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A B S T R A C T

Agro-ecosystem models have been widely used to quantify soil organic carbon (SOC) dynamics based on
digital soil maps. However, most of the studies use soil data of single or limited choices of map scales, thus
the influence of map scales on SOC dynamics has rarely been quantified. In this study, six digital paddy
soils databases of the Tai-Lake region in China at scales of 1:50,000 (P005), 1:200,000 (P02), 1:500,000
(P05), 1:1,000,000 (P1), 1:4,000,000 (P4), and 1:14,000,000 (P14) were used to drive the DNDC
(DeNitrification & DeComposition) model to quantify SOC dynamics for the period of 2001–2019. Model
simulations show that the total SOC changes from 2001 to 2019 in the top layer (0–30 cm) of paddy soils
using P005, P02, P05, P1, P4, and P14 soil maps would be 3.44, 3.71, 1.41, 2.01, 3.57 and 0.10 Tg C,
respectively. The simulated SOC dynamics are significantly influenced by map scales. Taking the total SOC
changes based on the most detailed soil map, P005, as a reference, the relative deviation of P02, P05, P1,
P4, and P14 were 7.9%, 58.9%, 41.6%, 3.9%, and 97.0%, respectively. Such differences are primarily
attributed to missing soil types and spatial variations in soil types in coarse-scale maps. Although the
relative deviation of P4 soil map for the entire Tai-Lake region is the lowest, substantial differences (i.e.,
22–1010%) exist at soil subgroups level. Overall, soil map scale of P02 provides best accuracy for
quantifying SOC dynamics of paddy soils in the study region. Considering the soil data availability of
entire China, P1 soil map is also recommended. This study suggested how to select an appropriate scale of
input soil data for modeling the carbon cycle of agro-ecosystems.
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1. Introduction

Soil plays an important role in the global carbon cycle and
contains more carbon than the atmosphere and vegetation
combined (Eswaran et al., 1993). It is thus of importance to
quantifying the soil organic carbon (SOC) dynamics and their
feedback on global climate change (Marques-Lopez et al., 2009). As
an important component of the global soil system, SOC dynamics
in agricultural soils is crucial for estimating soil fertility and
managing crop production (Shi et al., 2010). Loss of SOC from
agricultural soils not only diminishes soil sustainability but also
elevates CO2 emissions from terrestrial ecosystems (Lal, 2004). In
* Corresponding authors. Fax: +86 25 86881000.
E-mail addresses: dshyu@issas.ac.cn (D. Yu), fafuxsh@126.com (S. Xing).
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particular, paddy rice area in China ranks the second largest
agricultural area in the world, spanning temperate, subtropical and
tropical zones (Liu et al., 2006). The total area of paddy soils in
China is 45.7 Mha, accounting for 34% of the total cultivated land
(Liu et al., 2006; Xu et al., 2012). Accurate quantification of the SOC
change in paddy soils shall thus significantly help to improve
current understanding of global carbon cycle.

Process-based agro-ecosystem models are useful tools for
quantifying SOC dynamics in soils at regional scales (Paustian et al.,
1992; Bricklemyer et al., 2007; Wang et al., 2011). Soil databases at
different spatial resolutions have been used in existing studies. For
example, Ardö and Olsson (2003) assessed SOC dynamics during
the period 1900–2100 in the province of Northern Kordofan in
semi-arid Sudan using 1:5,000,000 FAO/UNESCO data and
CENTURY model. Tang et al. (2006) simulated SOC changes in
croplands of China in 1998 using the 1:14,000,000 soil database
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and DNDC (DeNitrification & DeComposition) model. Cerri et al.
(2007) used CENTURY, RothC, the Intergovernmental Panel on
Climate Change (IPCC) model, and 1:5,000,000 SOTER data to
estimate SOC changes for the years 2000–2030 in the Brazilian
Amazon. Xu et al. (2013) used DNDC model and three digital soil
maps with scales of 1:1,000,000, 1:4,000,000, and 1:14,000,000 to
estimate SOC stocks of paddy soils from 1980 to 2008 in China. Qin
et al. (2013) used two statistical models and a 1:1,000,000 digital
soil map to estimate SOC sequestration potentials in croplands of
China. Wang et al. (2015) used DNDC model and 1:50,000 digital
soil map to estimate the SOC balance between impacts arise from
rising temperatures and elevated atmospheric CO2 in the Tai-Lake
region of China. However, these SOC estimates were often made
using a single or a narrow range of scales of soil databases for a
specific agriculture region.

