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Abstract Land use changes play a major role in determining sources and sinks of carbon at regional and
global scales. This study employs a modified Global biome model-biogeochemical cycle model to examine
the changes in the spatiotemporal pattern of net ecosystem production (NEP) in the Taihu Lake Basin of
China during 1985–2010 and the extent to which land use change impacted NEP. The model is calibrated
with observed NEP at three flux sites for three dominant land use types in the basin including cropland,
evergreen needleleaf forest, andmixed forest. Two simulations are conducted to distinguish the net effects of
land use change and increasing atmospheric concentrations of CO2 and nitrogen deposition on NEP. The
study estimates that NEP in the basin decreased by 9.8% (1.57 Tg C) from 1985 to 2010, showing an overall
downward trend. The NEP distribution exhibits an apparent spatial heterogeneity at themunicipal level. Land
use changes during 1985–2010 reduced the regional NEP (3.21 Tg C in year 2010) by 19.9% compared to its
1985 level, while the increasing atmospheric CO2 concentrations and nitrogen deposition compensated for
a half of the total carbon loss. Critical measures for regulating rapid urban expansion and population growth
and reinforcing environment protection programs are recommended to increase the regional carbon sink.

1. Introduction

TheFifthAssessmentReport of the Intergovernmental Panel onClimateChange (IPCC) [2014] asserts that anthro-
pogenicgreenhousegasemissionshavewarmedtheEarth’s climateandclimatechangewill havean increasing
impactonnatural andhumansystems in thenext decades. Fossil fuel useand landuse changesare twoprimary
drivers to growing atmospheric CO2 concentrations [Houghton et al., 1999]. In particular, changes in land use
and management have played a large part in determining sources and sinks of carbon, contributing to more
than a third of the world’s carbon emissions during 1850–2006 (330 PgC; 1 Pg = 1015 g) [Houghton, 2007].
Methodologically, integrating ecological models with remote sensing data has been developed in the last
two decades, and over 40 sophisticated ecological models have been constructed to simulate the spatial and
temporal patterns of carbon cycles of terrestrial ecosystems. Fundamental models include the Terrestrial
EcosystemModel (TEM) [Melillo et al., 1993], CENTURY [Parton et al., 1993], Carnegie-Ames-Stanford approach
(CASA) [Potter et al., 1993], Global biome model-biogeochemical cycle (BIOME-BGC) [Running and Hunt,
1993], and Boreal Ecosystems Productivity Simulator (BEPS) [Liu et al., 1997]. Empirically, these ecologicalmod-
els have beenwidely applied: first, to estimate the spatial and temporal patterns of regional and global carbon
cycles [Chiesi et al., 2007;Houghton, 2007; Kicklighter et al., 1999; Potter et al., 1993; Schimel et al., 2001] and, sec-
ond, to disentangle the complex relationship between land use change, climate change, and carbon cycles of
terrestrial ecosystems [McGuire et al., 2001; Tatarinov et al., 2011; Thornton et al., 2002]. Increased understand-
ings of carbon sinks and sources aswell as themechanisms of carbon cycling have not only lifted public aware-
ness to climate change, but also fostered the development of theoretical frameworks and operational tools for
policymakers to formulate policies on carbonmitigation and ecosystem conservation.

However, applying ecological models to examine the effect of land use changes on carbon cycling, a focus of
this paper, faces at least four major challenges [Houghton, 2007; McGuire et al., 2001]. First, scientific under-
standing of the characteristics of, and mechanisms for, net ecosystem production (NEP) (NEP =GPP� total
respiration) for urban ecosystems remains limited, and thus, suitable models that can be applied to
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estimate the NEP of urban ecosystems are scarce. High complexity and spatial heterogeneity of urban
ecosystems and a limited number of eddy flux towers for urban ecosystems have further aggravated this pro-
blem [Crawford et al., 2011;Ward et al., 2015;Weissert et al., 2014]. There is a knowledge gap in understanding
the effect of land use change from nonurban land to urban land on the regional NEP. Second, many para-
meters of ecological models are difficult to regionalize due to their complexity and high sensitivity.
Limited available data of flux observations exacerbates this challenge [Tang et al., 2015b; Trusilova et al.,
2009; White et al., 2000]. Third, the environmental factors which influence terrestrial ecosystems are still
inadequately studied due to large regional disparities among terrestrial ecosystems [Gonzalez et al., 2007;
Kicklighter et al., 1999]. Fourth, how to separate the distinct effects of land use changes from other environ-
mental changes including CO2 fertilization, N deposition, and climate change on carbon cycling presents an
enormous challenge [Houghton, 2013; Houghton et al., 1999; Jain et al., 2013;McGuire et al., 2001]. As outlined
by Houghton [2013], separating the two effects can reduce the uncertainty of the land use change flux, help
us understand a constellation of factors influencing terrestrial carbon balance, and explore the mechanisms
(metabolic versus structural) in a consistent manner. However, the major challenge to separate these two
effects is the lack of observations for testing flux estimates as a result of land use change alone. These
challenges, methodological in nature, can create considerable uncertainties when applying ecological
models and remote sensing data to estimate regional and global carbon balances. This study focuses on deal-
ing with the second and fourth challenges by integrating ecological modeling, flux observation, and remote
sensing data.

The Taihu Lake Basin (TLB), a core part of China’s Yangtze River Delta, has experienced remarkable economic
development since the mid-1980s, at an annual growth rate of 15.7% in gross domestic product (GDP), 3.0%
in population growth, and 9.2% in urbanization. Rapid industrialization and urbanization has dramatically
changed land use and land cover patterns and intensified the degradation risk of ecosystem services in
the basin [Xu et al., 2016]. As a result, land use change has significantly influenced regional carbon sequestra-
tion capacity, which has, in turn, constrained economic development in the region [IPCC, 2014; Schulp et al.,
2008]. Much work has been done on the following: carbon exchange mechanisms for agroecosystems [Ma
et al., 2013; Zhang et al., 2014], greenhouse gas flux monitoring in the Taihu Lake [Lee et al., 2014], soil carbon
pool change in the agroecosystems [Pan et al., 2008], land use optimization based on terrestrial ecosystem
carbon storage [Chuai et al., 2014], and the spatiotemporal distribution of net primary production (NPP) using
the CASA model and Moderate Resolution Imaging Spectroradiometer (MODIS)/SPOT normalized difference
vegetation index data [Wu et al., 2014; Xu et al., 2011]. Yet there remains a knowledge gap in quantifying the
magnitude of NEP and in analyzing dynamics and drivers of the changing spatiotemporal pattern of carbon
sequestration function in the basin. Moreover, the State Council of China has posited the establishment of
“ecological red lines,” a baseline that the country must strictly maintain to regenerate or improve ecosystem
functions [Xinhuanet, 2013]. However, how the red lines can be defined is not clear. There is a pressing need
to understand the changes of NEP, as it is a vital indicator to define the ecological red lines that distinguish
the main ecological functional areas from economic development areas.

