
1. Introduction
Soil moisture plays an essential role in land-atmosphere interactions and climate-change projections (Botter 
et al., 2007; D’Odorico et al., 2003; Green et al., 2019; Koster et al., 2004; Seneviratne et al., 2010). Due to 
the lack of enough in-situ measurements, soil moisture estimates on a global scale highly rely on parameteriza-
tions of the land surface models combined with climate data (Bonan, 1996; Koster et al., 2009). However, land 
surface models tend to have large uncertainties in simulating both magnitudes and spatiotemporal variabilities 
of soil moisture across different time scales (Katul et al., 2007; Nakai et al., 2014; Seneviratne & Koster, 2012; 
Seneviratne et al., 2006). For instance, a comparative analysis between four land surface models within the North 
American Land Data Assimilation System Project Phase 2 (NLDAS-2) shows the difference in their simulation 
skills and concludes that Noah and VIC are wetter while Mosaic and SAC are drier compared to the observations 
(Xia et al., 2015). Improving the model prediction of both soil moisture levels and their temporal variability has 
received an increasing interest in recent years.

Studies on soil moisture temporal variability at regional and global scales have focused on analyzing autocorre-
lations of soil moisture time series. The data were modeled as a first-order Markov process forced by a random 
precipitation time series (i.e., white noise) and an exponential damping term related to evapotranspiration losses 
(Delworth & Manabe, 1988). Based on this model, a red noise process can reasonably characterize the temporal 
variability of soil moisture, and the e-folding autocorrelation time scale of a red noise process can be used to 
quantify soil moisture variability (Delworth & Manabe, 1988). However, due to significant limitations in a strictly 
Markovian framework, a more complete framework based on a comprehensive soil moisture autocorrelation 

Abstract There are significant biases and uncertainties in the simulated soil moisture with land surface 
models. Here we evaluate multimodel differences in Coupled Model Intercomparison Project Phase 5 (CMIP5) 
compared to Soil Moisture Active Passive (SMAP) products on different time scales. The variability of 
surface soil moisture (SSM) within three frequency bands (7–30 days, 30–90 days, and 90–365 days) after 
normalization is quantified using Fourier transform for the evaluation. Compared to the SMAP observations, 
the simulated SSM variability within CMIP5 is underestimated in the two higher frequency bands (by 72% and 
56%, respectively) and overestimated in the lowest frequency band (by 113%). In addition, these differences 
concentrate in regions with larger SSM. Finally, these multimodel differences are found to be significantly 
correlated with mean climate conditions rather than soil texture. This study identifies the spatiotemporal 
distribution of the model deficiencies within CMIP5 and finds they are systematic in the long-term simulation 
on a global scale.

Plain Language Summary Soil moisture has been largely regarded as a key variable in Earth 
system and plays an important role in climate prediction. However, land surface models have large uncertainties 
in simulating soil moisture. This study identifies that (a) land surface models underestimate soil moisture 
variability on weekly to seasonal time scales and overestimate it on seasonal to annual time scales compared to 
a remote sensing observation, (b) both the underestimation and overestimation are concentrated in the wetter 
regions, and (c) the differences between these models and the observation are more closely related to vegetation 
condition and surface temperature than soil sand and clay content. Using satellite observed data, this study 
reveals the deficiencies of land surface models in simulating temporal variability of soil moisture, which will 
help improve the soil moisture predictability of these models.
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analysis was proposed to understand soil moisture variability (Koster & Suarez,  2001). This framework was 
further revised by clarifying the effects of initial soil moisture variability (Seneviratne & Koster, 2012). The 
temporal spectrum and the integral time scale based on the autocorrelation function were also used as other 
memory metrics in studying soil moisture variability (Ghannam et al., 2016; Katul et al., 2007; Nakai et al., 2014). 
These methods are based on models where soil moisture is treated as a red noise process. A more recent study 
replaced the e-folding time scale of the red noise model with two new parameters, dividing soil moisture memory 
into short-term and long-term components (McColl et al., 2019).

The fifth phase of the Coupled Model Intercomparison Project (CMIP5; Taylor et al., 2012), which integrated 
a set of model experiments to improve our knowledge on climate change and climate variability, provides an 
opportunity for the multimodel assessment of land-atmospheric processes and variability. Evaluation of CMIP5 
has been the ongoing interest of the community (Yuan et al., 2021). Although CMIP5 models have been used to 
investigate soil moisture-atmosphere interactions (Levine et al., 2016; May et al., 2015; Williams et al., 2012), 
to date, the temporal variabilities of soil moisture at short-term and seasonal scales are rarely evaluated within 
CMIP5 research activities. Many studies took soil moisture as an indicator to address dynamic climate questions, 
like drought (Huang et al., 2016; Ukkola et al., 2018) and soil moisture-evapotranspiration coupling (Berg & 
Sheffield, 2018), without explicitly providing soil moisture variability on different time scales. Several studies 
evaluated the temporal variability of soil moisture, but they did not perform analyses globally (Ruosteenoja 
et al., 2018; Yuan & Quiring, 2017). Some other works conducted a variability analysis of soil moisture at global 
scales but were conducted either on a coarse temporal resolution (Dirmeyer et al., 2013) or not within CMIP5 
simulations (McColl et al., 2019).

Remote sensing technology provides global observations of soil moisture, such as the Soil Moisture Ocean 
Salinity (SMOS) mission (Kerr et  al.,  2001) and NASA's Soil Moisture Active Passive (SMAP) mission 
(Entekhabi et  al.,  2010). The soil moisture data of SMAP is surface soil moisture (SSM), defined as the 
moisture in the top ∼5 cm of the soil column. SMAP soil moisture meets mission requirements and matches 
well in situ SSM observations (Chan et al., 2016, 2018; Colliander et al., 2017, 2021). In addition, compared 
to two other soil moisture satellites, SMAP shows higher accuracy measured by a global average anomaly 
correlation over the majority of available land pixels (Chen et al., 2018) and high information content relative 
to other retrieval products of soil moisture (Kumar et al., 2018). In addition, a recent study shows that SMAP 
has good performance over irrigated and vegetated areas (Kim et al., 2020). The SMAP SSM can be used 
to explain land-atmosphere interactions over different spatiotemporal scales (Guillod et al., 2015; Tuttle & 
Salvucci, 2016).