Spatial variability of soil properties is expressed by map
delineations and map unit composition, which varies with map
scales (Heuvelink, 1998). Spatial soil processing methods affect the
accuracy for the simulation of the spatial distribution of soil
properties (Shi et al., 2009, 2011, 2012; Emadi and Baghernejad,
2014; Arslan and Turan, 2015). The ability to represent the soil
properties differs significantly at different mapping scales (Zhao
et al., 2006). Many datasets were mapped at scales appropriate to
maintain details in soil properties for SOC estimation in a
designated agricultural region. Studies demonstrated that the
spatial heterogeneity of soil properties (e.g., texture, SOC content,
bulk density, and pH) is the major source of uncertainty in
simulating SOC dynamics under specific agricultural management
conditions at regional scales (Li et al., 2004; Pathak et al., 2005). As
such, the choice of soil map scales used in the estimation of
regional SOC may lead to large uncertainties (Zhao et al., 2006). To
date, there is still a lack of research to quantify the effects of map
scales on SOC dynamics simulation in agro-ecosystems.

This study uses six soil databases at scales of 1:50,000 (P005),
1:200,000 (P02), 1:500,000 (P05), 1:1,000,000 (P1), 1:4,000,000
(P4), and 1:14,000,000 (P14) to drive the DeNitrification &
DeComposition (DNDC) model for quantifying SOC dynamics in
the rice-dominated Tai-Lake region. These scales involve all basic
national map scales of soil data in China. We aim to: (1) simulate
the total SOC changes in the study area for 19 years based on the six
soil database, (2) analyze the uncertainties in the simulated SOC
dynamics from each soil database in rice field ecosystems, and (3)
determine the appropriate scales of soil data for simulating SOC
dynamics of higher accuracy in the paddy region of China.
Fig. 1. Geographical location o
2. Materials and methods

2.1. Study area

Tai-Lake region (118�500–121�540E, 29�560–32�160N) located in
the middle of the Yangtze River paddy soil region of China includes
the entire Shanghai City and a part of Jiangsu and Zhejiang
provinces, with total area of 36,500 km2 (Fig. 1) (Li, 1992). It
features a warm and moist climate and with annual rainfall of
1100–1400 mm and annual mean temperature of 16 �C. This region
is one of the oldest agricultural regions in China, which has a long
history of rice cultivation for more than 7000 years. The Tai-Lake
region is considered to be the most typical rice production area
under intensified agricultural management in China.

Approximately 66% of the total land area is covered with paddy
soils (Zhang et al., 2012). Paddy soils in the region are derived mostly
from alluvium, loess, and lacustrine deposits. According to the
Genetic Soil Classification of China (GSCC) system, soils could be
classified into 6 paddy soil subgroups, 137 soil families and 622 soil
species inthe 1:50,000 map.Thesix GSCC subgroupsaccordingtothe
U.S. Soil Taxonomy (ST) are Submergenic (Typic Endoaquepts),
Gleyed (Typic Endoaquepts), Degleyed (Typic Endoaquepts),
Hydromorphic (Typic Epiaquepts), Percogenic (Typic Epiaquepts),
and Bleached (Typic Epiaquepts) (Shi et al., 2006; Soil Survey Staff in
USDA, 2010). Its main croplands are managed with rice and
winter-wheat rotation systems (Xu et al., 1980).

2.2. DNDC model and regional simulations

DNDC is a process-orientated model that simulates crop yield, C
sequestration, nitrate leaching loss, and emissions of C and N gases
in agro-ecosystems (Li et al., 2004; Li, 2007a). It has six sub-models
to estimate soil climate, plant growth, decomposition, nitrification,
denitrification and fermentation. The model has been tested and
optimized against numerous field observations with regard to SOC
dynamics across various agro-ecosystems in Asia (Tang et al., 2006;
Xu et al., 2012), Europe (Abdalla et al., 2011), and America (Tonitto
et al., 2007). DNDC model has also been applied to simulate
biogeochemical processes occurring in rice paddies (Cai et al.,
2003; Li et al., 2004; Zhang et al., 2006, 2014; Giltrap et al., 2010;
Xu et al., 2012).

DNDC uses counties as basic simulation unit (Li et al., 2004).
Thus the model estimates may be biased by ignoring the spatial
heterogeneity of soil within a simulation unit (Zhang et al., 2014).
f the study area in China.
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In our study, polygons representing specific soil types were used as
the basic simulation unit instead (Zhang et al., 2012) and the
simulation was done for the top 30 cm of soils (Tang et al., 2006).
More discussion of DNDC model validation for this region can be
found in Zhang et al. (2012). We used the same forcing data and
parameters for crops, agricultural management, and climate, while
only vary soil maps (e.g., list soil data type here, bulk density etc.) for
different simulations.