This study seeks to analyze how changes in nonurban land have impacted NEP and the spatiotemporal pat-
terns of NEP in the TLB in 1985–2010. The analysis is based on our modified BIOME-BGC model and land use
data for three periods derived from Landsat TM images. Using observed NEP from three flux sites, built on the
open-path eddy covariance technique, we recalibrated fundamental parameters of the BIOME-BGCmodel for
three dominant land use or land cover types in the asin: cropland, evergreen needleleaf forest, and mixed
forest. Fossil fuel use was not considered in this study as our interest focused on how land use changes
influenced NEP of terrestrial ecosystems. The study contributes to refining a set of suitable ecophysiological
parameters by advancing simulation methods for NEP, reducing NEP uncertainty, partitioning the specific
impacts of land use changes, increasing atmospheric concentrations of CO2 and nitrogen (N) deposition
on NEP, and suggesting adaptive countermeasures in the study area.

2. Methods
2.1. Study Region and Site Description

The TLB, situated on the east coast of China (within E119°301″–121°54026″, N30°7019″–32°14056″), encom-
passes one municipality (Shanghai) and most of two provinces of Jiangsu and Zhejiang (Figure 1). The basin
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has a typical subtropical monsoon climate, with an annual mean temperature of 15–17°C and annual mean
precipitation of 1010–1400mm. Its average elevation is 34.4m, varying between �4m and 1559m. The
dominant soil types are yellow brown soil, red soil, and paddy soil (agricultural land). Cropland, urban and
builtup land, and water bodies make up 47.9%, 24.3%, and 13.6% of the total area of the basin, respectively,
as reflected in our estimations derived from Landsat images in 2010. Among some 200 water bodies within
the catchment, Taihu Lake is the largest and the third largest freshwater lake in China. Notably, the basin is
oneof themost populous anddeveloped regions of China, accounting for 0.38%of China’s total land area, sup-
ports 4.8% of the nation’s 1.34 billion population, and produces 11.6% of the national gross domestic product
(GDP) (USD 6471.2 billion, USD 1= 6.41 yuan as of 25 August 2014). During the past 25 years the urban built
area grew substantially (by 2.5 times the 1985 level). The basin encompasses China’s largest urban cluster that
involves 10 major cities (including Shanghai) in the region. Conversion of agricultural land to urban use is a
major driver imposing significant effects on carbon sequestration. According to China’s National New-Style
Urbanization Plan (2014–2020), urbanization in this basin will be accelerated [The State Council of the
People’s Republic of China, 2014]. Sustained rapid urbanization in the region will undoubtedly lead to growing
demand for land resources and cause further impact on carbon balance if urbanization and climate policies do
not strictly regulate rapid land use change or if policies are implemented poorly in the coming years.

Three open-path eddy covariance towers were established for three dominant land use or land cover types
including cropland, evergreen needleleaf forest, and mixed forest to observe net ecosystem CO2 exchange
(NEE) (NEP =�NEE) in the region (see Figure 1). Cropland (a system rotating between planting wheat in win-
ter and rice in summer) accounted for 47.9% of total basin area (17,799.4 km2), while evergreen needleleaf
forest (ENF) and mixed forest accounted for 56.2% and 11.7% of the total forest area (5204.9 km2) in 2010,
respectively. In the land cover data sets over the 1985–2010 period, Moso bamboo, a dominant species,
was classified as evergreen needleleaf forest (ENF) and accounted for 61.2% of the total area of ENF in
2010. Furthermore, the spatial distribution of Moso bamboo cannot be distinguished from other ENFs based
on Landsat TM imageries. Thus, observed NEP and other parameters for Moso bamboo were used to
represent all ENF in the model estimations. We acknowledge that this will lead to certainties in our estimated
regional NEP. Future high-resolution land cover data that are able to separate Moso bamboo from other

Figure 1. Location of the Taihu Lake Basin.
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evergreen needleleaf forests shall constrain the uncertainty. The flux site for Moso bamboo is located in Anji
county (N30°28034.5″, E119°40025.7″; elevation of 380m above the sea; began in January 2011), and an LI7500
CO2/H2O analyzer (LI-COR, Inc., Lincoln, USA) and CSAT3 3-D sonic anemometer (Campbell Sci. Inc., USA)
are set up there. Flux sites for cropland and mixed forest are located in Wuxi City (N31°39014″, E120°32043″;
elevation of 6m above the sea; began in December 2011) and Mountain Tianmu (N30°20059″, E119°26013″;
elevation of 1140m above the sea; began in January 2013). These two field sites are equipped with EC150
CO2/H2O analyzer (Campbell Sci. Inc., USA) and CSAT3 3-D sonic anemometers (Campbell Sci. Inc., USA).

2.2. Data Sources

Historical data sets include remote sensing images, meteorological data, and ancillary geospatial data. Land
use data were interpreted from Landsat TM images in 1985, 2000, 2005, and 2010 at the scale of 1:100,000
based on a decision tree method. Land use data in 2010, which can be accessed through the Lake and
Watershed Data Center (http://lwdc.niglas.cas.cn), were verified with some 2000 field samples, and the over-
all accuracy was above 90%. Land cover data in 1985 and 2005 at the scale of 1:250,000 were derived from
Landsat TM images and MODIS images based on the land use data in 1985 and 2005 at the scale of
1:100,000, respectively. The satellite imagery sources were shared with the Data Sharing Infrastructure of
Earth System Science, Chinese Academy of Sciences (CAS). Land use changes during 1985–2010 were derived
from overlapping land use data of 1985 and 2010. The land use data sets of 1985–2010 were classified into
five categories including cropland, forest, grassland, water, and urban and builtup. In the short term, specific
types within the broad category of forest are not easy to change, but conversions from forest to other land
use types (e.g., cropland and urban) usually occur. To meet the requirements for estimating the impact of
land use change on NEP with high accuracy, forest data (1985, 2000, and 2010) were assimilated and classi-
fied into six subcategories (at much higher resolutions) based on land use data sets of 1985–2010 and land
cover data sets of 1985–2005, including evergreen needleleaf forest, evergreen broadleaf forest, deciduous
needleleaf forest, deciduous broadleaf forest, mixed forest, and shrubland.