This study takes advantage of the progress in soil moisture signal analysis, CMIP5 multimodel simulations, 
and satellite technology in estimating soil moisture discussed above to evaluate 17 land surface models 
within CMIP5 in soil moisture simulations using SMAP as the observational benchmark. The main research 
objective is to identify the deficiencies of these models in estimating global SSM on various time scales. 
Specifically, the simulated SSM variability is analyzed within three frequency bands: (1) weekly to monthly 
time scales (1/7–1/30  days −1), (2) monthly to seasonal time scales (1/30–1/90  days −1), and (3) seasonal 
to annual time scales (1/90–1/365 days −1). Similar approaches to decomposing the time series into differ-
ent frequency bands have been used to explain the precipitation variability and land-atmosphere interac-
tions (Ruane & Roads, 2007; Wei et al., 2010). Further, the Fourier analysis (Thomson & Emery, 2014) is 
conducted to determine the frequency characteristics of the global SSM. In this way, we can identify the 
deficiencies of simulating SSM variability in these CMIP5 models, which are usually difficult to quantify in 
the time domain.

In Section 2, we first describe the model and observational data used. Then, we detail our methodology for 
variability analysis. In Section 3, we show the results of SMAP observations in the first part. In the second 
part, we perform comparative analyses on the multimodel differences within CMIP5 and further illustrate 
their correlations with mean SSM and four variables related to climate condition and soil texture. In the third 
part, we investigate uncertainties that may exist in this study and their effects on our analysis. In Section 4, 
we summarize our findings and discuss the research impacts and potential solutions to the model deficiencies 
we found.



Journal of Geophysical Research: Atmospheres

XI ET AL.

10.1029/2021JD035363

3 of 16

2. Methods
2.1. Overview

We first describe how we collect the data from models within CMIP5 and SMAP observations. Second, we detail 
the methodology from data preprocessing to the final multimodel comparison. Specifically, Section 2.3 describes 
the preprocessing of SMAP products and CMIP5 simulations. Section 2.4 defines the normalized variability of 
SSM and how to get it within the three frequency bands. Next, Section 2.5 introduces the spectral slope of SSM 
within the three frequency bands and how to depict them as the color of noise. Finally, Section 2.6 describes how 
to perform multimodel comparative analysis with the SMAP observations and illustrates the significance test on 
the differences.

2.2. Data Organizing

In this study, we use the daily simulations from 17 CMIP5 models. The models are selected based on the avail-
ability of daily SSM outputs required for the spectral analysis (Table S1). To characterize SSM variability, 
we analyze the simulated SSM (top 10 cm; variable mrsos in the CMIP5 archive). We use only one ensemble 
member—“r1i1p1” (where r for realization, i for initialization, and p for physics) from the historical experiment.

Observation data of SSM are from NASA's SMAP mission. The SMAP satellite was launched in January 2015 
and measured SSM globally every 2–3 days (Entekhabi et al., 2010). In this study, we use its Level 3 Radiometer 
Global Daily 36 km EASE-Grid Soil Moisture, Version 7, spanning 1 April 2015–2031 December 2020 (O’Neill 
et al., 2020). Since the air, vegetation, and near-surface soil are assumed to be in thermal equilibrium in the early 
morning hours for the radiometer soil moisture algorithm, there is more degradation in its 6 p.m. retrievals than 6 
a.m. retrievals, but the degradation is small (Chan et al., 2018; O’Neill et al., 2018). Therefore, we use retrievals 
from both 6 a.m. descending and 6 p.m. ascending passes to best use the observational information. The Level 3 
product is made using geophysical parameters derived from Level 1 and Level 2 products and is spatiotemporally 
re-sampled to the global cylindrical EASE-Grid 2.0 (Brodzik et al., 2012). In this projection, regardless of longi-
tude and latitude, each grid cell has a nominal size of approximately 36 × 36 km 2, and the dimensions of the data 
arrays are 406 rows and 964 columns.

To analyze the relationship between soil texture and multimodel differences within CMIP5 compared to the 
SMAP observations, we use the Global Soil Dataset for Earth System Modeling (GSDE; Shangguan et al., 2014). 
GSDE provides 11 types of general soil profile information and 34 soil texture properties for eight depths. In this 
study, we use two main soil properties—sand content and clay content, to find their relationships with multimodel 
differences. GSDE provides two resolutions, that is, 30 s (∼1 km) and 5 min (∼10 km). We use the second one. 
In addition, all soil properties are separated into eight layers with different depths. Since we focus on surface soil 
moisture, we use the average of the first two layers (0–0.045 m and 0.045–0.091 m) for our analysis.