2.3. Data preparation

To quantify SOC dynamics in the Tai-Lake region, soil properties,
daily weather, and information on cropping systems and
agricultural management practices was collected for the area
covering 37 counties. Below we describe how data were organized
for the DNDC simulations.

2.3.1. Soil data
In China, the six soil maps with scales of P005, P02, P05, P1, P4,

and P14 are widely used for SOC estimation at national or regional
scales (Tang et al., 2006; Zhao et al., 2006; Xu et al., 2013; Zhang
et al., 2014). Soil maps were often compiled at different
administrative division levels including county level of 1:50,000
(P005), district level of 1:200,000 (P02), province level of
1:500,000 (P05), and nation levels of 1:1,000,000 (P1),
1:4,000,000 (P4), and 1:14,000,000 (P14) (Shi et al., 2006; Zhao
et al., 2006; Zhang et al., 2014). In this study, in order to
comprehensively assess the uncertainty of using soil databases of
different scales, all of the above-mentioned soil map scales were
used in DNDC regional simulations for the Tai-Lake region.

Our soil data maps collected from the Second Soil Survey of
China from 1980 to 1999 are the most comprehensive and
detailed survey of the Chinese soil (Xu et al., 2011). The
P005 dataset contain 52,034 simulation units and were
generated using 1107 paddy soil profiles (Zhang et al., 2012)
(Table 1). The soil profiles were taken from soils of county
(Zhang et al., 2012). The P02 datasets were developed from
136 soil profiles described in soils of district (Zhao et al., 2006).
The P05 datasets were developed from 127 soil profiles
described in soils of province (Zhao et al., 2006). The P1,
P4 and P14 datasets were developed from 49 soil profiles
described from Office for the Second National Soil Survey of
China (1994) (Table 1). The P14 datasets were widely used to
simulate SOC at national or regional scales in China (Tang et al.,
2006; Zhang et al., 2006). The soil attributes assignment at
different mapping scales was compiled using the pedological
Knowledge Based (PKB) method (Shi et al., 2006; Yu et al., 2007).
Table 1
Characteristics of different mapping scales of paddy soils in the GSCC system in the Ta

Soil
database

Map scale Area
(Mha)

Source of soil maps S

P005 1:50,000 2.32 Soil Survey Office of County in Jiangsu Province,
Zhejiang Province and Shanghai City

S
P
S

P02 1:200,000 2.60 Soil Survey Office of Prefecture-level city in
Jiangsu Province, Zhejiang Province and Shanghai
City

S
P
S

P05 1:500,000 2.53 Soil Survey Office of Jiangsu Province, Zhejiang
Province and Shanghai City

S
P

P1 1:1,000,000 2.59 The Office for the Second National Soil Survey of
China

S

P4 1:4,000,000 2.74 Institute of Soil Science, Chinese Academy of
Sciences

S

P14 1:14,000,000 2.80 Institute of Soil Science, Chinese Academy of
Sciences

S

These soil data include soil name (in GSCC), horizon thickness,
bulk density, organic carbon content, texture, and pH.

2.3.2. Climate data
Daily weather data (precipitation, maximum and minimum air

temperature) for 1982–2000 from 13 weather stations in the
Tai-Lake region was collected by the China Meteorological
Administration (Fig. 1) (China Meteorological Administration,
2011). Climate data of the nearest weather station were assigned
to each county in model simulations (Tang et al., 2006). We assume
that all polygons in one county have the same climate.

In our previous studies, we have simulated the SOC dynamics in
paddy soils of the Tai-Lake region during the period of 1982–2000
(Zhang et al., 2012). In order to quantify the effects of various map
scales on the SOC dynamics in the future, the most recent 19-year
climate data (1982–2000) was used for the period of 2001–2019
(Xu et al., 2011).