We collected NEP data from three flux sites, looking into cropland over a 2 year period (from January 2012 to
December 2013), evergreen needleleaf forest over a 2 year period (from January to June 2012 and from
January to November 2013), and mixed forest over a 1 year period (January–December 2013). Observed
NEP was processed successively through spike removing, a rotation of coordinates, frequency compensation,
and Webb-Pearman-Leuning corrections. Any missing data for a short period (up to 3–4 h) were filled by lin-
ear interpolation, while missing data for a relatively longer period (up to a few days) were filled using a neural
network model based on micrometeorological data (i.e., temperature, solar radiation, wind speed, air pres-
sure, and air humidity) and soil monitoring data (i.e. soil temperature, soil moisture, and soil conductivity
at 10 cm in depth).

Daily meteorological data of precipitation, maximum, and minimum temperature from 1980 to 2013 were
obtained from the National Meteorological Center (NMC) of China. Such data were collected from 22 field
observing stations in the basin and its adjacent areas. Daily short-wave radiation (Wm�2), vapor pressure def-
icit (Pa), average daytime temperature, and the length of the daytime periods across the 22 field observing
stations were estimated by using the Mountain microclimate model (MT-CLIM) [Glassy and Running, 1994].
Then these seven meteorological variables were interpolated to the whole basin by using the inverse dis-
tance weighted interpolation method [Bartier and Keller, 1996]. Average daytime temperature, daily maxi-
mum, and minimum temperatures were further calibrated with the digital elevation model (DEM). Data of
1:250,000 administrative district maps, DEM, and soil data sets were used to extract the geographical location,
elevation, soil depth, and texture for the field sites. All spatial data were projected with Albers Conical Equal
Area and transformed into a binary format at a spatial resolution of 250m.

2.3. BIOME-BGC Model

The BIOME-BGC model simulates three vital biogeochemical cycles at a daily time step, including the follow-
ing: carbon, nitrogen, and water within an ecosystem across several compartments, including the leaf, root,
stem, soil, and air, using physiological process relationships [Running and Hunt, 1993; Thornton et al., 2002;
White et al., 2000]. It requires daily meteorological data, information on the broad environment (i.e., soil, vege-
tation, and site condition), and parameters measuring the ecophysiological characteristics of vegetation. The
BIOME-BGC model was initially developed to simulate the dynamics of forest carbon and nitrogen pools over
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time [Running and Hunt, 1993; White et al., 2000]. Recently, the BIOME-BGC model has been expanded to
agricultural ecosystems such as winter wheat, corn, and paddy fields, where human activities such as
irrigation, fertilizer application, and intensive cultivation influence the systems heavily [Hidy et al., 2012; Ma
et al., 2013; Wang et al., 2005]. The studies of Wang et al. [2005] and Bai et al. [2014] suggested that the
modified BIOME-BGC model can reasonably predict crop growth (leave area index (LAI) and net primary
productivity (NPP)), evapotranspiration (ET), daily CO2 and H2O fluxes of China’s agricultural ecosystems
featured by the rotation between winter wheat and corn. Their modified BIOME-BGC model can take into
account the effects of increasing atmospheric nitrogen and CO2 concentrations and human management.
To simulate managed herbaceous ecosystems, Hidy et al. [2012] modified a BIOME-BGC model which can
accurately represent the effects of mowing and grazing. Ma et al. [2013] noted that an updated BIOME-
BGC model (ANTHRO-BGC) was reliable to simulate the NEP, GPP, and ET of wheat, barley, and oilseed
rape in Europe [Ma et al., 2013]. This model has been widely applied to local, regional, and global studies
addressing carbon dynamics of different terrestrial ecosystems [Law et al., 2003;Wang et al., 2005], the effects
of climate change and environmental disturbance [Han et al., 2014; Thornton et al., 2002], and the impact of
land use change and management [Robinson et al., 2009; Robinson et al., 2013].

NEP represents the net accumulation or loss of carbon within an entire ecosystem. NEP can be defined as
the difference between GPP and total respiration and estimated in the BIOME-BGC model as expressed in
equation (1):

NEP ¼ GPP –Rm–Rg–Rh (1)

where GPP denotes gross primary production calculated using Farquhar’s photosynthesis routine [Farquhar
et al., 1980]; Rm denotes maintenance respiration from the leaves, stems, and roots, which is estimated as the
function of tissue mass, nitrogen concentration, and temperature; Rg denotes growth respiration, which is
simply estimated as a constant fraction of gross canopy photosynthetic rate minus maintenance respiration;
and Rh denotes the respiration from litter and soil carbon pools, which is estimated using specified respiration
rates at 15°C, the amount of carbon in these pools, a temperature dependent Q10 function [Kirschbaum,
1995], and a soil moisture-dependent factor [Running and Hunt, 1993; Thornton et al., 2002].

This study employs the latest version of the BIOME-BGC model and involves two phases (Figure 2). The first
phase involves the spin-up run which brings the model into a steady state to estimate the initial soil carbon

Figure 2. BIOME-BGC model: a simulation process for NEP on a regional scale.

Journal of Geophysical Research: Biogeosciences 10.1002/2016JG003444

XU ET AL. IMPACTS OF LAND USE CHANGES ON NEP 5



and nitrogen [Thornton et al., 2002; Wang et al., 2009]. The second phase involves a normal transient
simulation, which uses the initial carbon and nitrogen pools obtained from the first phase. The regional
models usually have numerous parameters for various ecosystems (i.e., deciduous needleleaf, broadleaf
forest, grassland, shrubland, and cropland). Their default values, however, must be modified for specific eco-
systems as they respond to environmental conditions differently [Chiesi et al., 2007; Tatarinov et al., 2011;
White et al., 2000].