2.3. Data Preprocessing

Anomalous SMAP SSM values that do not range from 0.02 to 0.5  cm 3/cm 3 are removed. In addition, since 
SMAP does not provide global observations every day, its SSM retrievals are temporally discontinuous. There-
fore, missing values are gap-filled to best use the daily resolution of SMAP data. We first fill SMAP data with 
a long term global daily soil moisture dataset (Yao & Lu, 2020), which is derived from AMSR-E and AMSR2 
based on an Artificial Neural Network algorithm taking the SMAP standard SSM products as training targets 
(Yao et al., 2017, 2021). Next, we use moving average with a window of length 3 to fill the remaining missing 
values. Then, by using the autoregressive modeling, we fill the remaining gaps among the data with estimates 
extrapolated from forward and reverse autoregressive fitting of samples. Finally, we replace values less than 0.02 
with 0.02 and larger than 0.5 with 0.5 (units: cm 3/cm 3) for the filled results to ensure that all SSM values are in 
a valid range. We validate this gap-filled SMAP data using in-situ soil moisture data of 16 sites from the Inter-
national Soil Moisture Network (ISMN; Dorigo et al., 2011, 2013). Five sites are selected based on five latitude 
bands (Figure S2), and 11 sites are selected to represent 11 key plant function types (Figure S3). The latitude band 
and plant function type are both efficient and commonly-used ways to categorize the land surface. The statistical 
errors of the gap-filled SMAP data are close to (or even better than) the original SMAP product compared to 
in-situ SSM data within ISMN (Tables S4 and S5).
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For the models within CMIP5, since the soil moisture simulations span 
decades or even centuries, some regions may show long-term linear trends on 
such time scales (Mudelsee, 2013). Since the Fast Fourier Transform (FFT) 
requires time series to be periodic, these long-term trends may result in 
boundary artifacts that would introduce errors into the power spectrum when 
performing Fourier analysis. Therefore, we remove these trends by subtract-
ing an optimal (least squares) fitted linear regression from original data so 
that the time series after detrending has a mean value of zero. Thus, we focus 
on the intra-annual fluctuations of the SSM time series. This detrending 
process is not performed on the SMAP observation since its temporal cover-
age is too short of having significant long-term linear trends.

2.4. Normalized Variability of SSM

Normalized variability of SSM (SSMn) for CMIP5 models and SMAP obser-
vations are both calculated for comparison. 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛 indicates the proportion 
of the temporal variability of SSM within the three frequency bands. We aim 
to use SSMn to evaluate the model performance on capturing the temporal 
variability over different time scales. The procedures to get 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛 from time 
series of SSM (ssm(t)) are shown in Figure 1 (see Figure S1 as a detailed 
version with an example). Here, we explain the steps to process SSMn in 
detail.

The computation of SSMn for models and observation is the same. It is based 
on the Fast Fourier Transform (FFT), a faster algorithm for the Discrete 
Fourier Transform (DFT). They decompose the time series into orthogonal 
sinusoidal frequency components so that the variability within each compo-
nent can be investigated separately. The basic mathematical theory for DFT 

and FFT and related spectrum analyses can be found in Text S1. All computations and statistical analyses in this 
study are programmed in MATLAB (http://www.mathworks.com/).

First, we use FFT to get the amplitude spectrum of SSM (𝐴𝐴 |𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆 (𝑘𝑘)| ) from 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴(𝑛𝑛) , which is the discrete series 
sampled from 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) with the sampling number (N; i.e., the number of days). Since the spectrum is symmetrical 
about the Nyquist frequency (𝐴𝐴 𝐴𝐴𝑠𝑠∕2 , where fs is sampling frequency as 1 day −1 here), we only use half spectrum 
(sampling points from 1 to 𝐴𝐴 𝐴𝐴∕2 without the first sampling point that is the DC component). The frequency corre-
sponding to each sample is the product of its normalized frequency and the frequency resolution (𝐴𝐴 Δ𝑓𝑓 ).

Then we get the power spectrum of SSM based on its amplitude spectrum as ���� (�) = |���� (�)|2 . The 
frequency of 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 (𝑘𝑘) ranges from 1/2 to 𝐴𝐴 1∕𝑁𝑁 day −1. In this study, we filter the spectrum to a frequency band 
within 7–365 days due to the limitations of the satellite data. On the one hand, missing values filling during the 
data preprocessing may introduce high-frequency variability as noises to the observation, which usually do not 
exist in models. Therefore, we remove the spectrum with frequencies higher than 1/7 days −1 to make models and 
observations more comparable by smoothing the observational data. On the other hand, unlike CMIP5 models 
with multi-decade records, the temporal coverage of SMAP observations is less than 6 years. This is not long 
enough to make reasonable analyses on inter-annual time scales, and thus we also remove the spectrum with 
frequencies lower than 1/365 days −1. In this way, we restrict our investigation within a weekly to annual frequency 
band by using a low-pass filter and a high-pass filter with the cutoff frequency as 1/7 days −1 and 1/365 days −1, 
respectively.

Next, we separate the filtered 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 (𝑘𝑘) (𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 (𝑘𝑘)′ ) into three frequency bands: weekly to monthly (7–30 days), 
monthly to seasonal (30–90 days), and seasonal to annual (90–365 days), defining that the number of days within 
one week, one month, one season, and one year, is 7, 30, 90, and 365, respectively. Thus, the three frequency 
bands represent weekly to monthly time scales, monthly to seasonal time scales, and seasonal to annual time 
scales, respectively. Divided by the total spectral power of 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 (𝑘𝑘)′ , the spectral power for each frequency band 
is normalized as:

Figure 1. Steps to get the normalized variability of SSM (SSMn1, SSMn2, 
and SSMn3, hereafter collectively referred to as SSMn), and the spectral slope 
of SSM (SSMkw1, SSMkw2, and SSMkw3, hereafter collectively referred to as 
SSMkw) from the time series of SSM (𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) ). The number “1”, “2”, and “3” 
(hereafter being referred as i) represent three frequency bands in the order 
as weekly to monthly (7–30 days), monthly to seasonal (30–90 days), and 
seasonal to annual (90–365 days) time scales. 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴(𝑛𝑛) is the discrete series 
sampled from 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) . 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 (𝑘𝑘) is the amplitude spectrum of SSM from 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴(𝑛𝑛) 
using Fast Fourier Transform (FFT). 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 (𝑘𝑘) is the power spectrum of SSM 
as the square of the absolute value of its amplitude. 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 (𝑘𝑘)′ is the filtered 

𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 (𝑘𝑘) to a frequency band within 7–365 days. 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 (𝑘𝑘)′𝑖𝑖 is 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 (𝑘𝑘)′ being 
“separated” into the three frequency bands: weekly to monthly (𝐴𝐴 𝐴𝐴 = 1 ), monthly 
to seasonal (𝐴𝐴 𝐴𝐴 = 2 ), and seasonal to annual (𝐴𝐴 𝐴𝐴 = 3 ). The sum of spectral 
amplitudes of SSM (𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴∑

