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Abstract: Quantification of soil organic carbon (SOC) and pH, and their spatial variations at regional
scales, is a foundation to adequately assess agriculture, pollution control, or environmental health and
ecosystem functioning, so as to establish better practices for land use and land management. In this
study, we used the random forest (RF) model to map the distribution of SOC and pH in the topsoil
(0–20 cm) and estimate SOC and pH changes from 1982 to 2012 in Liaoning Province, Northeast
China. A total of 10 covariates (elevation, slope gradient, topographic wetness index (TWI), mean
annual temperature (MAT), mean annual precipitation (MAP), visible-red band 3 (B3), near-infrared
band 4 (B4), short-wave infrared band 5 (B5), normalized difference vegetation index (NDVI), and
land-use data) and a set of 806 (in 1982) and 973 (in 2012) soil samples were selected. Cross-validation
technology was used to test the performance and uncertainty of the RF model. We found that the
prediction R2 of SOC and pH was 0.69 and 0.54 for 1982, and 0.63 and 0.48 for 2012, respectively.
Elevation, NDVI, and land use are the main environmental variables affecting the spatial variability of
SOC in both periods. Correspondingly, the topographic wetness index and mean annual precipitation
were the two most critical environmental variables affecting the spatial variation of pH. The mean
SOC and pH decreased from 18.6 to 16.9 kg−1 and 6.9 to 6.6, respectively, over a 30-year period. SOC
distribution generated using the RF model showed a decreasing SOC trend from east to west across
the city in the two periods. In contrast, the spatial distribution of pH showed an opposite trend in
both periods. This study provided important information of spatial variations in SOC and pH to
agencies and communities in this region, to evaluate soil quality and make decisions on remediation
and prevention of soil acidification and salinization.

Keywords: spatial variability; environmental variables; digital soil mapping; random forest

1. Introduction

Soil organic carbon (SOC) and pH are important soil properties [1]. They are important indicators
to measure soil fertility and soil environmental quality [2,3]. Their changes directly affect the whole
soil environment and farmland production [4]. Soil organic matter (SOM) consists of animal, plant
and microbial residues in different decomposition stages and forms [5]. However, SOC is usually
58% of SOM. Soil pH has an important impact on the turnover of SOM [6]. Previous studies have

Sustainability 2019, 11, 3569; doi:10.3390/su11133569 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-4536-9851
http://www.mdpi.com/2071-1050/11/13/3569?type=check_update&version=1
http://dx.doi.org/10.3390/su11133569
http://www.mdpi.com/journal/sustainability


Sustainability 2019, 11, 3569 2 of 17

mainly focused on acidic soils. Some researchers have found that carbon mineralization in acidic soils
increases after lime is used, and decreases after soil acidification [2,6]. However, the effect of lime on
carbon mineralization lasts for a short time. The effects of pH on SOC in acidic soils mainly include
reducing the solubility of organic carbon, changing the organic–mineral interaction in tropical soils with
variable negative charges, increasing the number of biotoxic cations (i.e., Al3+ and Mn2+), changing the
composition and quantity of microbial population, and changing soil microbial activity and enzyme
activity [7]. These effects of soil pH will inevitably affect the turnover process of SOC. Therefore, it is of
great practical significance to study the key environmental variables controlling the spatial-temporal
variability of SOC and pH. In developing countries, especially in China, which is currently facing
huge population pressure, the government urgently needs to grasp the spatial-temporal changes of
soil properties, including SOC and pH, in order to formulate policies and regulations according to
ecological needs and actual needs. In addition, it is important to find a robust, reliable, and economical
method for estimating SOC and pH values and their spatial-temporal variations [8,9].