2.3.3. Crop and farming management data
Crop type data including physiological data of summer rice and

winter wheat rotation systems were used. The crop parameters for
rice–wheat rotation system can be found in Li (2007b) and Gou
et al. (1999). Field data collected in 2000 include the information
on crop growing period, tillage, fertilizer application, water
management, and crop residue management. Specifically, rice is
planted in June and harvested in October; wheat is planted in
November and harvested in May of the next year (Xu et al., 1980).
Conventional tillage was conducted twice at 20 cm for rice and no
tillage applied for wheat (Zhang et al., 2014). Organic manure (20%
of livestock manure and 10% of human manure) was applied twice
per year as base fertilizer for rice and wheat at the rates calculated
based on the local livestock numbers (44, 866, 23, and 95 kg C
head�1 y�1 for sheep, cattle, human and swine manure,
respectively) (Lu and Shi, 1982; Tang et al., 2006). Nitrogen
synthetic fertilizer was applied three times across in the basal,
tillering and heading stage for rice, three times in the basal,
jointing and heading stage for wheat. One time of midseason and
5 times of shallow flooding were applied for summer rice (Gou
et al., 1999). 15% of non-grain post harvest crop biomass was
returned to soil (Tang et al., 2006). The same management
practices of 2000 are assumed to be continuously applied from
2001 to 2019.

2.4. Data comparison and analysis

Area of paddy soils (APS, ha), total SOC changes (TSC, Tg C or Gg
C) and average annual SOC changes (AASC, kg C ha�1) of different
i-Lake region, China.

ource of soil data Number of
soil profiles

Number of
simulation
units

Basic map
units

oil Series of County in Jiangsu
rovince, Zhejiang Province and
hanghai City

1107 52,034 Soil
Species

oil Series of District in Jiangsu
rovince, Zhejiang Province and
hanghai City

136 8064 Soil Genus

oil Series of Jiangsu Province, Zhejiang
rovince and Shanghai City

127 5451 Soil Genus

oil Series of China 49 1511 Soil Genus

oil Series of China 49 305 Subgroups

oil Series of China 49 205 Subgroups
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mapping scales were calculated using Eqs. (1), (3) and (4),
respectively:

APS ¼
Xn
i¼1

APSi ð1Þ

AMSCi ¼
Xh
f ¼1

ASCf ð2Þ

TSC ¼
Xn
i¼1

ðAPSi � AMSCiÞ ð3Þ

AASC ¼ TSC=APS=19 ð4Þ

where APSi is the area of i-th polygon of paddy soil; AMSCi

(kg C ha�1) is the accumulated annual SOC change in a specific
polygon from 2001 to 2019; ASCf (kg C ha�1) is the annual SOC
change in a specific polygon, as estimated using DNDC; n is the
polygon number; and h is the order of simulation years (h = 1, 2,
3 . . . 19).

The accuracy of DNDC simulations using the six soil databases
was analyzed using the most detailed digital soil map (P005) as a
reference simulation (Zhang et al., 2009). The relative deviation (y)
of P02, P05, P1, P4, and P14 was calculated using the following
equation (Cai et al., 2003; Zhang et al., 2014):

y ¼ ABS 100 � xs � x0
x0

� �
ð5Þ

where ABS is absolute function, x0 is the total SOC change with
P005, and xs is the total SOC change produced by P02, P05, P1, P4, or
P14.

To test the most sensitive factors of soil properties at different
scales, the correlation of soil properties and average annual SOC
changes was analyzed. A multiple stepwise regression analysis was
performed using the Statistical Package for Social Sciences (SPSS)
statistical software (Leech et al., 2008).
y = -13 1.8 4x + 54 7.14
R2 = 0 .76
n=6
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Fig. 2. (a) Relationship between average annual SOC change and initial SOC density (0–
between total SOC change and initial SOC stock (0–20 cm) on different mapping scales
3. Results and discussion

3.1. Variation of input soil properties

Variations in soil texture (0–10 cm), SOC content (0–5 cm), pH
(0–10 cm), and bulk density (0–10 cm) for all six soil maps in the
Tai-Lake region are shown in Table 1S. In the region, the average
initial SOC and clay content based on P14 map were higher than
those from other maps. As map scales decreased from P005 to P14,
the paddy soil subgroups on the other five maps other than
P14 were merged into the hydromorphic and gleyed subgroups.
The area of gleyed soil subgroup in P14 map reaches 0.41 Mha,
much higher than that in the other maps (Table 1S). The SOC and
clay content of gleyed paddy soil subgroups is generally higher
than other subgroups (Table 1S). Since the gleyed paddy soil
subgroup is developed in submerged area where metabolic activity
of aerobic microbes is inhibited, this soil type usually has a low
decomposition rate (Wang et al., 2007). The average bulk density of
soils in P14 and P4 maps were lower than that in P005, P02, P05,
and P1. Compared to other soil properties, the average pH of
different maps exhibited minor differences, ranging from 6.5 to 6.7.