𝑖𝑖
 ) and 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑘𝑘 is gotten from 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 (𝑘𝑘)′𝑖𝑖 based on 

“sum over amplitude” and “linear regression” within in the ith frequency band, 
respectively. SSMni is gotten from 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴∑

𝑖𝑖
 based on normalization across the 

three frequency bands.

http://www.mathworks.com/
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𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑖𝑖
=

∑
𝑗𝑗
𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆 𝑖𝑖(𝑘𝑘𝑗𝑗)

′

∑3

𝑖𝑖=1

∑
𝑗𝑗
𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆 𝑖𝑖(𝑘𝑘𝑗𝑗)

′
 (1)

where 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖(𝑘𝑘𝑗𝑗)
′ represents the spectral power of SSM for the jth frequency in the ith frequency band after filter-

ing, i is the ordinal number representing the three frequency bands defined before in the order from high to low, 
and j is the ordinal number of each frequency within each frequency band. Thus, we denote SSMni as the normal-
ized variability of SSM in the ith frequency band (e.g., SSMn1 is the normalized variability of SSM within weekly 
to monthly time scales). In this way, SSMni, as a value between 0 and 1, indicates the proportion of the spectral 
power of SSM time series in the ith frequency band. According to the Parseval theorem (Weisstein, 2019), the 
spectral power of SSM in the time domain and the frequency domain are equivalent. Therefore, we use SSMni to 
identify the major frequency behaviors of SSM sets for temporal variability analysis.

2.5. Analysis of Spectral Slope of SSM

The spectral slope exhibits characteristics of the soil moisture's physical behavior. First, we normalize all spectra 
by the variance of their respective temporal range to avoid that the spectra from high variance regions might 
overwhelm the spectra from low variance regions (Delworth & Manabe, 1988). Then, based on the least-squares 
approach, we fit a linear regression for the spectral power values corresponding to all frequencies within each 
frequency band and use the slope of the fitted line to analyze the spectral slope (see Table S6 as statistical errors 
of the linear regression). In this way, each spatial pixel has three spectral slopes corresponding to the three 
frequency bands.

Considering SSM as power-law noise signals, their spectral densities vary as inverse frequency, more precisely 
are proportional to 𝐴𝐴 1∕𝑓𝑓𝛽𝛽 , where β is the inverse number of the spectral slope (Bourke, 1998). In this way, the color 
of noise, which is related to the power spectrum of noise signals, can be used to indicate the spectral slopes of 
SSM (SSMkω). The basic theory of the color of noise can be found in Text S2.

The noise colors can be divided into several types according to the slope of their power spectral density. In this 
study, we use white noise and five main colored noises (violet, blue, pink, red, and black noise) to characterize 
SSMkwi in the ith frequency band. The corresponding spectral slope (the opposite of β in inverse power law 𝐴𝐴 1∕𝑓𝑓𝛽𝛽 ) 
of violet, blue, white, pink, and red noise (or Brownian noise) is 2, 1, 0 (i.e., the spectral density of white noise is 
flat), −1, and −2, respectively, and the spectral slope of black noise is smaller than −2. The smaller the spectral 
slope in the frequency domain, the longer the memory of the signals that are represented as different colors of 
noise (excluding violet and blue noise). Therefore, we use this categorical SSMkω to characterize the memory of 
SSM on different time scales. The steps to get SSMkω are also shown in Figure 1.

2.6. Analysis of Differences Between Models and Observations

We evaluate multimodel differences of SSMn and SSMkω within CMIP5 compared to SMAP observations by 
subtracting the observation data from the average of the 17 models. In addition, we calculate the coefficient of 
variation across the 17 models to show the degree of the statistical dispersion of SSMn.

The spatial resolution and the land cover between models and observations, as well as among models themselves, 
are different. Therefore, we first use the spatial resolution of SMAP (36 × 36 km) as the reference and project all 
matrices to this “standard” spatial resolution based on a nearest neighbor binning:

D
(

�,�′) = argmin
�,�

|

(

�′
� − ��

)

+
(

�′
� − ��

)

| (2)

where 𝐴𝐴 D (𝑚𝑚𝑚𝑚𝑚′) is the shortest distance between the non-SMAP pixel and the SMAP pixel, m and mʹ  represents 
SMAP pixels and non-SMAP pixels, p and q are latitude and longitude to the corresponding pixel, respectively. 
We then adjust all re-gridded matrices to have the same land cover as the result based on SMAP data. Specifically, 
for each matrix, we remove its corresponding pixels without a value (i.e., shown as “NaN”) in SMAP data. For 
pixels with values in SMAP data but no values in other matrices, we fill them based on the mean value of their 
nearest neighbors. In this way, all results have the same spatial resolution and land cover and can be compared 
with each other.
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In addition, we perform a significance test on these differences and depict it using stippling. The reason is that 
multimodel differences in some regions may be caused by only a few models or even one model. These differ-
ences with less significance will not be considered. The significance here is defined as the ratio of the number 
of models with the same sign as average differences to the number of total models for each pixel. On the final 
maps, stippling shows the regions that passed the significance test of 100% (i.e., all 17 models agree on the sign 
of average differences) and 80% (i.e., 14 of the 17 models agree on the sign of average differences), respectively. 
We also remove regions with ���� less than 0.1 (shown as dark gray on the maps), where ���� defined as the 
observational mean SSM after spatiotemporal normalization (Figure S4). The reason is that the absolute values 
of SSM in these regions are too small to be investigated reasonably on its temporal variability.

3. Results and Discussion
3.1. Temporal Vairiabilities of SMAP SSM

Among the three frequency bands, the observational SSMn concentrates more in the seasonal to annual frequency 
band for most regions, especially southern Asia, western Europe, and regions around 10°N/S in Africa. This 
indicates that SSM has a large variability on time scales longer than seasonal scales. For time scales shorter than 
seasonal scales, SSMn concentrates more in the weekly to monthly frequency bands, especially in Australia and 
the regions near the equator (Figures 2a–2c).