Stomatal conductance significantly influences the rate of flux of either water or carbon dioxide through the
stomata [Trusilova et al., 2009; White et al., 2000]. The default stomatal conductance is not sensitive to the
decrease in soil moisture content when it approaches the saturation point, but a small decrease in soil moist-
ure can cause significant declines of stomatal conductance at lower soil moisture levels [Hidy et al., 2012].
Located in the subtropical monsoon zone, soil moisture in our study area varies dramatically in summer
due to frequent and huge shifts between dry and wet weather conditions. This variation can cause spikes
in stomatal conductance. To avoid these spikes, this study applied the version 4.2 of BIOME-BGC with the
modification of a relative soil moisture content suggested by Hidy et al. [2012].

The BIOME-BGCmodel contains a phenology module to simulate the exchanges of carbon dioxide and latent
heat between the ecosystem and atmosphere for C3 crops including rice and wheat [Hidy et al., 2012; Wang
et al., 2005]. The phenological process is simulated by using prefixed dates for the start and end of the
growing season for each crop. However, the rotation of crops (winter-wheat and summer-rice rotation) in
an annual cycle cannot be simulated consecutively. Thus, the model structure was modified by adding a
flag (1 for the wheat growing season and 0 for the rice growing season) into the epc_file block of the
Initialization_file for the cropland. This flag was used to choose corresponding ecophysiological parameters
according to the rotational season of wheat and rice, to simulate the consecutive daily NEP of the cropland on
a yearly basis. The fixed dates for the start and the end point of the wheat- and rice-growing seasons in the
corresponding epc_files were derived from the eddy covariance-based flux data (NEP is positive) and field
observations (on the harvest day), respectively. Meanwhile, the prefixed dates for the start and the end point
of the wheat- and rice-growing seasons may introduce discrepancies between simulations and actual obser-
vations due to interannual variability [Hidy et al., 2012;Wu et al., 2012], usually varying between 7 and 14 days
in the study area.

Fertilization and irrigation are normal practices in utilizing cropland in the basin. The timing for fertilizing and
irrigating and the amount of fertilizer used each time were recorded at our selected field observing sites.
Such information was also added into the Initialization_file. As there was no historical record of these three
parameters, the observation data in 2012 is used as initial approximation for the time span from 1980 to 2013.
We note that this assumption may cause uncertainty as the amount of fertilizer and timing of fertilizer appli-
cation vary significantly overtime [Wu et al., 2012]. Meanwhile, although there is an alternative exchange
between irrigation and soil drying during the rice-growing period, our observation data on soil moisture at
depths 10 cm, 20 cm, and 40 cm during 2012–2013 were obtained at almost the saturated state. Soil moisture
during the rice-growing season in the region was set to its saturated state (i.e. irrigation stopped 15 days
before harvest) because water is not a constraint for rice growing in the basin due to adequate rainfall and
convenient irrigation.

2.4. Model Calibration and Validation

The BIOME-BGC model has 47 ecophysiological parameters. Before the calibration, built on existing studies
[Hidy et al., 2012; Ma et al., 2011; White et al., 2000], we conducted a sensitivity analysis to detect the most
sensitive parameters of the model for wheat, rice, evergreen needleleaf forest, and mixed forest in the basin.
NEP variation across these four different ecosystem types was sensitive to seven ecophysiological parameters
including a transfer growth period as a fraction of a growing season, C:N of leaves, C:N of leaf litter, C:N of fine
roots, canopy light extinction coefficient, maximum stomatal conductance, and boundary layer conductance.
Moreover, the NEP of wheat and rice was sensitive to the prefixed dates for the start and the end point of the
growing season. Listerature shows that several sophisticated methods have been used to calibrate the
BIOME-BGC model, including a linear regression analysis method [Trusilova et al., 2009; Ueyama et al., 2010;
Wang et al., 2005], Bayesian approach [Hidy et al., 2012], nonlinear inversion [Ma et al., 2011], and Monte
Carlo experiments [Petritsch et al., 2007]. In the present study we applied Monte Carlo and linear regression
analysis methods to evaluate and optimize the BIOME-BGC model.
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Daily cropland NEP in 2012 (December 2011 to November 2012), daily NEP of Moso bamboo in 2011 and daily
NEP of mixed forest in 2013 were used to calibrate model parameters for these three ecosystem types. Daily
NEP of cropland in 2013, daily NEP of Moso bamboo in 2012 (January–May) and daily NEP of mixed forest in
2014 (January–May) were used to validate the model. We used an ensemble Monte Carlo simulation method
to calibrate the BIOME-BGC model by altering ecophysiological parameters with ±1% intervals and assessing
the goodness of fit between measured and modeled NEP values on daily and monthly scales with R2 value,
respectively. Parameter values for the prefixed dates for the start and the end point of the growing season, C:
N of leaves, C:N of leaf litter, and C:N of fine roots for wheat and rice were derived from our field observations
at the flux sites. Additional four sensitive ecophysiological parameters were obtained from the calibration
(Table 1). The validations were assessed with the goodness of fit between modeled and measured NEP using
a linear regression.

As apparent in Figure 3 and Table 2, our calibrated BIOME-BGC models for cropland, evergreen needleleaf
forest, and mixed forest have been improved significantly. At the daily scale, the R2 value in the annual
NEP simulation models for cropland, evergreen needleleaf forest, and mixed forest was 0.59, 0.30, and
0.41, respectively. At the monthly scale, the R2 value of calibration was 0.85, 0.46, and 0.86, respectively.
The R2 value of validation for cropland, evergreen needleleaf forest, and the mixed forest was 0.55, 0.31,
and 0.45, respectively, at a daily scale; and that of validation for cropland was 0.86 at the monthly scale.
These statistics suggest that the modified model, using actual flux observation data, has a robust capacity
in predicting NEP on a regional scale. As the area of grassland accounts for only 0.34% of total area of the
basin, and also because of a lack of NEE flux data for grassland in this study, we used the default parameters
for grassland with no calibration. Also, the default parameter settings for evergreen/deciduous broadleaf
forest, deciduous needleleaf forest, shrubland, and grassland in the original model were simply applied to
our study due to the unavailability of local observation data. As shown in Figures 3 and 4, the simulated
NEP during the wheat overwintering period (from December to early February in the following year) in
both the calibration and validation models was underestimated because this period was predefined as a
nongrowing season. Another underestimation appeared in summer months (July–August 2013) because of
high-temperature stress (with a daily mean temperature of 32.8°C) on carbon sequestration during the
rice-growing season (Figure 4). There were 59 days with the daily mean temperature hitting over 30° in
Wuxi in 2013. Furthermore, there was a notable underestimation of NEP for the needleleaf forest in summer
(July–August 2011) (Figure 3). This underestimation of NEP was primarily due to two factors. The first one is
high by water stress because of prolonged hot weather. Rainfall was reduced by 505mm in July–August
2011, which was much less than the usual amount over the 2month period in normal years. There were