Spatial variability of soil attributes is the result of the comprehensive action of natural and
human factors, which can be summed up as climate, topography, land use, and soil type, etc. Due
to the multi-factor nature, it is a great challenge to accurately predict soil properties at the regional
scale [10–12]. As an inexpensive and efficient way, digital soil mapping (DSM) technologies provide
a rapid and inexpensive approach to estimate the spatial distribution of SOC and pH over a large
area from limited sampling sites and environmental covariates [13–16]. Numerous studies have been
conducted to understand the relationships between SOC and pH with environmental factors [17], i.e.,
slope aspect, profile curvature, elevation, precipitation, temperature, and land use, to explore powerful
predictors or indicators of SOC and pH and to map the spatial variations of SOC and pH based on
field observations [14,15,18]. Generally, the relationship between soil properties and environmental
variables is complex and non-linear, so machine learning technology is introduced and widely used in
the spatial prediction of soil properties [19,20]. Jafari et al. [21] used a limited number of data sets and
a boosted regression trees (BRT) model to predict large soil great groups in arid areas of southeastern
Iran. In the northeast of China, Wang et al. [14] used a BRT model to predict SOC for two periods,
indicating that the transformation of land use was the main process for the change in SOC. Over the
same period, Minasny et al. [22] used four models (cubist regression tree, random forests, quantile
regression forests, and artificial neural network) to predict carbon stocks in Indonesian peatlands,
indicating quantile regression forests and cubist regression tree better account for the uncertainty of
prediction. In the Qilian Mountains, Yang et al. [23] compared BRT and random forest (RF) models to
predict topsoil organic carbon, suggesting that BRT exhibited a superior predictive performance.

Among different DSM techniques, a tree-based RF model is widely used in the study of
spatial-temporal variability of SOC and pH [23]. Compared to traditional singletree models, it
has been reported that the RF model is more powerful and efficient [12,23], so it can be included as a
reliable model in the DSM toolbox for soil attribute predictions. RF uses a linear combination of a number
of simple trees for a better model fit [12]. However, this has been criticized for over-fitting [24,25].
The RF model has several advantages such as having a limited number of user-defined parameters,
modeling non-linear and complex relationships as is common in soil systems, managing qualitative
and quantitative problems efficiently, reducing over fitting, and evaluating the final model [12,23–25].
Based on the above advantages, the RF model has been widely used in remote sensing [25], soil
science, ecology [23,26], environmental science [27], epidemiology [21], and other fields. However, the
application of the RF model to study the spatial-temporal variations of SOC and pH is relatively rare.

The purpose of this study is to describe the spatial-temporal changes of SOC and pH in Northeast
China, focusing specifically on 1982 and 2012, which is attributed to the initial stage of reform and
opening up in the 1980s, the rapid period of economic development in Liaoning Province in 2012,
and the mechanization stage of Liaoning Province from the development of a small-scale peasant
economy in the last 30 years. The specific objectives were, firstly, to predict SOC and pH from the two
soil sampling periods (1982 and 2012); secondly, to quantify the effect of environmental variables on
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SOC and pH variation; and finally, to investigate temporal SOC and pH dynamics for a 30-year period
(1982–2012).

2. Materials and Methods

2.1. Study Area

Liaoning Province (118◦–125◦ E, 38◦–43◦ N) is located in the southernmost part of Northeast
China, which belongs to temperate monsoon continental climate with a regional area of 140,000 km2

(Figure 1). Liaoning Province had a population of about 43 million in 2010. The gross domestic product
of Liaoning Province in 2010 was 30.1 billion US dollars, ranking seventh among all provinces in
China [28]. The terrain is generally high in the north and low in the south, inclining from land to
sea. Mountains and hills are arranged on both sides of the east and west, inclining toward the central
plain. Altitude varies from 0 m in coastal areas to 1332 m in eastern mountainous areas. The annual
average precipitation ranges from 600 mm to 1100 mm, of which 65% is concentrated in summer and
accompanied by high intensity rainstorms. The annual average temperature is 9 ◦C, the coldest and
hottest temperature are January and July, and the temperatures are −40 ◦C and 30 ◦C, respectively.
Variable topographic conditions result in different soil types. According to the classification of Chinese
soil systems [29], the main soil types are Anthrosols and Cambisols, accounting for about 76% of the
total area of the study area. Corresponding with the FAO-WRB classification system [30], the main
soil types are Anthrosols and Cambisols. The main economic crops are Zea mays Linn., Oryza saliva
subsp. keng, Glycine max, Malus domestica, Prunus persica var. nectarina, Cerasus pseudocerasus, and
Vitis vinifera L.
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2.2. Experimental Design

In this study, we first collected data, including soil survey data for 1982, environmental variables,
and land-use data in two periods. Second, on the basis of collecting data, it was necessary to process
the data, such as a unified coordinate system and spatial resolution of environmental variables. Third,
the sampling scheme was designed by the purposeful sampling method, and then the soil samples
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were collected and analyzed in the whole study area. Finally, the appropriate model was selected to
predict the spatial distribution of SOC and pH, and then the results were verified.

