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• This study comprehensively evaluated
soil organic carbon (SOC) stocks in
China.

• BRT model performs well in estimating
SOC stocks in China.

• Chinese SOC shows an increasing trend
in the past 30 years.

• Chinese SOC was mainly stored in
agroecosystems, forests, and grasslands.

• Mapped carbon distribution is valuable
for land managers to formulate land
use policies.
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Soil organic carbon (SOC) significantly influences soil fertility, soil water holding capacity, and plant productivity.
In this study, we applied two boosted regression tree (BRT) models to map SOC stocks across China in the 1980s
and the 2010s. The models incorporated nine environmental variables (climate, topography, and biology) and
8897 (in the 1980s) and 4534 (in the 2010s) topsoil (0–20 cm) samples. During the two study periods, 20% of
the soil samples were randomly selected for model testing, and the remaining samples were used as a training
set to construct the models. The verification results showed that incorporating climate environment variables
significantly improved the model prediction in both study periods. Mean annual temperature, mean annual pre-
cipitation, elevation, and the normalized difference vegetation index were the dominant environmental factors
affecting the spatial distribution of SOC stocks. The full-variable model predicted similar spatial distributions of
SOC stocks for the 1980s and the 2010s. SOC stocks in China showed an increasing trend over the past
30 years, from3.9 kgm−2 in the 1980s to 4.6 kgm−2 in the 2010s. In bothperiods, topsoil SOC stocksweremainly
stored in agroecosystems, forests, and grasslands in the 1980s,with values of 9.5, 12.0, and 11.4 Pg C, respectively.
Our study provides reliable information on Chain's carbon distribution, which can be used by landmanagers and
the national government to formulate relevant land use and carbon sequestration policies.
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1. Introduction

Soil organic carbon (SOC) is the largest carbon pool in terrestrial
ecosystems, accounting for more than 80% of the global terrestrial eco-
system carbon (Batjes, 1996). The soil decomposition of SOC affects
e spatio-temporal variability of soil organic carbon stocks in different
.scitotenv.2020.143644
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atmospheric CO2 concentrations and subsequently impacts the global
climate system (Post et al., 1982; Lal, 2004). Increasing the stocks of
SOC is considered one of the most economical and effective ways of
balancing atmospheric CO2 concentrations (Powers and Schlesinger,
2002; Pan et al., 2010). Accurate estimations of regional SOC stocks
and their variability are necessary for understanding the carbon cycle
and global climate change as well as improving carbon management
strategies in terrestrial ecosystems.

Chinese terrestrial ecosystems and their carbon dynamics signifi-
cantly influence the global carbon budget (Xu et al., 2019). To mitigate
global climate change and protect the ecological environment, the Chi-
nese government launched a series of major ecological protection pro-
jects since the 1980s, such as the Three-North Shelterbelt Project,
Yangtze River Shelterbelt Project, Pearl River Shelterbelt Project, North-
ern Forest Protection Project, and Natural Forest Protection Project. In
addition, a series of new agricultural fertilization and production tech-
nologies have been implemented to increase crop yield and protect
farmland soils. These engineering measures can increase the carbon
storage of terrestrial ecosystems to effectively cope with the challenges
of global climate change (Wang et al., 2020a).Most studies have focused
on the changes in carbon storage of terrestrial ecosystems—particularly
with regard to changes in vegetation carbon (Cambule et al., 2014;
Elbasiouny et al., 2014). However, few studies to date have assessed
the changes in terrestrial SOC stocks. Some studies have shown that
soil has a similar or higher carbon sequestration capacity to that of veg-
etation. Therefore, accurate assessments of China's SOC stocks over the
past 30 years as well as the SOC stock variability of major ecosystems
(forests, grasslands, farmland, wetlands, etc.,) are necessary for deter-
mining the CO2 sequestration capacity of China's terrestrial ecosystems.
These findings can also elucidate the impacts of various ecological pro-
tection measures on China's carbon fixation capacity (Xu et al., 2019;
Wang et al., 2020a).