The observational SSMkw across the three frequency bands demonstrate that the spectrum of SSM time series 
is mainly shown as red and pink noise on a global scale (Figures 2d–2f), which means that low-frequency peri-
odic components dominate the contribution to its variance. This is consistent with the findings based on SSMn. 
Besides, the SSM spectra decay less rapidly in the weekly to monthly frequency band (Figure 2d) and more 
rapidly in the seasonal to annual frequency band (Figure 2f), indicating that SSM has more randomness on time 
scales shorter than monthly and more memory on time scales longer than seasonal scales. In addition, the spatial 
distribution of SSMkw further displays the spatial variability of SSMn within each frequency band as discussed 
above. In the weekly to monthly frequency band, regions with larger SSMn show as white noise, meaning that 
the contribution to its variance is equal across all frequencies in this band (Figures 2a and 2d). In the seasonal to 
annual frequency band, regions with larger SSMn show as black noise, meaning its variances are more dominated 
by the low-frequency periodic components (Figures 2c and 2f).

Figure 2. SSMn (Figures a–c) and SSMkω (shown as noise color, Figures d–f) of SMAP observations over the three frequency bands. Dark gray parts are regions with 
���� less than 0.1. The colors in Figures d–f represent the color of noise referring to the power spectra of SSM, and the number in brackets after color names is the 
spectral slope of power-law noise corresponding to each noise color. For all subsequent results, including Figure 2, the three columns from left to right represent the 
weekly to monthly frequency band (𝐴𝐴 𝐴𝐴 = 1 ), the monthly to seasonal frequency band (𝐴𝐴 𝐴𝐴 = 2 ), and the seasonal to annual frequency band (𝐴𝐴 𝐴𝐴 = 3 ).
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3.2. Comparison Between CMIP5 Simulations and SMAP Observations

Figures 3a–3c shows the average differences for SSMn of CMIP5 models compared to SMAP observations. A 
significance test is performed and depicted using stippling. Here, the “+” stippling means the region passes a 
100% significance test, and the “.” stippling means the region passes an 80% significance test. Therefore, we 
only focus on the regions with stippling. For most regions, the multimodel differences are negative in the two 
higher frequency bands and positive in the lowest frequency band. This means that the SSM variability of CMIP5 
models is smaller on time scales shorter than seasonal and larger on time scales longer than seasonal, compared 
to SMAP observations. Among the three frequency bands, the average SSMn difference is largest in the seasonal 
to annual frequency band (0.4003 and 0.3240 with 100% and 80% significance) and smallest in the monthly 
to seasonal frequency band (−0.1574 and −0.1025 with 100% and 80% significance; Table  1). For all three 
frequency bands, the average SSMn differences are larger in Central and Eastern North America, Eastern Europe, 
Central Asia, and regions near the equator. Since the average SSMn in each frequency band is different, here we 
use its coefficient of variation (CV) to see the degree of the variations among these models and normalize them 
over the three frequency bands (Figures 3d–3f). For most regions, the normalized CV is largest in the weekly to 
monthly frequency band and smallest in the seasonal to annual frequency band (see Table S7). Therefore, on time 
scales shorter than seasonal where models' SSM variability is smaller, a more extensive intermodel spread exists, 
meaning that the models exhibit significant variances in SSM variability estimation. On the other hand, on time 
scales longer than seasonal where models' SSM variability is larger, the estimates of SSM variability are similar 
across models, suggesting a systematic deficiency of land surface models in simulating a long-term variability.

Figure 3. Comparisons of SSM variability between the models from CMIP5 and the SMAP observations in the three frequency bands. Figures a–c is the average 
difference of models' SSMn compared to the observation, Figures d–f is the coefficient of variation (CV) of SSMn across all models, and Figures g–i is the average 
difference of models' SSMkw compared to the observation. For Figures d–f, the CV of SSMn is calculated by the standard deviation of SSMn divided by their average in 
each frequency band and then normalized between zero and one across the three frequency bands. For average differences of SSMn (Figures a–c) and SSMkω (Figures 
g–i), “+” and “.” stippling represents the region that passes a 100% significance test and an 80% significance test, respectively. Dark gray parts are regions with ���� 
less than 0.1.
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We also evaluate multimodel differences of SSMkω compared to SMAP observations, with negative differences 
meaning that modeled spectra decay more rapidly and vice versa (Figures 3g–3i). Compared to observational SSM 
spectra, modeled decay more rapidly in the weekly to seasonal frequency bands and less rapidly in the seasonal to 
annual frequency band. This indicates that the differences between CMIP5 simulations and SMAP observations 
from the short-term variability to the long-term variability behave in a non-linear way. From Figures 3a–3c, we 
found that the turning point of this change can be indicated by the seasonal time scale (i.e., 1/90 days −1), suggest-
ing that the seasonal time scale is significant in characterizing the long-term memory of SSM.