Overall, statistical analysis showed that most of the soil
properties in six databases exhibited large differences in the
Tai-Lake region (Table 1S). The SOC spatial variability expressed by
map unit composition and map delineations varies with scales
(Heuvelink, 1998; Zhao et al., 2006; Zhong and Xu, 2011). Such
differences of soil properties at different scale maps would
propagate into SOC simulations. Thus an improper selection of
soil maps may bias SOC estimation.

3.2. Baseline SOC pools in soil data of different map scales

Regional SOC stock sin the baseline SOC pools of the top 20 cm
depth of soil for the P005, P02, P05, P1, P4, and P14 maps were
83.09, 93.47, 101.75, 95.46, 103.01, and 112.44 Tg C in 1982,
respectively (Yu et al., 2014). Corresponding average SOC densities
were 3.58, 3.59, 4.02, 3.69, 3.77, and 4.02 kg C m�2, respectively.
The higher SOC stocks in the coarser soil maps might be because
other soil types with small polygons have been merged into paddy
soil types with larger polygons as map scales decreased (Zhao et al.,
2006; Zhang et al., 2014). Statistics shown that the total paddy soil
areas of Tai-Lake region increased as map scales increased from
y = -0.10 x + 12.59
R2 = 0.50
n=6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

80 85 90 95 10 0 10 5 110 115

Initial SOC po ol (Tg C)

To
ta

l S
O

C
 c

ha
ng

e 
(T

g 
C

) (b)

20 cm) on different mapping scales of the Tai-Lake region, China. (b) Relationship
 of the Tai-Lake region, China.



L. Zhang et al. / Agriculture, Ecosystems and Environment 222 (2016) 13–22 17
1:50,000 to 1:14,000,000 (Table 1S). However, this results are
contrary with Xu (2011) and Xu et al. (2013), they found that the
total SOC stocks in Chinese paddy soils estimated from the three
soil polygon-based databases decreased from 2.51 to 1.51 Pg C in
1980 as map scales decreased from 1:1,000,000 to 1:14,000,000. In
addition, our results also showed that there was a significant
Fig. 3. Spatial distribution of annual SOC change of different mapping scales from 2001 to
(1:500,000); (d) P1(1:1,000,000); (e) P4 (1:4,000,000); (f) P14 (1:14,000,000).
negative linear relation between rate of change and the initial SOC
stocks at different maps (Fig. 2). This is generally consistent with
previous studies (Lark et al., 2006; Tan and Liu, 2013). Soil carbon
dynamics and change rate caused by land surface disturbances and
climate change are generally related to the level of baseline SOC
stock (Lark et al., 2006). Specifically, soils with higher baseline SOC
 2019 in the Tai-Lake region, China: (a) P005 (1:50,000); (b) P02 (1:200,000); (c) P05



Fig. 4. Temporal distribution of annual SOC change of different mapping scales from 2001 to 2019 in the Tai-Lake region, China.
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stock tend to be C sources; otherwise, they are likely to turn into C
sinks following conservation management practices (Tan and Liu,
2013). This phenomenon supported the general concept that soils
evolve towards a SOC stock at a steady state, which depends on the
C input and the decomposition process involved (Janzen et al.,
1998).

3.3. Effects of map scales on SOC changes

The simulation based on P005 map showed that the SOC in the
top soils (0–30 cm) increases 3.44 Tg C in the 2.32 Mha paddy soils
for the study period, with the average annual SOC change of
78 kg C ha�1 (Figs. 3 and 4). 70.6% of the paddy soils gained C and
29.4% lost C in the 19 simulated years. This is mainly because of
intense fertilizer application and farmyard manure incorporation
which were as high as 335 kg N ha�1 y�1 and 270 kg C ha�1 y�1,
respectively. Increasing fertilizer and manure application could
increase SOC levels linearly by enhancing crop production and
residue accumulation (Li et al., 2004). Additionally, most of the
region has been utilized no-tillage practices in planting wheat
since 1991, which reduces SOC decomposition by providing the
lowest soil disturbance (Zhang et al., 2012).