The spatial-temporal variability of soil attributes is influenced by
the interaction between natural and human factors, which can be
classified into five major elements: climate, terrain, parent material,
time, and biology (McBratney et al., 2003). However, the spatial pre-
diction of soil properties on regional scales is complicated by the
high number of influencing factors. Digital soil mapping (DSM)
technology is a fast and effective method for predicting the spatial
distribution of SOC stocks across large areas based on a small num-
ber of sampling data points and major environmental covariates
(McBratney et al., 2003; Minasny et al., 2006; Saby et al., 2010;
Krishnan et al., 2007; Chen et al., 2018). Among the different DSM
technologies, tree-based models are widely used to predict soil
properties, such as soil salt, pH, SOC, soil total nitrogen, and soil tex-
ture (Müller et al., 2013; Cheong et al., 2014; Padarian et al., 2020).
Compared with traditional methods, tree-based models have better
performance and effectiveness (Wang et al., 2018). Moreover, the
most reliable prediction model is included in the DSM toolbox. The
boosted regression tree (BRT) model can avoid the problem of tran-
sition fitting and effectively deal with nonlinear and complex prob-
lems (Cheong et al., 2014; Wang et al., 2020a). Thus, the BRT model
is widely used in remote sensing science, epidemiology, ecology,
and fishery sciences (Müller et al., 2013; Wang et al., 2018, 2020a).
However, few studies have applied the BRT model to assess the
spatio-temporal changes in SOC stocks.

A soilfieldmonitoring database for the 1980s and the 2010swas con-
structed using data from the second soil survey in China (1979–1985)
and published literature data of SOC stocks (0–20 cm) during the
2010s (2004–2014). The database covers the main ecosystems in
China, such as forests, grasslands, farmland, and wetlands. In this study,
we applied this data to 1) comprehensively evaluate the SOC stocks in
China in the 1980s and the 2010s and estimate the changes in SOC stocks
between these twoperiods, 2) quantify the impact of environmental var-
iables on SOC stock variability, and 3) map soil carbon stocks during the
1980s to the 2010s.
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2. Materials and methods

2.1. Study area

China is located in East Asia and west of the Pacific Ocean (Fig. 1a).
The country spans from the center of the Heilongjiang River (near the
Mohe River) in the north to zengmuyinsha in the Nansha Islands in
the south. It also spans the Pamir Plateau in the west to the confluence
of the Heilongjiang andWusuli Rivers in the east. China has a land area
of 9.6 million square kilometers and a land boundary of more than
20,000 km. China's terrain is complex and diverse, with relatively high
altitudes in the west and low altitudes in the east. The country's terrain
consists of 33.3%mountains, 26% plateaus, 18.8% basins, 12% plains, and
9.9% hills. The terrain from west to east consists of three steps. In the
west, the Qinghai Tibet Plateau is the first step, with the highest terrain
at altitudes of more than 4000m. The plateau is bounded by the second
step, which consists of the Kunlun Mountains, Qilian Mountains, and
Hengduan Mountains. In the east, the Qinghai Tibet Plateau has an alti-
tude of 1000–2000 m and is also considered the second step between
the Daxingan Mountains, Taihang Mountains, Wushan Mountains, and
XuefengMountains; this region is also composed of plateaus and basins.
The broad plains and hills in eastern China are the third step. This geo-
morphic pattern was formed by the Yanshan movement during the
Mesozoic era.

2.2. Soil data sources

SOC content and soil depth were recorded to determine the soil ge-
netic layers without standardization. To establish a database with soil
depth consistency, we first standardized the profile of SOC content. In
theory, the vertical distribution of SOC can be characterized by a func-
tion and extrapolated at depths (Wang et al., 2018). Therefore, we de-
veloped an empirical relationship based on the long-term monitoring
data of 74 typical terrestrial ecosystems from the China Ecosystem Re-
search Network. We found that the vertical distribution of SOC in both
artificial (agricultural) and natural (forest and grassland) ecosystems
is well described by exponential functions and power functions (Chai
et al., 2015). Based on the empirical relationship between SOC content
and soil depth, we obtained the SOC content for every 20 cm soil
layer. The detailed process is described in Xu et al. (2015).

2.2.1. Soil sample collection in the 1980s
The data used in this study covers the 1980s and the 2010s. The data

for the 1980s were mainly obtained from the second soil census
(1979–1985) in China, including national (volume 1–6), provincial
(municipalities directly under the central government), and local soil
records. The geographical information was extracted from a digital
map (https://www.tianditu.gov.cn/) (Yang et al., 2014). A total of
8897 soil profiles were collected, including the geographical location,
soil type, thickness, and organic matter content of each profile (Fig. 1b).