The multimodel SSMn differences compared to the SMAP observations are further analyzed with the mean SSM 
on a global scale. To make a trade-off between high significance and enough samples, we use the differences 
passing an 80% significance test. Figure S4 shows the global distribution of the observational mean SSM after 
spatiotemporal normalization (���� ). From Figures 4a–4c, for all three frequency bands, the differences mainly 
concentrate in wetter regions with larger ���� (about 60%–90%), which is more evident in the weekly to 
monthly frequency band and seasonal to annual frequency band where SSMn differences are larger. This finding 
is consistent with the result shown in Figure 5. From an average latitudinal perspective, larger differences of 
SSMn are seen in regions near the equator and higher latitudes (especially regions around 45°N/S), where the 
mean SSM contents are higher (Figure 5d). On the other hand, SSMn differences are smaller in regions around 
15°N/S and 30°N/S, where there are lower mean SSM contents (Figure 5d). Besides, from Figures 5a–5c, for 
latitudinal average SSMn in lower latitudes, model estimations can basically capture the trend of the observation. 
The differences in these regions mainly come from the differences in amplitude, which can be resolved more 
easily by, for example, parameter optimization (Houska et al., 2015). However, differences in higher latitudes are 
not only shown as the biases in amplitude but also the trend with latitudes. Therefore, these differences may be 
not only due to the parameterization issues but also the deficiencies in algorithms that model important physical 
processes, suggesting larger difficulties in simulating soil moisture dynamics that need more effort to increase 
the interpretability. For the intermodel spread of SSM variability estimates, Figures 4d–4f shows that there is no 
significant statistical correlation between its CV and SSM content. To sum up, for SSM variability compared to 

Significance 100% significance test 80% significance test

Frequency band (day −1) 1/7–1/30 1/30–1/90 1/90–1/365 1/7–1/30 1/30–1/90 1/90–1/365

BCC-CSM1.1 −0.2060 −0.1065 0.2666 −0.1462 −0.0377 0.1713

BNU-ESM −0.2690 −0.1332 0.3626 −0.2184 −0.0837 0.2919

CanESM2 −0.2997 −0.1579 0.4045 −0.2450 −0.0941 0.3214

CNRM-CM5 −0.2705 −0.2111 0.4376 −0.2177 −0.1525 0.3581

CSIRO-Mk3.6 −0.3189 −0.1995 0.4690 −0.2662 −0.1311 0.3844

GFDL-CM3 −0.2810 −0.1492 0.3908 −0.2328 −0.1030 0.3236

GFDL-ESM2G −0.2750 −0.1405 0.3768 −0.2260 −0.0947 0.3077

GFDL-ESM2M −0.2751 −0.1406 0.3778 −0.2257 −0.0938 0.3075

HadGEM2-CC −0.3095 −0.1600 0.4263 −0.2593 −0.1057 0.3533

HadGEM2-ES −0.3086 −0.1611 0.4252 −0.2590 −0.1063 0.3527

Institute for Numerical Mathematics −0.2814 −0.1603 0.3937 −0.2244 −0.1006 0.3127

MIROC5 −0.2888 −0.1348 0.3829 −0.2372 −0.0867 0.3111

MIROC-ESM −0.2923 −0.1446 0.3993 −0.2392 −0.0948 0.3227

MIROC-ESM-CHEM −0.2932 −0.1460 0.4011 −0.2402 −0.0963 0.3254

MRI-CGCM3 −0.3164 −0.1997 0.4689 −0.2644 −0.1396 0.3912

MRI-ESM1 −0.3157 −0.1991 0.4670 −0.2638 −0.1385 0.3893

NorESM1-M −0.2634 −0.1319 0.3548 −0.2111 −0.0830 0.2832

Average (±1SD) −0.2861 ± 0.0265 −0.1574 ± 0.0282 0.4003 ± 0.0482 −0.2339 ± 0.0279 −0.1025 ± 0.0260 0.3240 ± 0.0498

Observation 0.3971 0.2789 0.3542 0.3465 0.2317 0.4254

Table 1 
Multimodel Differences of SSMn Within CMIP5 Compared to SMAP Observations
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SMAP observations, these models from CMIP5 show underestimated differences as “lower bias, higher variance” 
in the two higher frequency bands and overestimated differences as “higher bias, lower variance” in the seasonal 
to annual frequency band. These differences are mainly concentrated in wetter areas and are more challenging to 
solve in higher latitudes if considering all of them as model biases.

The multimodel differences of SSMn have been found to be tightly related to the mean SSM (Figures 4a–4c). 
Apart from that, it is also necessary to identify their correlations with climate conditions and soil texture, which 
affect SSM closely. Here, we use the data of vegetation water content, surface temperature, and two main soil 
properties—sand content and clay content, to evaluate this dependence. Figures S5 and S6 show the global distri-
bution of the mean vegetation water content (� ��� ) and surface temperature (� � ) after spatiotemporal normali-
zation, respectively. Figure S7 shows the global distribution of soil sand content and clay content for the first two 
layers from the GSDE. We use the mean values of these two layers after spatiotemporal normalization (����� 
and ����� ) to see their relationship with multimodel differences. Same as Figure 4, here we use the differences 
passing an 80% significance test (see Figure S8 as the corresponding correlation analysis with the differences 
passing a 100% significance test). The multimodel differences of SSMn show an evident correlation with both 
� ��� and � � . For � ��� , the differences of SSMn basically increase with the increase of � ��� linearly, except for 
the monthly to seasonal frequency band (Figures 6a–6c). For � � , the differences of SSMn basically increase with 
the decrease of � � linearly, except for the weekly to monthly frequency band (Figures 6d–6f). This indicates that 
these multimodel differences are basically positively correlated to vegetation water content while negatively 
correlated to surface temperature. On the other hand, there are no clear correlations between SSMn differences 
and soil texture across all frequency bands (Figures 6g–6l). This means that it is not the soil itself that leads to 
the model differences within CMIP5, but rather that models did not represent other processes regulating soil 
moisture, such as vegetation which regulates the transpiration and long-term soil moisture dynamics (Kennedy 

Figure 4. Comparison of SSMn with ���� in the three frequency bands. Figures a–c shows the average difference of SSMn between the models from CMIP5 
and the SMAP observations, and Figures d–f shows the normalized coefficient of variation (CV) of SSMn across all models. The red shading represents 𝐴𝐴 + ∕− one 
standard deviation. ���� is separated into 20 bins of equal size (i.e., 0.05 for each bin), then the mean of SSMn differences and the CV of SSMn located in each bin 
(corresponding to the range of ���� ) were separately calculated for each frequency band. Differences in this figure are the values passing an 80% significance test. 
All values in the regions with ���� less than 0.1 are removed.
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et al., 2019). For instance, plant water stress based on plant hydraulics has shown superior results when compared 
to typical water-stress responses (Kennedy et al., 2019), especially on seasonal time scales.