2.2.1. Soil Survey Data for 1982

Soil data in 1982 were obtained from Liaoning Province’s Second Soil Survey Office. The database
includes 806 soil profiles covering all soil types and land types in the study area (Figure 1). The
database includes soil physical and chemical properties, parent material information, tillage system,
slope direction, slope gradient, landscape, and other information. This study limited the SOC and pH
data of topsoil (0–20 cm) to 806 profiles.

2.2.2. Soil Sampling and Analysis

A total of 973 topsoil (0–20 cm) samples were collected in 2012 (Figure 1). In the total land area of
Liaoning Province, the mountainous area is 88,000 km2, accounting for 59.5%. Thus, it is difficult to
sample and analyze a large number of points and then map the distribution of SOC and pH across large
areas, particularly in areas of rugged terrain. To represent the spatial characteristics of soil properties
in complex geographical landscapes, a purposive sampling method was applied in this study [31].
Based on the pedogenesis of SOC and pH of the study area, elevation, MAT, MAP, and NDVI were
the main environmental variables considered in collecting samples [2,6,14,23]. The specific location of
each sampling point was recorded by a handheld global positioning system (GPS). A total of 1 kg of
subsamples were collected at each sampling point for the subsequent determination of physical and
chemical soil properties. In the Key Laboratory of Northeast Cultivated Land Conservation, Ministry
of Agriculture of the People’s Republic of China, Shenyang Agricultural University, Shenyang, the
SOC content was measured using a CN analyzer (Vario Max, Elementar Amerivas Ins., Germany)
after air drying, removing litter, grinding, and sieving. Soil pH value was determined by an electronic
acidity meter [6].

2.2.3. Environmental Variables

Ten selected environmental variables (elevation, slope gradient, topographic wetness index
(TWI), mean annual temperature (MAT), mean annual precipitation (MAP), visible-red band 3 (B3),
near-infrared band 4 (B4), short-wave infrared band 5 (B5), normalized difference vegetation index
(NDVI), and land use) were used in this study to predict SOC and pH values. These variables were
acquired through different channels and unified into the 90 m resolution raster data form in ArcGIS
10.1. Accordingly, sampling data and covariates are transformed into a united projection coordinate
system (Universal Transverse Mercator) for modeling and analysis.

A 90 m resolution digital elevation model (DEM) captured from Shuttle Radar Topography
Mission (SRTM) was used to generate elevation and slope gradient in ArcGIS 10.2, while TWI was
carried out using the SAGA GIS software [32]. MAT and MAP are two mainly climatic variables
which were obtained from the China Meteorological Data Service Center (http://data.cma.cn/en). Those
climatic data covered the previous thirty years (1980–2010) and were derived as from 1 km grid from
673 meteorological stations in China (ArcGIS 10.2). The remote sensing data of the growing season of
1982 and 2012 (July to September) were obtained from the Computer Network Information Center
of the Chinese Academy of Sciences. Remote sensing variables (B3, B4, and B5) were retained to
represent the “organisms” soil forming factor. In addition, we have also chosen the NDVI to represent
vegetation intensity.

Land use data (two periods) was in raster format and obtained from the National Science &
Technology Infrastructure of China, National Earth System Science Data Sharing Infrastructure (http:
//www.geodata.cn). According to the China’s Second National Land Survey and Land Classification
System, land use types were grouped into cultivated land, grassland, forest land, unutilized land,
and other land-use types, including villages and rock outcrops, which were coded as 1, 2, 3, 4, and
5, respectively.

http://data.cma.cn/en
http://www.geodata.cn
http://www.geodata.cn
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2.3. Random Forest Model

The RF model is a classical machine learning method [33]. It is widely used in the research of
DSM. In the training process, the RF algorithm will generate multiple trees, and each tree is generated
based on the initial training set [12]. All trees will grow to their maximum size without pruning
branches. In the RF model, data are divided into “in-bag” and “out-of-pocket” for modeling and model
validation [25,26], respectively. The average of the final prediction of all combinations is used as the
prediction value of the RF model.