Table 1. Ecophysiological Parameters for Key Types of Ecosystems in the Taihu Lake Basin

Parameters Wheat Rice
Evergreen Needleleaf

Forest (ENF) Mixed Forest

Year day to start new growth 50a 171a 0c 0c

Year day to end litterfall 151a 304a 0c 0c

Transfer growth period as fraction of growing season 0.55 0.65 0.25 0.25
C:N of leaves 65a 35a 22.1b 27
C:N of leaf litter 85a 65a 55b 65
C:N of fine roots 120a 85a 60b 42
Canopy light extinction coefficient 0.48 0.48 0.6 0.7
Maximum stomatal conductance 0.006 0.006 0.006 0.006
Boundary layer conductance 0.003 0.003 0.01 0.01
leaf water potential: complete conductance reduction �4.7 �4.7 �4.3 4.3

aCoefficients observed at the flux sites.
bCoefficients suggested by other relevant studies [Hou, 2010; B. Z. Zhou, 2006; G. M. Zhou, 2006].
c“0” indicated as the flag to drive the phenology submodel to simulate “year day to start new growth” and “year day to

end litterfall”. For ENF, its growing and litterfall seasons complete in a year. For the mixed forest, new growth begins if
the length of the daytime period is over 10 h and 55min (39,300 s) or the running sum of the daily mean soil tempera-
ture (Tavg) (when the average soil temperature is above 0°C) is above a critical value (exp(4.795 + 0.129 * Tavg)). Litterfall
begins if the length of daytime period is less than 39,300 s and the soil temperature is lower than the mean soil tempera-
ture in fall (September and October) or if the soil temperature drops below 2°C. Litterfall stops when 50% of all live fine
roots and leaves are removed.
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Figure 3. Comparison between the observed and simulated daily NEP based on the calibrated BIOME-BGC models for:
(a) cropland, (b) evergreen needleleaf forest, and (c) mixed forest.

Table 2. Model Performance Statistics of the Calibration and Validationa

Model Performance Statistics

Cropland ENF MF

Daily Monthly Daily Monthly Daily Monthly

Calibration
R2 0.59 0.85 0.30 0.46 0.41 0.86
NRMSE: Normalized root-mean-square error 0.15 0.18 0.20 0.21 0.14 0.14
RAD: relative average deviation (%) 16.5 17.2 19.5 16.9 21.6 10.8

Validation
R2 0.55 0.86 0.31 0.45 0.45 0.84
NRMSE: Normalized root-mean-square error 0.17 0.15 0.32 0.40 0.15 0.24
RAD: relative average deviation (%) 17.6 17.9 37.8 35.2 12.0 14.6

aNote: NRMSE = RMSE/(Xobs,max� Xobs,min). Xobs,max and Xobs,min are monthly/daily observed maximum and
minimum values, respectively, with units of g Cmonth�1 or g C d�1. NRMSE is unitless.
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24 days with a daily mean temperature above 30°C in the region. Consequently, the water potential
multiplier (ranging from 0.0 to 1.0), the lower values, and the higher water stress on GPP dropped quickly
to lower than 0.3. While growth respiration, maintenance respiration, and heterotrophic respiration all
remained at high level due to high temperature, which resulted in low NEP. Actually, bamboo has a deep
and abundant root system, which can extract deep groundwater to maintain a water balance. As showed
by G. M. Zhou [2006], the aboveground and underground carbon storage accounted for 32.8% and 67.2%
of the total carbon storage of bamboo ecosystems, respectively. However, our simulations estimated the
aboveground and soil carbon pool accounting for 83.0% and only 17.0% of the total carbon pool,
respectively. These could be two main reasons why the goodness of fit for bamboo was lower than that
of cropland and mixed forest. Future BIOME-BGC development shall consider the deep-water effects on
bamboo carbon dynamics.

2.5. Model Simulation

To estimate the distinct effects of land use change and increasing atmospheric concentration of CO2 and N
deposition on carbon sequestration, we conducted model simulations under two situations. The first situa-
tion (S1) deals with the actual outcomes of NEP under the interactions between land use change and increas-
ing atmospheric concentration of CO2 and N deposition. As shown in earlier data collected by the Mauna Loa
Observatory, Hawaii (1980–2013), annual atmospheric CO2 concentration increased from 338.32 ppm in 1980
to 395.31 ppm in 2013. Accordingly, in our study atmospheric N deposition was initialized according to the
temporal trajectory of CO2 mole fraction, based on two reference rates of 0.0005 kgm�2 in 1985 and
0.0021 kgm�2 in 2000 to scale N deposition levels to CO2 concentration levels [Liu et al., 2013; Wang et al.,
2005]. The second situation (S2) assumes that atmospheric CO2 concentration and N deposition remain
unchanged at their 1985 levels: 338.32 ppm and 0.0005 kgm�2, respectively. To smoothen the effect of

Figure 4. Validation between the observed and simulated daily NEP for (a) cropland, (b) evergreen needleleaf forest, and (c) mixed forest.
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volatile meteorological conditions on NEP, an average annual NEP over 7 year intervals (1982–1988, 1997–
2003, and 2007–2013, respectively) is used as the simulated NEP for years of 1985, 2000, and 2010, to
reflect land use patterns over these three time periods. For those areas without change in land use/land
cover since 1985, the simulations, using the same ecological parameters, proceed throughout all years
from 1985 to 2010. Otherwise, the simulation process would stop when it approaches to a specific year
(i.e. 2000, 2005, and 2010) during which land use/land cover changed. In such circumstances the models
respin-up using the corresponding ecological parameters for a new land use type and then continue to
proceed normal simulations.

Figure 5. Changes in land use and land cover in the Taihu Lake Basin, 1985–2010. (a) Land use in 1985, (b) land use in 2000, (c) land use in 2010, and (d) land use
change in 1985–2010. Color bar in Figure 5d represents land use types in 2010 converted from other types of land use in 1985.
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In the spin-up process, the number of spin-up years
depends on the climate and vegetation characteristics,
but it should not exceed the maximum number of spin-
up years. In this study, the maximum number of spin-up
years was set with 6000 based on the calibrations. The
spin-up run stops when the difference between the
annual mean and daily soil carbon stocks is less than a
specified spin-up tolerance value (0.0005 kgm�2 yr�1).
Meteorological data across 34 years (1980�2013) are used
to execute the spin-up runs to establish the steady state
values for the soil carbon and nitrogen pools and to
derive related restart files. Then the normal simulation is
run successively.