2.2.2. Soil sample collection in the 2010s
The 2010s soil data were obtained from twomain sources: 1) actual

monitoring data of the experimental group and the related experimen-
tal groups from the field study, and 2) officially published data selected
from the ISI database (http://apps.webofknowledge.com) and China
Knowledge Network (http://www.cnki.net) from 2004 to 2014. We
used “soil organic carbon density” and “soil organic carbon storage” as
key words in the web search. The selection of literature data followed
the subsequent criteria: 1) SOCdensity datamust be the actualmonitor-
ing data at the sample plot, excluding model fitting and statistical data;
2) field sampling must be conducted after 2000; and 3) the sampling
method of SOC density should be comparable. Consequently, 4534 sur-
face soil (0–20 cm) samples were collected (Fig. 1c) covering major
ecosystems in China—including forests, grasslands, farmland, and wet-
lands. We adopted the same method as that used for the 1980s data

https://www.tianditu.gov.cn/
http://apps.webofknowledge.com
http://www.cnki.net


Fig. 1. Location of sampling sites in the1980s (b) and the 2010s (c) overlaid on a digital elevation model of the study area (a) .
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to approximately extract the coordinate information from a digital map
(https://www.tianditu.gov.cn/) through the description of the pub-
lished studies.

2.3. Environmental data sources

Nine environmental variables were selected to represent climate,
topography, and biology. In addition, as the data were obtained
from different departments and platforms, we resampled them
using ArcGIS 10.2 software to generate grid data at 90 m spatial res-
olution. High-precision and high-quality environmental variables
were key to accurately predicting surface SOC stocks. The 90 m spa-
tial resolution environmental data were used to meet the needs for
national soil attribute spatial prediction research.

2.3.1. Climatic data
Climatic data from the 1980s and the 2010s were obtained from the

Resource and Environment Data Cloud Platform (http://www.resdc.cn/
). The dataset included mean annual temperature (MAT) and mean an-
nual precipitation (MAP), which was based on the daily observational
data of more than 2400 meteorological stations in China, and was gen-
erated through sorting, calculation, and spatial interpolation processing.
The interpolation of climate variableswas based on the ANUSPLIN inter-
polation software of Australia. ANUSPLIN is a tool for analyzing and in-
terpolating multivariate data by using a smooth spline function. The
tool was used to provide statistical analysis and data diagnosis and ana-
lyze the spatial distribution of data (Hutchinson, 1998). Finally, the spa-
tial resolution of the two periods of climate data was 1000 × 1000 m,
which was then resampled to 90 × 90 m using ArcGIS 10.2 software.

2.3.2. Topographic data
The Shuttle Radar Topography Mission and Digital Elevation Model

(SRTM DEM) in the two periods with spatial resolutions of 90 × 90 m
were downloaded from the Geospatial Data Cloud site, Computer Net-
work Information Center, Chinese Academy of Sciences (http://www.
gscloud.cn). The elevation (ELE), slope gradient (SG), slope aspect
(SA), profile curvature (PG), and two secondary terrain variables—in-
cluding topographic wetness index (TWI) and catchment area (CA)—
were obtained from SRTM DEM. All terrain variables were generated
based on SRTM data in ArcGIS 10.2 and the system for automated
geoscientific analysis (SAGA) and geographic information system
(GIS) software.

2.3.3. Biological data
The normalized difference vegetation index (NDVI) reflects the veg-

etation coverage status of the land surface. A negative NDVI indicates
water and snow coverage on the ground, NDVI = 0 indicates the pres-
ence of rock or bare soil, and positive values indicate vegetation cover-
age. NDVI reflects the background influence of plant canopy, such as
soil, wet ground, snow, dead leaves, and roughness, and is also related
to vegetation coverage. NDVI data with resolutions of 250 m, 500 m,
and 1000 m were obtained from NASA's official website, and users
could select the data according to the specific application purposes. In
addition, NDVI data for the two periods (the 1980s and the 2010s)
were obtained from theResource and EnvironmentData Cloud Platform
(http://www.resdc.cn/) at a spatial resolution of 1 × 1 km in this study.