The SOC dynamics is affected by the spatial heterogeneity of soil
properties represented in different maps (Figs. 3 and 4). Regional
SOC changes using P02, P05, P1, P4, and P14 maps were 3.71, 1.41,
2.01, 3.57, and 0.10 Tg C, respectively. Corresponding annual SOC
changes were 75, 29, 41, 69, and 2.0 kg C ha�1, respectively. Since
the P005 map is the most detailed soil database, it was used as a
reference for comparison. Thus the relative deviation of P02, P05,
P1, P4, and P14 databases were 7.9%, 58.9%, 41.6%, 3.9%, and 97.0%,
respectively. These relative deviations are different from the
Table 2
Variability of average annual SOC change contributed from different soil properties in 

Soil database Number of simulation units DR2a

Initial SOC (g kg�1) 

P005 52,034 0.730***

P02 8064 0.698***

P05 5451 0.779***

P1 1511 0.826***

P4 305 0.791***

P14 205 0.885***

**, *** Significant at 0.01 and 0.001 probability levels, respectively.
a The change in the R2 statistic is produced by adding a soil property into stepwise 
results of Xu et al. (2013), who found the total SOC stock simulated
using the 1:1,000,000 database is 27% and 40% higher than that
using coarser-scale maps of 1:4,000,000 and 1:14,000,000,
respectively (Xu et al., 2013).

P14 soil map was widely used in DNDC model applications at
national or regional scales in China (Tang et al., 2006; Zhang et al.,
2006). However our study demonstrates that using the P14 soil
map yields biased SOC estimates. The estimated SOC decreased
throughout the study area from 2001 to 2010, ranging from �3.0 to
�29 kg C ha�1 (Fig. 4). In contrast, the simulated SOC using P005,
P02, P05, P1, and P4 soil maps shows an increase trend during the
period (Fig. 4). Overall, the DNDC simulations based on different
soil maps show divergent SOC estimates in the region.

Many studies have demonstrated that soil properties are
dominant factors in SOC simulations at regional scales (Li et al.,
2004; Pathak et al., 2005; Zhang et al., 2014). As Table 2 shows,
initial SOC content in different scale soil maps is the most sensitive
parameter controlling SOC changes among all soil factors
according to the stepwise linear regression. Initial SOC content
accounts for 69.8–88.5% of the variations in average annual SOC
change for paddy soils from 2001 to 2019; while soils with lower
initial SOC display a greater SOC increase in the early stages
following cultivation (Zhao et al., 2013). Similar results were also
reported by Lark et al. (2006) and Tan and Liu (2013). They
observed a strong negative relationship between the rate of SOC
change and the initial SOC content, compared to other soil
properties. P005 map with the lowest initial SOC among the six soil
maps has the greatest average annual SOC sequestration rate
during 2001–2019 (Fig. 4 and Table 1S). High SOC sequestration
rate also occurred in the simulation based on the P02 and P4 maps,
higher than 69 kg C ha�1 (Fig. 4), due to the low initial SOC content
Tai-Lake region paddy soils from 2001 to 2019.

Adjusted R2

Clay (%) pH Bulk density (g cm�3)

0.086*** 0.056*** 0.004*** 0.876***

0.005*** 0.038*** – 0.741***

0.002*** 0.009*** 0.000 0.790***

0.065*** 0.000 0.001** 0.892***

0.047*** 0.019*** 0.007*** 0.863***

0.033*** – 0.007*** 0.925***

multiple regressions.
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(Table 1S). Moreover, the average clay content derived from
P02 was as high as 29%. Soil with elevated clay content shows a
greater degree of SOC protection by soil organo-mineral
association and stabilization (Six et al., 2002). In contrast to other
maps, the use of P05, P1, and P14 DNDC estimated lower SOC
sequestration rates (Fig. 4). The initial SOC in P05 and P14 soil maps
is 16.8 and 19.4 g kg�1, respectively (Table 1S). Moreover, the pH
derived from P1 soil map is near neutral (�6.7). Soils with high SOC
content and neutral pH are favorable for CO2 production by
providing better living environment for microbes (Pacey and
DeGier, 1986; Li et al., 2004).

3.4. Effects of map scales on SOC change in paddy soil subgroups

The effects of different map scales on simulated SOC changes
are significantly dependent on paddy soil subgroups (Fig. 5). The
hydromorphic paddy soils in P005 cover 1.23 Mha and accounts for
53% of the total paddy soil area in the Tai-Lake region. These paddy
soils possessed relatively low initial SOC content and high clay
content (Table 1S). Additionally, high rate of farmyard manure
(287 kg C ha�1 y�1) and fertilizer (323 kg N ha�1 y�1) use and return
of crop residue to soils in this subgroup likely increases SOC.
Therefore, the modeled average annual SOC change in hydromor-
phic paddy soils is 88 kg C ha�1 (Fig. 5a). For the entire Tai-Lake
Fig. 5. Comparison of average annual- (a), total-SOC change (b) modeled with the 
region, the total SOC change from hydromorphic paddy soils is
2.05 Tg C, accounting for 60% of the total SOC change from 2001 to
2019.

