncertainty due to
missing spatially differentiated soil information (Pathak et al.,
2005; Zhang et al., 2014). In the polygon-based simulation, DNDC
ran for each polygon once and produced a single annual SOC
change for that polygon; differently, in the county-based simula-
tion, DNDC ran twice for each county and produced a range of
annual SOC changes.
(a)

(b)

Fig. 3. (a) Comparison of the average annual SOC changes modeled with the county- an
deviation of the average annual SOC changes modeled with the county-based database 

Binhai; 2. Dafeng; 3. Donghai; 4. Dongtai; 5. Fengxian; 6. Funing; 7. Ganyu; 8. Guannan; 9
Lianshui; 17. Peixian; 18. Peizhou; 19. Sheyang; 20. Muyang; 21. Sihong; 22. Siyang; 23. T
The total SOC changes modeled with the county-based database
ranged from 22.79 to 43.98 Tg C, and with an average of 33.39 Tg C
for the study region, while the SOC change modeled with the
polygon-based database was 37.89 Tg C. The relative deviation of
total SOC changes in county-based simulation ranged from �40 to
16%, with an average of �12%. This underestimation was likely
because the coarse soil data missed relatively small soil patches
containing low SOC contents (6.0 vs. 7.0 (2.2–11.8) g kg�1) and low
bulk density (1.31 vs. 1.32 (1.13–1.52) g cm�3), which are favorable
for SOC accumulation (Li et al., 2004; Blanco-Canqui et al., 2009;
Zu et al., 2011).
d polygon-based database for the northern Jiangsu Province China; and (b) relative
from that with the polygon-based one for the northern Jiangsu Province, China. (1.
. Guanyun; 10. Hongze; 11. Huaian; 12. Huaiyin; 13. Jianhu; 14. Jinhu; 15. Suining; 16.
ongshan; 24. Xiangshui; 25. Xinyi; 26. Suqian; 27. Xuyi; 28. Xuzhou; 29. Yancheng.).
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We noticed that average annual SOC changes (AASC) in the pair-
wise simulations differed largely from each other, with overall
lower estimates in county-based simulation (Fig. 3a). Taking the
AASC quantified using the polygon-based database as reference,
the relative deviation of AASC derived from the county-based
database ranged from �64% to 8.0% across all counties (Fig. 3b).
Take Xuzhou County as an example, the AASC in the county-based
simulation was 103 kg C ha�1 year�1, nearly 2.5 times less than that
in the polygon-based one. By comparing the two databases, we
found that the county-total SOC contents for Xuzhou in the county-
based database were higher than that in the polygon-based
database (12.2 (2.8–21.5) vs. 9.3 g kg�1). The higher total SOC
contents tend to be less favorable for SOC accumulation (Li et al.,
2004); consequently, the AASC in Xuzhou simulated with the
county-based soil database is lower than that of polygon-based
one. This phenomenon seems prevalent across most counties.
However, the AASC of two counties (Ganyu and Yangcheng) in the
county-based database were higher than that in the polygon-based
(Fig. 3a). This is likely because the clay content of Ganyu County in
the county-based database were higher (44 (10–78) vs. 28%, Zhao
et al., 2013) – soil with higher clay content possesses a greater
capacity to protect SOC and better stabilizing conditions (Six et al.,
2002; McLauchlan, 2006), and that the initial SOC of Yangcheng
County in the county-based database was lower (5.4 (8.2–2.6) vs.
6.7 g kg�1, Li et al., 2004) – soils with lower initial SOC displayed
greater SOC increase due to low decomposition rate (Zhao et al.,
2013).

The large discrepancies between the simulations with the
county-based soil data and the polygon-based soil data imply that
coarse soil database causes large bias in model estimates. In the
following sections, the set of desirable simulation with polygon-
based soil data was used to analyze the SOC changes in our study
region.