Three parameters of the RF model require users to define. They are the number of trees (ntree),
number of random samples (mtry), and minimum size of data points (nodes) [23]. Normally ntree has
a default value of 500, but we found it cannot provide robust predictions. So, we defined it as 1500 in
our research. Mtry determines the model strength of each tree in the forest and the correlation between
trees. With the increase of mtry, the intensity of each tree and the correlation between trees increases.
For nodes, we use its default value of 5. The relative importance of predictive variables generated in
the process of RF model prediction is estimated based on the average decline of predictive accuracy
when the variables are arranged [26]. This relative importance is calculated to explain the percentage
of total variance, which reflects the importance of variables to the predicted attributes [18]. In order
to obtain the best and most stable prediction performance, we used the “Random Forest” package
in R statistics software [34] to iterate the RF model 100 times and get its average value as the final
prediction result.

2.4. Model Validation

Ten-fold cross-validation was used to evaluate the performance of the two-period RF model
prediction in R statistics software. Four commonly used indices, i.e., mean absolute prediction error
(MAE), root mean square error (RMSE), coefficient of determination (R2), and Lin’s concordance
correlation coefficient (LCCC), were calculated [35]. These indices were defined as below:

MAE =
1
n

n∑
i=1

|ai − bi| (1)

RMSE =

√√
1
n

n∑
i=1

(ai − bi)
2 (2)

R2 =

n∑
i=1

(
ai − bi

)2

n∑
i=1

(
bi − bi

)2
(3)

LUCC =
2r∂a∂b

∂2
a + ∂

2
b +

(
a + b

)2 (4)

where ai, bi, a, and b are the predicted values, the observed values, the average values of the predicted,
and the average values of the observed at site i, respectively; n is the number of samples; ∂a and ∂b are
the variances of observed and predicted values; and r is the Pearson correlation coefficient.

3. Results

3.1. Descriptive Statistics

Figure 2 summarizes the descriptive statistics of SOC and pH measured during the two periods,
as well as the values of the environmental variables at the sampling points. In 1982, the SOC and pH
ranged from 0.94 g·kg−1 to 58.93 g·kg−1 and 5.35 to 8.90, respectively, with an average of 16.89 g·kg−1
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and 6.98. Average SOC and pH content in 2012 was 18.16 g·kg−1 and 6.59, respectively. In 1982,
the skewness coefficients of SOC and pH were 0.91 and 0.09, respectively. The data sets showed a
generalized skewness distribution. The corresponding skewness coefficients of SOC and pH are 1.29
and 0.11 in 2012, respectively. Since SOC data did not conform to an orthogonal distribution, log
transformation was performed to make the data conform to a normal distribution during two periods.
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Figure 2. Boxplots of SOC and pH values in 1982 and 2012 derived for different environmental variables.
SOC, Soil Organic Carbon; TWI, topographic wetness index; MAP, mean annual precipitation; MAT,
mean annual temperature; B3, Landsat TM band 3; B4, Landsat TM band 4; B5, Landsat TM band 5;
and NDVI, Normalized Difference Vegetation Index.

Table 1 lists the correlation coefficients of SOC and pH with selected environmental variables over
two periods. Elevation, slope gradient, and MAP were positively correlated with SOC, while TWI, MAT,
B3, B4, NDVI, and land use were negatively correlated with SOC in both periods. Correspondingly,
TWI, MAT, NDVI, and land use were positively correlated with pH, but slope gradient and MAP were
negatively correlated with pH during two periods. By studying Table 1, it was found that there are
multiple collinearities among environmental variables. We believe that it was unreliable to predict the
spatial distribution of SOC and pH by using the traditional statistical methods equation. Therefore, the
RF method, which can avoid over-fitting and is relatively stable, was selected for spatial prediction.
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Table 1. Relationships between observed SOC (g·kg−1) and pH with all predictors in the 1982 and 2012 surveys.