Although similar trends can be observed in simulations of
average annual SOC changes in hydromorphic paddy soils over the
19-year study period using six soil maps, discrepancies existed
because of the spatial heterogeneity of soil properties in the six soil
map scales (Fig. 5a). The difference in average annual SOC change is
over 150 times between the simulation from the largest map scale
of P4 and the smallest map scale of P05. The main reason is that the
initial SOC value of hydromorphic paddy soils in P05 is much
higher than that in P4 (Table 1S).

The degleyed paddy soils, gleyed paddy soils, and submergenic
paddy soils in P005 account for 16, 4.4 and 0.32% of the total paddy
soil area in the Tai-Lake region, respectively. The total SOC changes
of different maps during 2001–2019 range from �2.59 to 0.48 Tg C
in gleyed paddy soils, �1.98 to 0.95 Tg C in degleyed paddy soils,
and �0.32 to 0.27 Tg C in submergenic paddy soils. The gleyed soil
subgroup has the greatest influence on SOC simulation at different
map scales (Fig. 5). The choice of P1 or P14 results in a difference of
over 7 times in the highest and lowest total SOC changes (Fig. 5a).
The main reason is that the area of gleyed soil subgroup in P14 is
much higher than that in P1. Moreover, the initial SOC value of
gleyed soil subgroup in P14 is as high as 28.0 g kg�1 (Table 1S).
six map scales in different paddy soil subgroups in the Tai-Lake region, China.
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Therefore, the simulation in gleyed soil subgroup using P14 results
in high SOC losses (Li et al., 2004).

The percogenic paddy soils and bleached paddy soils in
P005 account for 18 and 8.8% of the total paddy soil area in the
Tai-Lake region, respectively. In contrast to other paddy soil
subgroups, these two types of paddy soils have smaller influences
on SOC at different scales (Fig. 5). The difference between the
highest and lowest SOC changes is less than threefold (Fig. 5b).

Modeled SOC changes at different scales depend on areas and
properties of soils. In general, soil types with small areas may
merge into their neighboring soil types when the map scale
changing from fine to coarse scales (Zhao et al., 2006). Such a
‘scaling effect’ causes the area and attribute variations of different
soil types, especially the coarse soil maps that missed relatively
small soil patches containing high or low soil properties which
were sensitive to SOC change (Zhang et al., 2014). For example,
although the P4 soil map has the lowest relative deviation (3.9%)
for the entire Tai-Lake region, the relative deviations in different
paddy soil subgroups ranged from 22 to 1010% (Table 2S). This
demonstrated that the scale of P4 soil map might have produced a
large uncertainty of SOC dynamics in the Tai-lake region. In
addition, different soil databases have different influences on SOC
simulation based on paddy soil subgroups. The relative deviation of
different maps ranged from 62 to 833% in gleyed paddy soils,
110–251% in degleyed paddy soils, 18–59% in bleached paddy soils,
4.9–53% in percogenic paddy soils, 122–1010% in submergenic
paddy soils, and 14–99% in hydromophic paddy soils (Table 2S).
Therefore, when considering the DNDC accuracy in SOC simu-
lations at regional scales, it is necessary to identify an appropriate
soil map scale as well as appropriate paddy soil subgroups.

3.5. Effects of map scales on SOC changes in administrative areas

There are 0.46, 0.54, and 1.33 Mha of paddy soils of the Tai-Lake
region distributed in Shanghai City, Zhejiang and Jiangsu Province,
respectively (Zhang et al., 2012). The average annual SOC changes
of most counties in Jiangsu province noticeably increased from
2001 to 2019 using P005, P02, and P1 datasets as model inputs,
whereas the values decreased when using P05 datasets as model
inputs (Table 3S). This is likely because the formers possessed
relatively low initial SOC (14.0, 14.9, and 13.9 g kg�1, respectively)
and high clay content (25.8, 30.7, and 27.4%, respectively). In
contrast, P05 has high initial SOC (16.1 g kg�1) for the same type of
soils, leading to a decrease in CO2 emissions (Zhao et al., 2013).

The average annual SOC changes of most counties in Zhejiang
province noticeably increased from 2001 to 2019 based on P05 and
P4 (Table 3S). However, the SOC changes of most counties using
P005, P1, and P14 is estimated to decrease from 2001 to 2019, due
to their high initial SOC (17.9, 19.3, and 21.1 g kg�1, respectively)
(Li et al., 2004).