3.3. Inter-annual changes of SOC in northern Jiangsu province

The model results based on the 1:50,000 soil database showed
that 3.93 Mha of upland soils increased 37.89 Tg C in the top layer
(0–50 cm) from 1980 to 2009, with the AASC of 322 kg C ha�1

year�1. The SOC changes in this region accounts for 10.2% of annual
national carbon sequestration of upland soils, compared with the
Fig. 4. Spatial distribution of average annual SOC
fraction of 3.7% in the total upland area of China (Wang, 2011b). In
general, most upland soils in this region were a strong sink of
atmospheric CO2 during the period of 1980–2009 (Fig. 4). The AASC
in the range of <0, 0–100, 100–300, 300–500, and >500 kg C ha�1

year�1 correspond to 0.06, 0.54, 28.84, 67.29 and 3.26% of the total
upland soil area, respectively. These results are consistent with the
current management practices in this region. As increased use of
chemical fertilizer and farmyard manure would increase SOC by
enhancing plant productivity and returning crop residue to soil
(Brar et al., 2013), a high rate of 340 kg N ha�1 year�1 fertilizer and
15.49 kg N ha�1 year�1manure input is likely to increase SOC in this
region (Fig. 5). Further, the two most sensitive soil factors to SOC
changes (Fig. 6), initial SOC content (r = 0.62**, n = 17024) and clay
content (r = 0.18**, n = 17024), presented propitious circumstances
for C sequestration as indicated above – the upland soils have low
initial SOC content (6.0 g kg�1) and high clay content (28%)
(Table 3).

Our model results are comparable to those of Liao et al. (2009).
In their study, the average of topsoil SOC content (0–20 cm) in
Jiangsu Province increased from 9.45 g kg�1 in 1982–10.9 g kg�1 in
2004, based on 662, 690 and 24, 167 measured samples,
respectively. This means an AASC of 160 � 90 kg C ha�1 year�1

during their study period. A lower result was obtained by Pan et al.
(2010), who found that the AASC of China's upland soils was
56 � 200 kg C ha�1 year�1 from 1985 to 2006. These results imply a
high SOC sequestration potential in the upland soils of China under
the proper agriculture management practices (e.g., no-tillage,
cover crops and manure application).

The inter-annual variations in the modeled annual SOC change
are large (Fig. 7). One of the key reasons was related to fertilizer
application. During the period of 1980–1997, the SOC increased
rapidly across the entire region, with the annual changes ranging
from 185 to 519 kg C ha�1 year�1. Coincidently, the application rates
of synthetic fertilizers continuously increased during the time
period (Fig. 5). The chemical fertilizer application rate increased
from 142 to 468 kg N ha�1 year�1 and the manure rate increased
from 11.5 to 21.5 kg N ha�1 year�1. However, the SOC increasing rate
slowed down or fluctuated for the period of 1998–2009 (Fig. 7),
which was associated with decreased agricultural input. According
to agricultural historical data, the amounts of synthetic fertilizer
and farmyard manure used in the region have fluctuated since
 change in northern Jiangsu Province, China.



Fig. 5. Variation of chemical fertilizer and manure application rate from 1980 to 2009 in northern Jiangsu Province, China.

Fig. 6. Relationship between average annual SOC change and soil properties for upland soils in northern Jiangsu Province, China.
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Table 3
Model input of soil properties, climatic factors and fertilizer amount at the entire region and soil group levels.

Soil properties Climatic factors Fertilizer amount

Initial SOC
(g kg�1)

Clay
(%)

pH Bulk density
(g cm�3)

Annual mean rainfall
(mm)

Mean annual temperature
(�C)

Fertilizer
(kg N ha�1 year�1)

Manure
(kg N ha�1 year�1)

Whole northern Jiangsu Province
Northern Jiangsu Province 6.00 28 8.0 1.31 948 14.7 340 15.49

Soil groups
Fluvo-aquic soil 5.55 26 8.2 1.31 918 14.7 344 16.16
Saline soil 6.51 29 8.3 1.28 1010 14.6 371 13.52
Brown soil 4.53 18 6.7 1.44 938 14.3 284 17.74
Cinnamon soil 5.93 36 8.0 1.33 947 15.1 309 14.05
Lime concretion
black soil

8.23 41 7.7 1.29 942 14.6 310 16.03

Lithosols soil 9.16 38 7.3 1.29 1048 15.4 274 15.42
Limestone soil 9.39 40 7.1 1.35 1048 15.4 274 15.42
purplish soil 4.27 14 7.5 1.38 912 14.1 318 16.88

*The value of all factors is weighted average by the area of each polygon.