3.3. Uncertainty Analysis of SSM Variability

In this study, since the SMAP data is non-continuous on the daily time scale, we fill the missing values before 
performing Fourier analysis. We first use a moving window to fill missing values and then use the autoregressive 
modeling to fill the remaining gaps. Although we have validated this filled SMAP data with in-situ soil moisture 
data from ISMN, the in-situ observations still can not cover all pixels on a global scale. Since we do not have such 
observational data for those missing values, this filling process may introduce uncertainties to the subsequent 
results. Here we check these uncertainties to quantify how much confidence we can have for using the filled 
SMAP data as the observations. There are four parameters in the filling: “moving method”, “moving window 
length”, “maximum length of prediction sequences”, and “autoregressive model order”. We separately change 
one of them (for the “moving method”, we change from mean to median; for the other three, we change the values 
by 100%) and compare the SSMn obtained from the two filling data. We find that “moving window length” is 
the parameter that will introduce the most uncertainties (see Figure S9). Therefore, it is most critical to constrain 
uncertainties made by this parameter during the gap filling.

Figure 5. Latitudinal average SSMn for CMIP5 models and the SMAP observations in the three frequency bands (Figures a–c) and latitudinal average ���� (Figure 
d). Black lines are results from SMAP observations, and red lines are results of CMIP5 models. The red shading represents 𝐴𝐴 + ∕− one standard deviation. The mean 
values of SSMn and ���� for each latitude are calculated as the y values. Average SSMn of models in this figure are values passing an 80% significance test. All values 
in the regions with ���� less than 0.1 are removed.
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We change the “moving window length” as 3, 5, 7, 9 while fixing the other three parameters to compute observa-
tional SSMn, respectively. We find it will cause a significant change to SSMn in the first and third frequency bands 
(see Table 2)—the larger the moving window length, the smaller SSMn of the first frequency band, and the larger 
SSMn of the third frequency band. The reason is that the moving window here plays a role like a low-pass filter 
that will smooth the time-series signal, with a longer window decreasing more components of high frequencies. 
However, even the window length increases to 9 (i.e., filling the missing value as the mean of the previous four 

Figure 6. Multimodel mean differences of SSMn between models within CMIP5 and SMAP data with � ��� (Figures a–c), � � (Figures d–f), ����� (Figures g–i), 
and ����� (Figures j–l). The red shading represents 𝐴𝐴 + ∕− one standard deviation. The blue crosses are exactly the red dots that are SSMn difference in each bin. The 
solid blue lines represent the fitted linear regression lines based on the blue crosses. The black dashed lines represent the bounds of the 95% confidence interval (CI). 
Differences in this figure are the values passing an 80% significance test. All values in the regions with ���� less than 0.1 are all removed.
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and the last four samples), the observational SSMn is still larger than the modeled in two higher frequency bands 
and smaller than the modeled in the lowest frequency band, which is qualitatively consistent with our previous 
results (Figures 3a–3c).

Since the sampling frequency of SMAP is once per two or three days and may even be less due to its orbital 
geometry, there are a large number of missing values within the temporary coverage in this study. Therefore, 
we first fill the SMAP data with a long-term global daily soil moisture dataset based on AMSR-E/2 (hereafter 
referred to as “AMSR-E/2 data”, see Section 2.3). However, this filled data are still discontinuous at the daily 
time scale. So, we also perform the same test of “moving window length” on the gap-filled SSM data that is used 
for subsequent analyses. From Table 2, we can see that adding this AMSR-E/2 data to the original SMAP prod-
uct can help constrain uncertainties during the missing value filling, especially for the first and third frequency 
bands. Besides, adding AMSR-E/2 data tends to increase SSMn in the first frequency band and decrease it in the 
third frequency band. This means that, with more observation-based values, observational SSMn will increase on 
shorter time scales and decrease on longer time scales. Therefore, we choose to use “3” as the “moving window 
length” for our analysis.

In addition, due to the limited time span of SMAP currently, we only use less than six years' data (2102 days) 
to evaluate the temporal variability of SSM. There might be insufficient degrees of freedom in such a period to 
provide significant results on longer time scales. Therefore, we combine SMAP and AMSR-E/2 data as a long-
term global SSM series (6789 days) to assess SSMn and also perform the same test of “moving window length” 
on it. From Table 2, observational SSMn shows extremely fewer uncertainties based on this long-term series and 
is close to what we used in this study. This provides much confidence for our long-term results, especially for the 
third frequency band. Besides, SSMn on the long-term series increases a bit in the first frequency band compared 
to that we used for comparative analysis, which further validates our method of gap filling.

Apart from the filling during data preprocessing, the interpolation during intermodel computation may also 
introduce uncertainties since the spatial resolution of all models are much coarser than the “standard” spatial 
resolution (36 × 36 km, see Section 2.6). To quantify these uncertainties, we compared the difference between 
SMAP and CMIP5 models on this “standard” spatial resolution with another spatial resolution as 1° × 1° (Figure 
S10), which is between the resolution of SMAP and CMIP5 models. We further calculated the mean and standard 
deviation of SSMn differences for each frequency band on the two resolutions (Table S8). The results are very 
close to each other. We thus concluded that the SSM variability of CMIP5 models is smaller in higher frequency 

Data sets Moving window length (#)

Normalized variability of SSM (SSMn) in three frequency bands

1/7–1/30 days −1 1/30–1/90 days −1 1/90–1/365 days −1

(weekly to monthly) (monthly to seasonal) (seasonal to annual)

SMAP (04/01/2015–12/31/2020) 3 0.3059 0.2198 0.4743

5 0.2811 0.2272 0.4917

7 0.2577 0.2330 0.5093

9 0.2234 0.2396 0.5370

SMAP & AMSR-E/2 
(04/01/2015–12/31/2020)