The SOC changes of most counties in Shanghai city from 2001 to
2019 are estimated to be relatively high when using P005, P4, and
P14. This is because the initial SOC content of P005 and P4 is
16.1 and 14.0 g kg�1, respectively, which are low. Additionally, the
clay content (31.6%) derived from the P14 is the highest in the three
provinces. Therefore, high rate of SOC sequestration occurred
when using P005, P4, and P14 (Table 3S). In contrast, the SOC
change of most counties in Shanghai city from 2001 to 2019 is
relatively low using P02, P05, and P1, due to their high initial SOC
(17.6, 17.3, and 16.5 g kg�1, respectively) and neutral pH (7.5, 7.5,
and 7.2, respectively). Soils with higher SOC and neutral pH are
often linked to high CO2 emissions (Pacey and DeGier, 1986;
Ngwira et al., 2012).

Overall, the relative deviation of different counties in the
Tai-Lake region ranged from 3.0 to 386% in P02, 0.31–730% in P05,
2.3–672% in P1, 7.0–919% in P4, and 13–681% in P14 (Table 2S). The
effects of map scales on DNDC simulations at the county level
depend on initial SOC values and clay content (Table 2). In China,
counties are generally used as the basic management units to
implement the government policies for soil C sequestration (Shi
et al., 2006; Xu et al., 2011). Although more detailed soil units (e.g.,
1:50,000) are more valuable for C sequestration (Zhang et al.,
2009), such finer scale soil maps require more efforts to develop.
As a result, different counties have established different digital soil
map scales under various situations. Thus, the most sensitive
factors (e.g., initial SOC values and clay content) of different map
scales for modeling SOC dynamics should be identified as they
contribute more to reducing uncertainties of SOC simulations.

3.6. SOC simulation uncertainties

Uncertainty is inevitable for modeling studies (Li et al., 2011). In
this study, polygons of soil maps are used as the basic DNDC
simulation units to take advantage of the spatially explicit soil
information (Zhang et al., 2009). However, other uncertainty
sources also existed. For instance, soil properties and SOC content
in a single simulation unit are assumed to be uniform, which may
also induce a large uncertainty (Li et al., 2011).

Climate information is an important driver of SOC (Lal, 2004).
However, climate data from only 13 meteorological stations at
national scales are used in this study, higher resolution data from
meteorological stations at provincial scale should be collected in
future studies. In addition, global warming effects were not
considered due to the limitation of available meteorological data.
The recent 19-year climate data of 1982–2000 have to be taken as
representative for the period 2001–2019 for all soil map scales
runs, and the 19-year shift in climate data may bias the model
simulations.

Another uncertainty source is the agricultural management
information, which was uniform in each county. Since the effects of
field management information on model results vary with soil
properties (Rüth and Lennartz, 2008), the single field management
dataset for the DNDC model for all soil types may induce
uncertainties in the simulated SOC dynamics. Field management
information of high spatial accuracy on regional scales is difficult to
organize, although it is critical in regional studies for agro-
ecosystems (Bareth, 2009; Mulla, 2013).

Fine spatial scale data of climate and agricultural management,
together with soil maps, are essential to accurately quantify
region-scale SOC dynamics in the region.

4. Conclusions

Here we applied an agro-ecosystem model (DNDC) by linking
six soil maps with different scales as model input in the rice-
dominated Tai-Lake region of China. We found that soil map scales
significantly affect the accuracy of model predictions for SOC, with
a relative difference ranging from 3.9% to 97%. Changes in soil types
and their attributes as well as soil type areas are the main sources
of SOC variability. The soil datasets with scale of P4 and P14 were
too coarse to simulate SOC dynamics in the Tai-lake region. Finer
soil maps (e.g., 1:50,000) can reduce the uncertainty in regional
SOC simulation effectively. However, the considerable labor costs
hinder developing such a map for large agricultural regions. We
recommend P02 for SOC simulations in this region. Soil data at
P1 scale are also recommended considering the accuracy and data
availability at the national level. At present, a soil map of
1:1,000,000 is the most detailed available soil data at the national
scale in China (Liu et al., 2006; Shi et al., 2006).

Finally, our study also provides a guideline to the research
community to develop soil maps at appropriate scales for carbon
modeling studies. The sensitivity of the modeled SOC dynamics to
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different soil map scales for regional studies in agro-ecosystems
needs further investigation.
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