Fig. 7. Temporal variation of annual SOC change from 1980 to 2009 in northern Jiangsu Province, China.

Fig. 8. Variations of annual rainfall and annual mean temperature from 1980 to 2009 in northern Jiangsu Province, China.
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1998 (Fig. 5), which was in line with the fluctuation of SOC changes.
The model results were in agreement with many reports, which
indicated the annual SOC sequestration rate of Chinese rice paddies
balanced or declined since the mid-1990s (Zhang et al., 2007; Xu
et al., 2012).

Climate change could play a role in the long-term SOC change
trend as well, although the mechanisms would be much more
complex. It is commonly observed that SOC accumulation
increases with increasing annual rainfall (Paul et al., 2002). High
average annual rainfalls were observed in the study region, with
892, 844 and 984 mm during the periods of 1980–1989, 1990–
1999 and 2000–2009, respectively. The annual mean temperature
has also been increased from 1980 to 2009 (Fig. 8) – average annual
mean temperature during the periods of 1980–1989, 1990–
1999 and 2000–2009 were 14.0, 14.8 and 15.2 �C, respectively.
Rising temperature leads to the increase of soil temperature, and
thus stimulates SOC decomposition (Gaumont-Guay et al., 2006).
However, the modeled results showed that the upland soils of
study region were always a strong sink of atmospheric CO2 during
the study period (Fig. 7). The most likely reason was that the C
Fig. 9. (a) Comparison between area coverage and total SOC change in various upland so
SOC change in various upland soil groups of the northern Jiangsu Province, China. (Nu
concretion black soil, Lithosols soil, Limestone soil, and Purplish soil, respectively.).
increase by increasing fertilizer and manure input was relatively
higher than the C loss caused by rising temperature.

3.4. Comparison of SOC change for different upland soil groups

The potential for carbon sequestration were significantly
different across the eight soil groups (Fig. 9 a and b). The
difference may attribute to many factors, which may be either soil
related ones affecting C decomposition, or climate related ones
affecting productivity (Luo et al., 2010).

The fluvo-aquic soil group covers about 2.07 Mha and accounts
for 52.7% of the total upland soil area (Fig. 9a). As Tables 4 and 5
illustrate, initial SOC content and clay content account for 60.9% of
the variations in average annual SOC change for fluvo-aquic soils
from 1980 to 2009, while other soil parameters only account for
less than 4.0% of the variations. Fluvo-aquic soil group possesses
relatively low initial SOC and high clay according to analysis of our
soil database, which enables their high capacity of carbon
sequestration (Table 3) (Li et al., 2004). Moreover, the average
chemical fertilizer application rate in fluvo-aquic soils was as high
il groups of the northern Jiangsu Province, China; (b) Comparison of average annual
mber 1–8 represents Fluvo-aquic soil, Saline soil, Brown soil, Cinnamon soil, Lime



Table 4
Correlation coefficients (Pearson’s test) between soil properties and average annual SOC change as well as their significance levels in different soil groups.

Soil group Number of polygons Initial SOC
(g kg�1)

Clay
(%)

pH Bulk density
(g cm�3)

Fluvo-aquic soil 10,451 �0.578** 0.094** 0.073** �0.139**
Saline soil 3354 �0.600** 0.476** �0.056** �0.255**
Brown soil 1206 �0.819** 0.390** �0.190** �0.280**
Cinnamon soil 1166 �0.417** 0.190** 0.043 0.066*
Lime concretion
black soil

497 �0.312** 0.550** 0.194** 0.073

Lithosols soil 229 �0.919** 0.606** 0.575** 0.288**
Limestone soil 66 �0.990** 0.947** 0.537** �0.802**
purplish soil 55 �0.334* 0.643** 0.219 �0.453**

* and ** Significant at the 0.05 and 0.01 levels, respectively.