The regional NEP is equal to the sum of the product of the
NEP of nonurban land times the fractional area of nonur-
ban land and the product of the NEP of urban land times
the fractional area of urban land. Due to the high com-
plexity and spatial heterogeneity of urban ecosystems in
the basin, only NEP from urban forest was considered in
this study, while NEP from energy use by other sectors
such as urban transportation, households, and buildings
was not considered. As urban forest cannot be precisely
separated from urban built-up land use, the NEP for
urban built-up areas was set to be constant, at the mean
value (16.64 gCm�2 yr�1) of carbon sequestration for
urban forests across the cities of Nanjing, Shanghai,
Hangzhou, Wuxi, and Taizhou in the region [Chen, 2015;
Shi, 2013]. This mean value was estimated by the annual
carbon sequestration of urban forest against the total
area of urban built-up for each city. In addition, due to
the lack of flux data for rivers/lakes, the NEP for
rivers/lakes was constantly set with the monitored mean
value (7.35 gCm�2 yr�1) in the Taihu Lake from January
2003 to June 2005 by using a closed chamber technique
[Ji et al., 2006]. The simulations on the regional scale were
manipulated with a batch file derived from an interactive
data language software.

3. Results
3.1. Land Use and Land Cover Changes

Rapid economic and population growth in 1985–2010
has dramatically changed land use and land cover in the
basin (Figure 5 and Table 2) [Xu et al., 2016]. This change
was characterized by fast expansion of urban land areas.
The urban land area increased by 1.5 times in 2010 com-
pared to 1985 at the cost of a massive loss of cropland
(5843.6 km2, or 24.7% of the 1985 level). The water body
and forest increased marginally, by 296.3 km2 (6.2%) and
138.9 km2 (2.7%), respectively. The increase in water body
was associated with two factors. First, the cultivated area
within a 5 km radius of the Taihu Lake was returned to
water body under the national “Returning Cropland toTa
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Lake” project implemented in the region since 2007. This project has been one of the key ecological projects
to curb the deteriorating water quality of the Taihu Lake since the water crisis caused by algae blooms in
2007. Second, some of cropland has been converted to water body as the fishery industry brings farmers
higher profit than grain cropping. Since 2007, China has implemented a fundamental land use policy under
which 120× 106 ha of arable land are considered to be the minimum necessary to ensure its food security. A
number of adaptive strategies for farmland exploitation, consolidation, and reclamation have been rein-
forced in the region since 2000. Consequently, 764.6 km2 of urban and built-up land, 445.9 km2 of water body,
and 339.9 km2 of forest were converted to cropland over 1985–2010. Moreover, the national “Grain to Green”
project (i.e., returning cropping land on steep slopes with a gradient of 25° or greater to forest or grassland)
has been carried out since 2000, which has subsequently returned 611.3 km2 of cropland on steep slopes to
forest in the region.

3.2. Regional NEP

The total NEP in the basin shows a persistent picture, decreasing by 1.57 TgC (or 9.8%) under situation S1 and
3.21 Tg C (or 20.9%) under situation S2, from 1985 to 2010 (Table 3). Overwhelmingly, the NEP from cropland
decreased by 2.02 TgC, compared to some moderate increases from the forest (by 0.35 Tg C), urban built-up
(by 0.09 TgC), and water body (by 0.002 TgC). These increases in NEP were mainly associated with the
increasing areas of forest, urban built-up, and water body, by 138.9 km2 (2.7%), 5408.4 km2 (149.8%), and
296.3 km2 (6.2%), respectively.

3.3. Spatial and Temporal Patterns of Change in NEP

At the city level, change in NEP exhibits an apparent spatial heterogeneity. Most of the major cities in the
basin including Shanghai; Suzhou, Wuxi and Changzhou in Jiangsu province and Jiaxing and Hangzhou in
Zhejiang province have witnessed enormous declines in NEP. Together, these cities contributed nearly three
quarters (71.1%) to the total NEP of the basin in 2010 (Table 4). Enormous declines in NEP appear in the east-
ern and northern parts of the basin (Figures 6a and 6b). Strikingly, themegacity Shanghai and the three major
cities (Suzhou, Wuxi, and Changzhou) of Jiangsu account for 98.5% of the total reduction of NEP in the basin
(Table 4). In contrast, NEP presents a slight upward trend in Huzhou, and some parts of the cities of
Xuancheng (Anhui province) and Nanjing (Jiangsu province) situated within the basin (Table 4). Change in
NEP is significantly correlated with land use patterns and increased urban areas.

3.4. Impacts of Land Use Change and Increasing CO2 Concentration and N Deposition on NEP

Through calculating the difference in NEP under two situations, the net effect of land use change (Figure 6b)
and increasing CO2 concentration and N deposition on change in NEP (Figure 6c) can be identified. Except for
grassland, water, urban, and built-up, each simulated mean NEP for the corresponding land use type under
S1 is greater than that under S2 (Table 5). This result suggests that increasing atmospheric CO2 concentration
and N deposition has positive effects on the carbon sequestration of the terrestrial ecosystems, contributing
1.63 Tg C to the NEP and thus compensating 50.9% of the total carbon loss induced by land use changes. It is
worth noting that there may be some uncertainties in the NEP changes for evergreen broadleaf, deciduous

Table 4. Estimated Changes in Annual Total NEP (Gg C yr�1, 1 Gg C = 109 g C) Under Two Situations During 1985–2010

Land Use Type

1985 2000 2010

S1 S2 S1 S2 S1 S2

Cropland 14,033.7 13,591.4 14,046.6 12,532.6 12,015.9 10,250.6
Forest
Evergreen needleleaf 1,608.4 1,376.3 1,763.8 1,400.1 1,827.6 1,406.0
Evergreen broadleaf 36.7 27.1 43.3 26.4 41.2 26.0
Deciduous needleleaf 99.8 74.8 111.9 74.1 113.4 72.6
Deciduous broadleaf 86.5 39.0 103.8 38.1 109.4 38.5
Mixed forest 111.6 72.6 135.3 70.3 198.4 89.8
Shrubland 42.7 34.9 48.8 35.4 47.8 35.1

Grassland 1.9 12.6 2.8 9.8 1.4 9.7
Urban and built-up 60.1 60.1 83.0 83.0 150.1 150.1
Water 34.9 34.9 37.3 37.3 37.1 37.1
Total (TgC) 16.1 15.3 16.4 14.3 14.5 12.1
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needleleaf, deciduous broadleaf, shrubland, and grassland, as there are no calibrations for these land use
types (Table 6).