2.4. Model prediction and its uncertainty

The BRTmodel proposed by Friedman et al. (2000) was used tomap
the SOC stocks of topsoil (0–20 cm) in China during the twoperiods. The
BRT model is usually composed of two parts: regression tree and
boosting (Elith et al., 2008). The regression tree model uses binary seg-
mentation technology to fit a simplemodel to each result (Cheong et al.,
2014). On the basis of the decision tree algorithm, the model uses the
mean value of the target variables of all samples of each leaf node to
4

predict numerical variables (Pouteau et al., 2011). Boosting refers to in-
tegrating multiple models, and each model enhances the overall effect
(Elith et al., 2008; Vaysse and Lagacherie, 2015). The boosting algorithm
uses an iterative method to gradually add trees to develop the final
model (Cheong et al., 2014). The gradient boosting technology and
multi-data optimization technology makes the BRT model an ideal
tool for our study.

In this study, a BRT model was built using the GEM package
(Ridgeway, 2007) running in R language environment (R Development
Core Team, 2013). Usersmust set four parameters in the process of build-
ing the BRT model: learning rate (LR), tree complexity (TC), bag fraction
(BF), and number of trees (NT) (Cheong et al., 2014). LR represents the
contribution of each tree in the model to the BRT model (Pouteau et al.,
2011). TC is used to control the interaction between variables and the
size of the tree (Vaysse and Lagacherie, 2015). The BF setting is mainly
used for the proportion of the training set (Pouteau et al., 2011), and NT
is determined by the combination of LR and TC (Pouteau et al., 2011).
We finally tested different combinations of the four parameters to obtain
the minimum prediction error in both periods. For the best BRT model
predictions, LR, TC, BF, and NT were set to 0.025, 9, 0.70, and 1500 in
1980, and 0.025, 9, 0.75, and 2500 in 2010, respectively.

The BRT model was iterated 100 times. Each iteration used different
combinations of SOC observations and environmental variables in the
two periods. It produced 100 SOC forecasts, and the average of 100 pre-
dictions was considered as the final forecast. Its standard deviation (SD)
was used as themodel uncertainty associated with the prediction. Sim-
ilarly, to evaluate the importance of environmental variables in
predicting SOC stocks in both periods, the relative importance of all iter-
ative environmental variables in the BRT model was obtained and nor-
malized to 100% to compare each variable.

2.5. Statistical analysis

SOC stocks and environmental variables during the two periods (the
1980s and the 2010s) were analyzed using SPSS 16.0. The Pearson cor-
relation coefficient was used to express the degree of linear correlation
between variables. The p valuewas used to detect significant differences
between variables, and the skewness coefficients were used to charac-
terize the degree of asymmetry of the probability distribution density
curve relative to the average value.

2.6. Model evaluation

To evaluate the spatial prediction of SOC stocks by the two BRT
models in the twoperiods,we used the subset feature tool in ArcGIS10.2
to randomly select 20% of the sampling sites (1780 in the 1980s vs. 1537
in the 2010s) as the independent verification set; the remaining 80% of
the sampling sites were used as the training set for constructing the BRT
model. In addition, four performance verification indicators—mean
error (ME), rootmean square error (RMSE), coefficient of determination
(R2), and Lin's concordance correlation coefficient (LCCC) (Lin, 1989)—
were calculated to evaluate the model:

ME ¼ 1
n
∑
n

i¼1
ai−bið Þ ð5Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i¼1
ai−bið Þ2

s
ð6Þ

R2 ¼
∑
n

i¼1
ai−bi

� �2

∑
n

i¼1
bi−bi

� �2
ð7Þ
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Table 2
Predictive quality of three boosted regression trees (BRT)models for SOC stocks in the top-
soil (0–20 cm) during the two periods.

Year Item ME RMSE R2 LCCC

1980s
Model A 0.03 0.27 0.42 0.59
Model B 0.001 0.21 0.53 0.78

2010
Model A 0.015 0.31 0.39 0.54
Model B 0.001 0.19 0.57 0.82

Notes: Model A, only topographic variables and NDVI; Model B, full variables model
(NDVI+ topographic variable + climatic variable); ME, the mean error; RMSE, the root
mean squared error; R2, the coefficient of determination; LCCC, Lin's concordance correla-
tion coefficient.
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LCCC ¼ 2rσaσb

σ2
a þ σ2

b þ aþ b
� �2 ð8Þ

where ai, bi, a, b,σa, andσb represent the variance of the predicted value,
observed value, average predicted value, average observed value, and
variance of the predicted value and observed value, respectively. n rep-
resents the number of samples, and r represents the correlation coeffi-
cient between the predicted and observed values.