Table 5
Individual contributions of major soil properties to the variations of average annual SOC change in different soil groups.

Soil group Number of polygons DR2a Adjusted R2

Initial SOC
(g kg�1)

Clay
(%)

pH Bulk density
(g cm�3)

Fluvo-aquic soil 10,453 0.334*** 0.275*** 0.001*** 0.038*** 0.646***
Saline soil 3354 0.360*** 0.456*** 0.005*** 0.011*** 0.831***
Brown soi 1206 0.174*** 0.171*** 0.012*** 0.012*** 0.366***
Cinnamon soil 1166 0.671*** 0.086*** 0.008*** 0.001** 0.766**
Lime concretion
black soil

497 0.280*** 0.303*** 0.022*** 0.011*** 0.613***

Lithosols soil 229 0.844*** 0.117*** 0.030*** 0.003*** 0.993***
Limestone soil 66 0.979*** – – – 0.979***
purplish soil 55 0.214*** 0.413*** – – 0.613***

** and *** significant at 0.01 or 0.001 probability levels, respectively.
a The change in the R2 statistic is produced by adding a soil property into stepwise multiple regressions.
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as 344 kg N ha�1 year�1 (Table 3). As a result, the modeled average
annual SOC sequestration rate in fluvo-aquic soils was 338 kg C
ha�1 y �1, which was the highest in all the upland soil groups
(Fig. 9b). The rapid increase of SOC in fluvo- aquic soils of this
region has also been reported in Yu et al. (2006). They found that
the SOC of fluvo-aquic soils and brown soils in the Huang-Huai-Hai
plain obviously increased during the periods of 1980–2000, and
the increase rates reached to 19 and 14%, respectively.

The saline soils, lime concretion black soils, cinnamon soils,
lithosols soils, purplish soils and limestone soils account for 24.31,
8.13, 5.64, 1.48, 0.27 and 0.18% of the total area of upland soils,
respectively (Fig. 9a). High SOC changes occurred in the groups of
saline soils, lime concretion black soils, cinnamon soils and
purplish soils (Fig. 9b), due to their low initial SOC and high clay
content (in lime concretion black soils) (Table 3). In contrast, low
SOC changes were located in the lithosols soils and limestone soils
(Fig. 9b), attributing to its high initial SOC content, neutral pH value
(in lime concretion black soils) and low fertilizer application rate
(in lime concretion black soils) (Table 3). Soils with higher SOC and
neutral pH value provide a better living environment for microbes,
which are favorable for decomposition, and thus may result in low
SOC sequestration (Pacey and DeGier, 1986; Li et al., 2004).

The group of brown soils covers about 7.31% of the total area of
upland soils (Fig. 9a). In contrast to other upland soil groups, initial
SOC value and clay content of the brown soils account for less than
34.5% of the variations in AASC from 1980 to 2009 (Table 5). Low
annual mean temperature (14 �C) in brown soils was identified as
the predominant environmental variables on SOC change (Table 3).
Some studies indicated that air temperature is significantly and
positively correlated with changes in soil respiration (Bond-
Lamberty and Thomson, 2010), and a slower SOC turnover
associated with lower temperatures could result in the increase
of significant amounts of C stored in agricultural soils (Álvaro-
Fuentes et al., 2012). The model results revealed an increase about
2.66 Tg C from 1980 to 2009 in the brown soil group (Fig. 9a), with
an average annual SOC sequestration rate of 309 kg C ha�1 year�1

(Fig. 9b).
The model results at soil group classification levels indicated

that the carbon sequestration rate is greatly influenced by the most
sensitive soil factors (e.g., initial SOC and clay content) in addition
to environmental factors, with greater C accumulation in soils
having a lower initial SOC content and higher clay content. This is
also recognized in models such as CENTURY (Parton et al., 1993)
and RothC (Coleman et al., 1997). Therefore, to reduce model
uncertainties, the factors such as initial SOC content and clay
content, should be given a high priority in acquiring more accurate
and finer input data for simulating SOC changes.