4. Discussion
4.1. Policy Implications

Dramatic urbanization and industrialization have resulted in significant land use change and subsequently
caused tremendous loss of carbon sequestration in the Taihu Lake Basin since 1985. The trade-off between

Figure 6. Simulated changes in NEP under two situations during 1985–2010: (a) from 1985 to 2010 under situation S1, (b) from 1985 to 2010 under situation S2, and
(c) net changes in NEP caused by environmental changes of CO2 fertilization and N deposition.
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economic and population growth and carbon emissions is, therefore, a fundamental issue of concern for
policymakers and urban planners in this region [Xu et al., 2016]. Based on the results of this study, three
countermeasures are suggested as follows.

First, regulating accelerated urban sprawl and population growth. Land use changes during 1985–2010 have
caused a total reduction in NEP by 3.10 TgC in this basin. Cropland encroachment led to the largest reduction
in NEP (by 3.34 Tg C) since cropland encroachment contributed 95% to urban sprawl during the 25 year per-
iod to 2010. One practical option to curtail further encroachment on cropland is to increase land use intensity
in the urban areas. The Chinese government has designated urbanization as the “number one policy topic”
since 2014, meaning that this policy will be a key determinant of the rate at which the encroachment process
occurs in the next decade. A new-style urbanization approach to shifting from a conventional to a newmodel
characterized by an intensive, smart, green, and low-carbon economy, and limiting massive inflows of rural
migrants to the mega- and large-scale cities in the region is needed. In addition, the distinction between
intermediate use and ultimate demand for cropland within the basin should be considered in population pol-
icymaking from both production and consumption perspectives [Chen and Han, 2015].

Second, reinforcing current environmental programs that protect cropland, forest, and wetland. As shown in
Tables 2 and 3, the forest area increased by 138.9 km2 (2.7%) and accordingly the relatedNEP increased by 41.2
GgC (2.7%) during 1985-2010.Moreover, averageNEP for cropland, evergreen needleleaf forest andmixed for-
est increased from 593.6, 560.1, and 238.4 g Cm�2 a�1 in 1985 to 675.1, 624.8, and 326.6 g Cm�2 a�1, respec-
tively. Therefore, these programs, particularly the Grain to Green and Returning Cropland to Lake designated

Table 5. Changes in NEP, Land Use, Urban Areas, Population, and GDP, by City, 1985–2010a

City

NEP in
2010

NEP
Change

Land Use
Change

Growth in
Urban Area

GDP
Growth

Population
Growth

(Tg C) (%) (%) (%) (%) (Times)

Suzhou 2.39 �20.8 26.5 259.5 112.8 19.2
Huzhou 3.04 6.1 17.2 102.7 51.8 11.6
Shanghai 1.84 �22.7 32.5 136.3 62.7 9.4
Wuxi 1.40 �14.7 25.6 182.0 71.6 19.3
Changzhou 1.62 �8.6 26.7 167.2 60.5 17.6
Jiaxing 1.73 �5.2 28.1 84.2 55.1 13.7
Hangzhoub 1.19 �3.4 23.7 117.2 66.3 34.1
Zhenjiangb 0.89 �8.4 26.6 141.7 58.3 10.3
Xuanchengb 0.10 14.7 15.4 2.8 n/a n/a
Nanjingb 0.10 13.6 14.5 11.8 78.0 7.6

aSource: NEP based on BIOME-BGC model simulations. Land use change (%) and growth in urban areas (%) based on
our land use and land cover data in 1985 and 2010. Growth in GDP and population based on statistical data of each city
in 1985 and 2010.

bOnly part of the city is located within the basin. Land use change (%) was measured as the proportion of the area for
land use types converted from 1985 to 2010 in each city against the total area in each corresponding city.

Table 6. Simulated Changes in Annual Mean NEP (g Cm�2 yr�1) Under Two Situations

Land Use Type

1985 2000 2010

S1 S2 S1 S2 S1 S2

Cropland 593.6 574.9 640.5 571.5 675.1 575.8
Forest
Evergreen needleleaf 560.1 479.2 605.4 480.6 624.8 480.7
Evergreen broadleaf 160.4 118.4 193.3 117.7 187.2 118.3
Deciduous needleleaf 175.6 131.7 200.2 132.6 207.0 132.7
Deciduous broadleaf 129.3 58.4 157.1 57.7 165.7 58.3
Mixed forest 238.4 155.7 285.7 148.5 326.6 148.1
Shrubland 174.3 142.4 197.4 143.1 195.4 143.6

Grassland 15.0 99.7 23.9 84.6 12.7 85.1
Urban and built-up 16.6 16.6 16.6 16.6 16.6 16.6
Water 7.4 7.4 7.4 7.4 7.4 7.4
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to be completed in 2015 or 2020, should be extended to 2020 and beyond. Such programs have evidently
played a vital role in improving carbon sink and other ecosystem services (e.g., water quantity adjustment, bio-
diversity, and water purification) and could continue to serve well into the future.

Third, using NEP, in combination with other measures of water quality, air pollution, and ecological conserva-
tion, as a primary indicator to define the “ecological red lines” [Chen et al., 2009; Xu et al., 2016]. NEP is a fun-
damental measure of the ecosystem function at the interface of varying risk landscapes related to climate
change and carbon emissions and changing land use stimulated by urbanization and industrialization.