MEwas used to evaluate the deviation degree of the predicted value,
and the prediction is stronger when the value is closer to 0. RMSE was
used to evaluate the overall accuracy of the prediction, and a smaller
value infers a higher prediction accuracy of the model. R2 was used to
evaluate the goodness of fit of the model, and a value closer to 1 indi-
cates a higher reference value of the model. LCCC is used to measure
the degree of a 1:1 linear distribution between the predicted and mea-
sured values. Therefore, values closer to 1 indicate a higher coincidence
between the predicted and observed values and infers a stronger pre-
diction ability of the model.

3. Results

3.1. Exploratory variable analysis

The boxplot of SOC stocks and environmental variables at sampling
sites in the two periods is shown in Fig. S1. In the 1980s, SOC stocks
ranged from 0.1 to 57.4 kg m−2, with an average of 3.4 ± 2.6 kg m−2.
Correspondingly, the average value of SOC stocks was 4.3 ±
3.3 kg m−2 in the 2010s. In addition, the skewness coefficients of the
1980s and the 2010s were 3.19 and 1.61, respectively (Table S1). SOC
stocks were positively correlated with ELE, SG, MAP, and NDVI in both
periods (Table 1). Correspondingly, SOC stocks were negatively corre-
lated with CA, TWI, and MAT in both periods. Surprisingly, the correla-
tion between climate variables and SOC stocks was significant in both
periods.

3.2. Model performance

To obtain the best prediction model, we compared the spatial
prediction performance of the two BRTmodels with different combi-
nations of variables in the verification (1780 in the 1980s and 1537 in
the 2010s). The full-variable model included climate variables with
lower ME and RMSE and higher R2 and LCCC in both periods
(Table 2). It is important to note that the R2 of the full-variable
Table 1
Relationships between the observed SOC stocks (kg m−2) with all environment variables in th

Year Property SOC stocks ELE SG SA

1980s

ELE 0.18**
SG 0.23** 0.51**
SA −0.08 −0.32** −0.06*
PC −0.05 0.47 0.31** −0.
CA −0.12** −0.18** −0.33** −0.
TWI −0.26** −0.49** −0.68** 0.
MAP 0.66** 0.40** −0.02 0.
MAT −0.33** −0.61** −0.16** −0.
NDVI 0.12** −0.45** −0.07* −0.

2010

ELE 0.21**
SG 0.20** 0.36**
SA 0.07* 0.03 0.06*
PC 0.06 0.06* 0.20** 0.
CA −0.22* −0.18** −0.29** 0.
TWI −0.21** −0.39** −0.67** −0.
MAP 0.51** 0.33** −0.17** 0.
MAT −0.27** −0.50** 0.09 −0.
NDVI 0.33** 0.18** 0.20* −0.

Note: ELE, elevation; SG, slope gradient; SA, slope aspect; PU, profile curvature; CA, catchment a
temperature; NDVI, Normalized Difference Vegetation Index.
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model in the two periods was 0.53 and 0.57, respectively. Although
we did not conduct a wall-to-wall comparison with other studies,
we consider this result reasonable due to China's vast landscape
and complex topography and climate compared with that of smaller
areas (Cambule et al., 2014). The absolute residuals of all training
sites of Model A (only topographic variables and NDVI) and Model
B (NDVI + topographic variable + climatic variable) in the two pe-
riods showed mostly negative values in both models (Fig. 2), which
suggests that Model A deviated more from the measured values.
The difference between Model A and Model B estimates was
1.44 ± 1.34 kg m−2 in the 1980s and 0.89 ± 1.40 kg m−2 in the
2010s (Fig. S2), indicating that the addition of climate variables sig-
nificantly improved BRT prediction.

The BRT model was iterated 100 times, and the average SD of the
model resultswasused to evaluate themodel uncertainty in the twope-
riods (Fig. 3a and b). The results showed that the BRTmodel had lowun-
certainty in both periods. The average SD of SOC stocks in the 1980s and
the 2010s were 0.17 ± 0.11 kg m−2 and 0.40 ± 0.20 kg m−2, respec-
tively (Fig. 3a and b).

3.3. Importance of environmental variables

To identify the key controls for themodel prediction,we iterated the
full-variablemodel—Model B—100 times and calculated the average rel-
ative importance (RI) of each environmental variable and weighted
them to 100%. We found that MAT, MAP, TWI, ELE, and NDVI were the
main environmental variables affecting the spatial variability of SOC
stocks in the 1980s (Fig. 4), accounting for 80.6% of the total RI. Corre-
spondingly, the main environmental variables affecting the spatial var-
iability of SOC stocks in the 2010s were MAT, MAP, ELE, and NDVI,
accounting for 74.3% of the RI. In addition, we found that climate
e 1980s and the 2010s.