3.5. Model uncertainties and limitations

In the study, to improve the spatial accuracy of the DNDC
regional simulations, a spatially-explicit and polygon-based soil
database (1:50,000) in northern Jiangsu Province was used.
However, there are many other sources inducing model uncer-
tainty that need to be considered for a better understanding of the
SOC dynamics.

Firstly, the modeling approach usually adopt the county as the
basic geographic simulation unit for GIS database construction
since most of the statistical cropland data was county-based,
especially in China. For example, climate data and fertilizer
application were obtained from county-based sources although
they are highly differentiated within a county. Therefore, the
temporally and spatially varying climate data and fertilizer
application rate were not well captured at county scale dataset,
resulting in large uncertainty in estimates.

Secondly, the management practice databases were also
established at county level because it is currently the most
spatially detailed level in China (Xu et al., 2013). Consequently,
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county level management practices might not be able to capture
the field-specific on-farm measures. For example, the assumption
of a 15% of aboveground crop residue returning to the soil annually
was a national average value derived from the Agricultural
Ministry (Tang et al., 2006). But in fact the fraction may vary
greatly within a county. Some studies indicated that the quantity
and quality of organic C additions is a key factor affecting SOC
dynamics in most agro-ecosystems (Li et al., 1994). As a result, this
uncertainty may lead to bias in the SOC estimates.

The third possible source of the modeling uncertainty is land-
use change in the study area. During the periods of 1980–2009, the
land-use of upland soils in northern Jiangsu Province has changed
significantly due to urban development and heavy management.
However, the effects from the land-use change cannot be
quantified by the DNDC model because current dataset does not
allow us to build a transformable relationship between other land-
uses and upland-crop fields. One feasible approach is to apply
remote sensing data at different simulation periods, as remote
sensing could potentially provide temporally and spatially explicit
delineation of land-use change.

4. Conclusions

Upland is the dominant agricultural land use type in China,
covering more than 70% of the national total cropland area. It is
crucial to accurately estimate soil organic carbon (SOC) change
from the upland soils. Based on spatially differentiated informa-
tion, process-based models integrated with GIS databases enables
simulations of soil carbon cycling and capturing of spatial
variations of SOC changes. In the study, the DeNitrification and
DeComposition (DNDC) model was applied for quantifying SOC
changes in an important upland soil domain, the northern Jiangsu
Province, which is located in the downstream of the Huang-Huai-
Hai plain of China. Besides a county-based coarse soil database, a
set of newly developed high-resolution polygon-based soil data-
bases (1:50,000) were linked to DNDC to improve the accuracies of
regional simulations. The pair-wise simulations indicated that the
average total SOC change modeled with the coarse database was
only 88% of the high-resolution simulation due to missing of the
small soil patches, and the relative deviation ranged from �64% to
8.0% across different counties. This corroborates the uncertainty
that induced from coarse simulation unit and failure of soil
heterogeneity representation in coarse soil database. In addition,
the effective use of high-resolution soil databases is beneficial to
optimize local fertilizer use and inform agricultural management
for efficient carbon sequestration.

The high-resolution simulation indicated a C increase of
37.89 Tg from the 3.93 M ha of upland soils in this region during
the period of 1980–2009, which accounts for 10.2% of annual
national carbon sequestration of upland soils, compared to its
fraction of 3.7% in the national upland area. The annual SOC change
varied between 61 to 519 kg C ha�1 year�1, mainly driven by the
historical variations in N-fertilizer and manure application.
Moreover, various climate conditions play a significant role in
the annual SOC change as well. Thus, accurate estimate of SOC
changes and the investigation of the mechanisms behind for the
study region are crucial for national climate mitigation due to its
significant role in carbon sequestration.
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