4.2. Limitations and Future Work

This study improves the quantification of carbon cycles of cropland, evergreen needleleaf forest, and mixed
forest ecosystems in the basin based on flux observations, remote sensing data, and a modified ecological
model. A set of refined ecophysiological parameters of BIOME-BGC model was acquired. These parameters
shall be applicable to other similar environments in China and other regions for quantifying ecosystem
carbon dynamics. We find that the calibrated BIOME-BGC model, using our flux observations, simulated
NEP with higher accuracy than existing studies which used a CASA model for this basin [Wu et al., 2014;
Xu et al., 2011]. For example, our estimated average NEP of cropland (675.1 g C ·m-2 · a-1) is close to our
observed NEP (767.4 gC ·m-2 · a-1) in this basin. The estimated average NEP of cropland is similar to the result
(626.9 gC ·m-2 · a-1) as estimated by other researchers for the Huaihe River Basin, an area immediately adja-
cent to the Taihu Lake Basin [Li et al., 2009; Xu et al., 2015]. In contrast, using the CASA model, the estimated
average NPP for this basin in an earlier study by Xu et al. [2011] was only 666.5 gCm�2 a�1 in 2007, which was
much lower than the estimated and observed values in this present study. However, four limitations to our
modeling results deserve mention.

First, our estimated NEP for urban forests in urban areas (16.64 g Cm�2 yr�1) and rivers/lakes
(7.35 g Cm�2 yr�1) could be too high due to likely underestimation of the impact of land use changes for
these categories [Karim et al., 2008; Xing et al., 2005; Zhao et al., 2010]. Available results from emerging studies
[e.g., Chen, 2015; Weissert et al., 2014] indicated that carbon stock and sequestration of urban trees varied
considerably between, and within, cities and that urban vegetation cannot compensate for CO2 emissions
on an annual basis in midlatitude cities due primarily to the small fraction of the area and low density of
urban forest. Given the fact that urban areas and water bodies accounted for 38% of the total area of the
basin in 2010, there is a great uncertainty in estimating regional NEP under this assumption. NEP of urban
land and water bodies will need future research using CO2 fluxes and sophisticated models to identify their
potential contributions to carbon mitigation. Also, for the purpose of carbonmitigation and its related policy-
making, it will be helpful to assess regional carbon balance through incorporating carbon sequestration of
terrestrial ecosystems and fossil fuel carbon emission in a future study.

Second, this study derived calibrated ecophysiological parameters from a few field observing sites to esti-
mate NEP on a regional scale. This approach might introduce some uncertainties when scaling up the model.
Some reliable remote sensing data on vegetation, such as MODIS products of leaf area index (LAI), gross pri-
mary production (GPP), and net primary production (NPP), can be further incorporated to calibrate the model
[Zhu and Zhuang, 2014]. The observed water flux (evapotranspiration, ET) and latent heat flux (based on the
eddy covariance technique) can also be included in the calibration [Tang et al., 2015a; Trusilova et al., 2009;
Ueyama et al., 2010]. The ecosystem flux data will help refine model parameters to quantify NEP more pre-
cisely on regional scale in the future.

Third, while themodified BIOME-BGCmodel approximately simulated NEP for C3 crops (wheat and rice), Moso
bamboo andmixed forest in this study, the phenologymodule for the C3 crops andMoso bamboo needs to be
further advanced. For example, the low sensitivity of fraction of leaf N in Rubisco for Moso bamboo is inconsis-
tentwith the studyofWhite et al. [2000]. Thepossible reasoncouldbe the insufficient capacity of thephenology
module in capturing the phenological process ofMoso bamboo, especially during the rapid growing season of
bamboo shoots fromMarch to April in a year. The phenologymodule for the C3 crops andMoso bamboo could
be improved by adopting dynamic start and end dates of the growing seasons whichwere estimatedwith the
heat sum growing season index [Hidy et al., 2012] or by using a new phenology module as constructed and
tested by Ma et al. [2011]. In our study the modified BIOME-BGC model can effectively capture the dynamics
of NEP for the cropland and relatively well capture the rotation between wheat and rice. However, the
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changes of carbon inflows and outflows, carbon, and nutrient contents in the soil profile caused by wheat-rice
rotation and changes in land conversion between cropland and forest on theNEPdynamicswere not fully con-
sidered in the currently modified model [Bai et al., 2014]. These will unavoidably lead to errors in our regional
quantification. Further, BIOME-BGC model development shall incorporate the effects of crop rotation on soil
carbon and nutrient dynamics like in the DeNitrification-DeComposition (DNDC) [Giltrap et al., 2010] and
Joint UK Land EnvironJoint UK Land Environment Simulator (JULES) models [Clark et al., 2011].

Finally, how to simulate the impacts of the conversion from croplands and other nonforest types to forests on
the carbon cycle needsmore research in the future. Many studies show that forest age significantly influences
its carbon cycle [Boris et al., 2010; Tomáš et al., 2014]. A critical abstraction in the BIOME-BGC model is to
ignore plant successional dynamics within its spatial context. Based on this abstraction, all the pools are
dimensionless and can be regarded as buckets for storage rather than actual plant structures with known
height, width, lengths, and age. Furthermore, flux observations from two towers for bamboo and mixed for-
ests used in our model calibrations were frommature forests. The simulations for all forest types in this study
were assumed to be steady state mature forests. This assumption may cause some underestimation of the
impact of land use change on regional NEP, especially the impact of successional conversation. Thus, a longer
time series of forest age data needs to be incorporated to further calibrate and refine the BIOME-BGC. Future
research should also consider combining some empirical forest growth and yield models (e.g., European
Forest Information Scenario model (EFISCEN) and Simulator of forest biodynamics (SIBYLA)) to increase accu-
racy of simulations of the forest carbon cycle [Boris et al., 2010; Tomáš et al., 2014].

5. Conclusion

This study refined and advanced the BIOME-BGC simulation approach, and subsequently used it to analyze
the effects of land use changes and climate variation on NEP in the Taihu Lake Basin of China from 1985
to 2010. Model simulations found that the regional NEP of nonurban land declined by 9.8% (1.57 Tg C)
during this period. Land use changes led to a total reduction in NEP by 3.21 TgC (or 19.9% of the 1985
level), but the increasing atmospheric CO2 concentration and N deposition compensated for a half of this
reduction. Significant declines of NEP appeared in the rapidly urbanizing areas centered around mega and
large cities in eastern and northern parts of the basin. Carbon emissions induced by land use change can
be expected to maintain a growing momentum in the ongoing processes of urbanization and economic
development in this basin in the next decade. The trade-offs between economic and population growth
and carbon emissions should therefore be a compelling issue of concern for policymakers and urban
planners in this region. Practical countermeasures including regulating accelerated urban sprawl and
population growth in major metropolitan areas, and reinforcing environmental programs and afforestation
programs were recommended.
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