PC CA TWI MAP MAT

03
13 0.38**
11 −0.17 0.32**
15 −0.07 −0.05 −0.13**
17** 0.09 −0.09 −0.03 0.82**
03 −0.14 −0.02 −0.25** 0.38** 0.33**

07
11 0.35**
14 −0.08 0.51**
12 0.09* −0.31** −0.19**
02 −0.10 −0.13** −0.07* 0.77**
04 −0.12 −0.19** −0.20* 0.36** 0.18**

rea; TWI, topographic wetness index; MAP,mean annual precipitation;MAT, mean annual



Fig. 2. Differences in absolute residual values between Model A model and Model B in the 1980s (a) and the 2010s (b). Model A (only topographic variables and NDVI) and Model B
(NDVI+ topographic variable + climatic variable).
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variables were the main environmental factors influencing the spatial
distribution of SOC stocks in the 1980s and 2010s, accounting for
43.0% and 50.9% of the RI, respectively.

3.4. Spatial variation of SOC stocks

Full-variable models that included climate variables showed the
strongest predictions. To ensure the stability of the prediction, we iter-
ated the model 100 times and calculated the average prediction value
in ArcgGIS10.2 to obtain the final prediction. The full-variable model
predictions of the spatial distribution pattern of SOC stockswere similar
for the 1980s and 2010s (Fig. 3c and d). High SOC stocks were concen-
trated in alpine and grassland areas that were less affected by human
activities, such as the Greater Khingan Mountains and the Qinghai
Tibet Plateau. However, low SOC stocks occurred in regions of high an-
thropogenic impact, such as the central plain and eastern coastal areas.
To examine the changes in the spatial variation of SOC stocks over the
past 20 years in China, we calculated the difference between the two
spatial SOC stock maps of the two periods and classified the spatial
SOC variability into six levels. The areas with reduced SOC stocks were
mainly distributed in the central and northwest areas of Northeast
China (Fig. 5), which are the main commodity grain bases in the coun-
try. To ensure China's food security, cultivation is continually conducted
throughout the year. SOC stocks increased in 64% of the total area and
weremainly distributed in the Greater KhinganMountains and Qinghai
Tibet Plateau. In general, SOC stocks in China showed an increasing
trend in the past 20 years, from 3.9 kg m−2 in the 1980s to 4.6 kg m−2

in the 2010s.
We examined the changes in SOC stocks in various ecosystems

over the past 30 years to further clarify the temporal changes in
SOC stocks in China (Table 3). In the 1980s, SOC stocks in the topsoil
were mainly stored in agroecosystems, forests, and grasslands, ac-
counting for 9.5, 12.0, and 11.4 Pg C, respectively; this is equivalent
to 84.6% of China's total carbon reservoirs and 82.3% of China's total
area. In the 2010s, topsoil SOC stocks were also mainly stored in
agroecosystems, forests, and grasslands ecosystems, accounting for
10.9, 8.5, and 12.3 Pg C, respectively. Topsoil SOC stocks in China in-
creased by 6.2 Pg C over the past 20 years, mainly fromwetlands, set-
tlement ecosystems, and agroecosystems. The most unexpected
decrease in topsoil SOC stocks occurred in forest ecosystems, with a
reduction of 3.47 Pg C, which may be attributed to large-scale defor-
estation during rapid economic development of the past 20 years.
6

4. Discussion

4.1 . Effects of environmental factors on SOC stocks

Climate variables are key to mapping the spatial distribution of SOC
stocks at regional scales (Thornton et al., 2009; Podwojewski et al.,
2011; Follett et al., 2012; Adhikari et al., 2014). In a typical mountain
landscape of the cold temperate zone in Japan, Li et al. (2010) concluded
that vegetationwas themain source of SOC, and climate significantly af-
fected the variation of SOC in natural ecosystems. They identified a sig-
nificant correlation between climate factors and SOC, which was also
confirmed in our study (Table 1). Follett et al. (2015) investigated 14
sites on the Great Plains of theUnited States to determine the sensitivity
of SOC to climate gradients (temperature and precipitation) and land
use change (nature, conservation, and reserve programs). They found
that climate factors were the main environmental variables affecting
the spatial variability of SOC. In the growing region of Australia, Luo
et al. (2017) assessed the direct and indirect effects of climate, soil prop-
erties, carbon input, and the soil carbon pool (a total of 17 variables) on
the change rate of SOC, and found that MATwas themain environmen-
tal factor affecting the spatial variation of SOC stocks. It should be noted
that the sample points in this study may not be representative because
our data were obtained from different departments/platforms and
different studies. Therefore, some environmental variables may be
overemphasized in the modeling process, which may enhance the un-
certainty of the model estimates.