3 0.3216 0.2093 0.4692

5 0.3014 0.2170 0.4816

7 0.2786 0.2240 0.4974

9 0.2557 0.2293 0.5149

SMAP & AMSR-E/2 
(06/01/2002–12/31/2020)

3 0.3480 0.2452 0.4068

5 0.3488 0.2478 0.4033

7 0.3437 0.2519 0.4044

9 0.3356 0.2569 0.4075

Model average in CMIP5 0.1159 0.1427 0.7414

Table 2 
Observational and Model Average Normalized Variability of SSM (SSMn) in Three Frequency Bands Based on Three Observational Data Sets with Different Moving 
Window Lengths
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bands (weekly to seasonal) and larger in the lower frequency band (seasonal to annual) compared to SMAP 
observations. Moreover, we also conducted the significance test to constrain the possible uncertainties as much 
as possible. All statistical correlation analyses in this study are based on the multimodel differences passing a 
high significance test (more than 80% as Figure 6 and equal to 100% as Figure S8), ensuring that a systematic 
performance in land surface models is shown.

Finally, this study conducts comparative assessments of CMIP5 models and uses SMAP products as the obser-
vations. However, even though SMAP has been demonstrated to meet its performance target, it still has its 
own deficiencies on a global scale. For example, its soil moisture retrievals in heavily vegetated areas such as 
forests will exist some errors due to the simplification in the representation of the vegetation effect (Entekhabi 
et al., 2014), and retrievals from the presence of water bodies, snow, and frozen soil can be potentially impacted 
by radio frequency interference (McColl et al., 2017). Besides, SMAP SSM products may not be reliable in an 
Arctic tundra environment (Wrona et al., 2017). In addition, there are differences in global SSM retrievals among 
different satellite products (Burgin et  al.,  2017), suggesting uncertainties in the measurement of global SSM 
observation. Therefore, when performing comparative evaluations with model estimations, the biases in observa-
tional data themselves should also be taken into consideration. In addition, from our gap-filled SMAP validation 
compared to sites within ISMN (Figures S2 and S3; Tables S4 and S5), we can also find there are large differ-
ences between SMAP data and in-situ SSM observations for a few sites, which are mainly from the regions where 
SMAP show potential errors discussed above, like the site COLDFOOT (SNOTEL network) where the surface 
temperature is low and the Maricao Forest (SCAN network) where the vegetation is dense. Since the MSE of 
gap-filled SMAP is close to (or even better than) the original SMAP data, the large validation errors of gap-filled 
SMAP for these sites are mainly due to the SMAP biases rather than the gap-filling process.

To analyze these uncertainties from SMAP, we mask the regions where SMAP data may have potential errors for 
the comparisons between models and observations (Figure S11). These regions are indicated as dense vegetation 
cover (vegetation water content >5  kg/m 2), frozen landscapes (surface temperature <0°C), and the presence 
of water bodies (water body fraction >5% coverage of a pixel), which is similar to a previous study (McColl 
et al., 2017). From our previous results, the differences of SSMn between SMAP and CMIP5 models are larger in 
regions near the equator and higher latitudes if considering all of them as model biases (Figure 5). From Figure 
S11, we further find that these are also regions where SMAP data are likely less accurate, indicating that SMAP 
biases may also contribute to the inconsistency SSMn difference from the latitudinal perspective. In addition, 
based on this SMAP masking, we further evaluate the correlations between the SSMn multimodel differences 
without these regions and passing an 80% significance test with � ��� , � � , ����� , and ����� (Figure 7; see 
Figure S12 as the same analysis but with differences passing a 100% significance test). We can see that, without 
the regions where the quality of SMAP data can not be guaranteed, the multimodel differences of SSMn are still 
more correlated to climate conditions (i.e., vegetation water content and surface temperature) than soil texture 
(i.e., sand content and clay content), which is consistent with our previous results (Figure 6).

4. Conclusions
This study evaluates 17 land surface models from CMIP5 in simulating SSM variability based on SMAP SSM 
observations on global scales. We find that these models within CMIP5 generally underestimate SSM variability 
in higher frequency bands (weekly to seasonal) and overestimate SSM variability in the lower frequency band 
(seasonal to annual) compared to SMAP observations over the regions where SMAP are likely more accurate 
(such as less-vegetated and non-frozen areas). Besides, both the underestimation and overestimation concentrate 
in wetter regions with higher SSM content.

These multimodel differences are further found to be spatiotemporally different. From the temporal aspect, there 
is a higher variance on shorter time scales and a lower variance on longer time scales, suggesting an individual 
deficiency in representing short-term variability and a systematic deficiency of long-term variability in these 
models. Besides, this change can be clearly indicated by the seasonal time scale, indicating that the seasonal 
prediction is challenging for SSM simulation. From the spatial aspect, these multimodel differences have a more 
significant correlation with the mean vegetation water content and surface temperature than with soil texture on 
global scales, representing the climate condition is more important in evaluating SSM variability. For those differ-
ences that are more difficult to resolve, like SSM variability in the higher latitudes of the northern hemisphere 
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and in the regions with dense vegetation cover, apart from the need for more accurate satellite observations, the 
critical physical processes should not be simply parameterized in models but discover governing equations of the 
dynamical system, which could be achieved using physics-guided machine learning if data is abundant but the 
mechanisms remain elusive (Willard et al., 2020).

This study identifies systematic metrics of SSM that can be used to evaluate model improvements spatiotempo-
rally based on remote sensing observations. It also highlights that the land surface models within CMIP5 should 
improve their capability to represent the temporal variability of soil moisture.

Figure 7. Same as Figure 6 except removing the regions within multimodel differences of SSMn where SMAP data may have potential error sources. Differences in this 
figure are the values passing an 80% significance test. All values in the regions with ���� less than 0.1 are removed.
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Data Availability Statement
The codes and data for analysis in this study are available at https://purr.purdue.edu/publications/3908/1.
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