MAT and MAP are dominant climatic variables and are therefore
widely used in the spatial simulation of SOC stocks. Vegetation produc-
tivity and microbial decomposition and transformation are affected by
changes in rainfall and temperature (Jobbágy and Jackson, 2000;
Chaminade, 2005; Yimer et al., 2006; Saiz et al., 2012; Li et al., 2010),
which subsequently impacts SOC stocks. For instance, SOC in natural
ecosystems was found to decrease exponentially with increasing tem-
perature (Willaarts et al., 2016). Meersmans et al. (2012) mapped SOC
across France at a resolution of 250 m by considering the effects of
land use, soil type, climate, and agricultural management; the total
SOC stocks in France was approximately 3.7 ± 1.3 Pg C, and precipita-
tion patterns controlled the overall spatial distribution of SOC.

Topography is another important factor in soil formation, which
not only controls the redistribution of water and heat, but also affects
soil properties, material, and energy flow in ecosystems (McBratney
et al., 2003; Martin et al., 2011; Yang et al., 2016; Wang et al., 2016,



Fig. 3. Standard deviation and spatial distribution maps of SOC stocks predicted by full variables BRT model in the 1980s (a, c) and the 2010s (b, d).
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2018). Altitude—an important terrain variable—indirectly affects the
distribution of SOC stocks by altering bioclimatic factors, such as
rainfall and temperature (Wang et al., 2000; Yang et al., 2016). How-
ever, the southwest of Liaoning Province is mountainous and hilly,
and the slope position as well as other topographical factors often in-
duce geological subsidence and soil erosion, resulting in low SOC
storage in these areas.

4.2. Estimates of SOC stocks and their changes

Except for forest ecosystems, SOC stocks in the topsoil of all other
ecosystems showed an increasing trend during the study period
(1980s–2010s). Agricultural ecosystems have undergone fertilization,
straw returning, and other management practices to increase crop
7

yield, resulting in higher SOC stocks during this period (Xu et al.,
2019). Desert ecosystems are usually the weakest link in China's eco-
nomic development. However, SOC stocks have increased in recent
years due to the planting of more suitable plants in arid regions
(Wang et al., 2011). China also implemented the protection of
2.32 × 105 km2 or 41% of the country's total wetland area (Yang,
2014),which subsequently enhanced topsoil SOC stocks inwetlandeco-
systems (Ren et al., 2020).

As for the settlement ecosystems, rapid economic development has
significantly promoted urban expansion. These ecosystems have in-
creased from 269,000 km2 in the 1980s to 1.17 × 107 km2 in the
2010s (Table 3). As a result, a large area of cultivated land has been re-
placed by permanent structures (Wang et al., 2018; Zhao et al., 2018). In
addition, finance from the government and the income of local



Fig. 4. Relative importance (RI) of each variable as determined from 100 runs of the boosted regression treesmodel, which are showed in a decreasing order and normalized to 100%. a) RI
of SOC stocks in the 1980s and b) RI of SOC stocks in the 2010s. ELE, elevation; SG, slope gradient; SA, slope aspect; PU, profile curvature; CA, catchment area; TWI, topographic wetness
index; MAP, mean annual precipitation; MAT, mean annual temperature; NDVI, Normalized Difference Vegetation Index.
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inhabitants have also greatly improved during this period (Wang et al.,
2018). Moreover, urban management workers regularly manage and
protect vegetation in the region, which contributed to the increase in
topsoil SOC stocks during this period (Zhang et al., 2012).

Forests experienced a decrease in SOC stocks by 3.47 Pg C over the
past 30 years in response to deforestation (Table 3). The forests are
mainly distributed in the central, northeast, and southwest regions of
China, and these areas experienced rapid urbanization during the
study period. As a result, human activities severely degraded surface
soils, leading to a decline in topsoil organic carbon. Wang et al.
(2020a) concluded that rapid urbanization and altered land use pat-
terns were the main causes for the sharp decrease in topsoil SOC stocks
Fig. 5. Spatial distributions (a) and area percentages (b
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in Dalian in Northeast China. Similarly, Bronson et al. (2004) also attrib-
uted carbon loss to urbanization and land use in West Texas in the
United States.

SOC stocks in the northeast and southwest forest ecosystems and
high-altitude grassland ecosystems showed an increasing trend due to
the dense vegetation and relatively low human disturbances. In addi-
tion, some areas in central China showed an increase in SOC, which
may be due to the implementation of a national policy to return farm-
land to forests and grassland. Wang et al. (2020b) used nine remotely
sensed environmental variables and a BRT model to predict the spatial
variation of topsoil SOC stocks in Liaoning Province in Northeast
China. They concluded that the increase in forest SOC stocks was closely
) of SOC change between the 1980s and the 2010s.



Table 3
Predicted soil organic carbon in different ecosystems derived for 20 cm depth in the two periods.

Ecosystem 1980s 2010s Chang (2010s–1980s)

Area
(×104 km2)

SOCD
(kg m−2)

SOC stocks (Pg C) Area
(×104 km2)

SOCD
(kg m−2)

SOC stocks (Pg C) Area
(×104 km2)

SOC stocks (Pg C)

Agroecosystem 279.29 3.39 9.47 237.6 4.57 10.86 −41.69 1.39
Forest ecosystem 248.74 4.81 11.96 165.8 5.12 8.49 −82.94 −3.47
Grassland ecosystem 265.02 4.30 11.40 247.92 4.94 12.25 −17.1 0.85
Wetland ecosystem 46.79 4.14 1.94 90.52 4.76 4.31 43.73 2.37
Settlement ecosystem 26.9 2.97 0.80 117.21 3.70 4.34 90.31 3.54
Desert ecosystem 51.85 2.89 1.50 51.24 3.35 1.72 −0.61 0.22
Other ecosystems 44.81 3.85 1.73 53.1 5.71 3.03 8.29 1.3
Total 963.41 – 38.80 963.41 – 45.00 – 6.2
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related to the government-implemented policy to return farmland to
forest and grassland overmany years. Zhao et al. (2018) identified an in-
crease in farmland SOC stocks in China from1980 to 2011 in response to
rapid changes in management methods caused by economic and policy
incentives, such as fertilization, tillage, and residual treatment. Similar
results have also been observed in previous studies (Wang et al.,
2018; Xu et al., 2019; Wang et al., 2020a and b).

4.3. Study limitations

The high R2 and LCCC and low ME and RMSE suggest that the BRT
models accurately predicted the spatial distribution of SOC stocks in
this study. However, several uncertainties in the model analysis are ev-
ident. First, the soil data for the 1980s were obtained from the second
national soil survey, and the variable levels of sampling personnel may
have caused sampling or measurement errors. Second, the data from
the 2010s were obtained from different departments and spanmultiple
studies.Moreover, someof the datamay not be representative of certain
types of ecosystems, resulting in regional extrapolation errors. Third,
the environmental data were obtained from different platforms with
different data accuracies; the data therefore required resampling,
which likely introduced data errors. Fourth, the impacts of extreme cli-
mate events, such asfloods and drought, on SOC stockswere not consid-
ered in these two periods. Finally, this study is limited to the estimation
of SOC stocks in the topsoil (0–20 cm), and thus SOC storage in deep
soils must also be assessed. Next, we use process-based biogeochemis-
try models to adequately map SOC distributions in China.

5. Conclusions

In this study, we applied BRT models to predict the spatio-temporal
variations of SOC stocks in China and identify the main environmental
factors affecting its distribution. The BRT models could accurately pre-
dict the spatial distribution of SOC stocks, with high R2 and LCCC and
lowME and RMSE values. In addition, SOC stocks showed similar spatial
distribution characteristics in the two study periods (1980s and 2010s).
SOC stocks increased from 3.9 kgm−2 in the 1980s to 4.6 kgm−2 in the
2010s, with a total increase of 6.2 Pg C. SOC stocks in the Daxinganling
area and Qinghai Tibet Plateau were higher than those in central and
eastern coastal areas. Climate factorswere the dominant environmental
variables affecting the spatial distribution of SOC stocks. The results of
our study are highly useful for the development of ecological restora-
tion, soil andwater conservation, land use planning, and environmental
management projects in China.
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