Year Property SOC pH Elevation Slope Gradient TWI MAP MAT B3 B4 B5

1982

pH −0.36 **
Elevation 0.25 ** −0.12 **

Slope gradient 0.12 ** −0.19 ** 0.48 **
TWI −0.12 ** 0.32 ** −0.54 ** −0.70 **
MAP 0.62 ** −0.65 ** 0.25 ** 0.19 ** −0.24 **
MAT −0.58 ** 0.27 ** −0.58 ** −0.19 ** 0.21 ** −0.37 **

B3 −0.11 ** 0.034 −0.14 ** −0.17 ** 0.05 −0.15 ** 0.14 **
B4 −0.24 ** 0.07 * −0.17 ** −0.19 ** 0.05 −0.25 ** 0.24 ** 0.97 **
B5 −0.21 ** 0.05 −0.10 ** −0.15 ** −0.01 −0.23 ** 0.18 ** 0.94 ** 0.98 **

NDVI −0.42 ** 0.16 ** −0.11 ** −0.07 0.01 −0.32 ** 0.36 ** −0.31 ** −0.06 −0.06
Land use −0.38 ** 0.24 ** −0.17 −0.24 * −0.31 ** −0.15 0.11 −0.34 ** −0.09 −0.07

2012

pH −0.29 **
Elevation 0.18 ** 0.23 **

Slope gradient 0.12 ** −0.10 ** 0.44 **
TWI −0.11 ** 0.19 ** −0.55 ** −0.72 **
MAP 0.59 ** −0.52 ** −0.24 ** 0.12 ** −0.12 **
MAT −0.36 ** 0.11 ** −0.42 ** −0.13 ** 0.15 ** −0.21 **

B3 −0.06 −0.07 * −0.06 −0.12 ** 0.09 ** −0.12 ** 0.08 *
B4 −0.15 ** −0.05 −0.05 −0.12 ** 0.06 −0.21 ** 0.17 ** 0.97 **
B5 −0.14 ** −0.06 −0.02 −0.10 ** 0.02 −0.20 ** 0.13 ** 0.95 ** 0.98 **

NDVI −0.33 ** 0.11 ** 0.07 * 0.01 −0.11 ** −0.32 ** 0.32 ** −0.34 ** −0.12 ** −0.11 **
Land use −0.32 ** 0.21 ** −0.12 −0.23 * −0.29 ** −0.16 0.17 −0.31 ** −0.05 −0.08

Note: p < 0.05 shown in “*”; p < 0.01 shown in “**”. TWI, topographic wetness index; MAP, mean annual precipitation; MAT, mean annual temperature; B3, Landsat TM band 3; B4,
Landsat TM band 4; B5, Landsat TM band 5; and NDVI, Normalized Difference Vegetation Index.
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3.2. Uncertainties in the Present Study

The ten-fold cross-validation technique was selected to evaluate the predictive performance of
SOC and pH using the RF model in two periods as shown in Table 2. Summary statistics showed that
the RF model had systematically lower MAE and RMSE, and higher R2 and LUCC in the predictive
quality of SOC and pH in both periods. The uncertainty of the RF model prediction is shown in
Figures 3 and 4. Both predictions had lower uncertainties with a mean SD of 0.55 g·kg−1 and 0.06
for SOC and pH in 1982, respectively (Figures 3 and 4). Correspondingly, the RF model also has low
uncertainty, with the mean SD values of SOC and pH being 0.42 g·kg−1 and 0.07 in 2012, respectively.

Table 2. Summary statistics of the predictive quality of the random forest (RF) model in 1982 and 2012
for SOC and pH prediction with 100 runs.

Property Year Index Min Median Mean Max

SOC

1982

MAE 4.23 4.34 4.35 4.41
RMSE 5.61 5.62 5.71 5.82

R2 0.63 0.68 0.69 0.71
LCCC 0.81 0.81 0.81 0.83

2012

MAE 3.21 3.25 3.26 3.29
RMSE 4.31 4.38 4.39 4.43

R2 0.58 0.62 0.63 0.64
LCCC 0.75 0.78 0.79 0.81

pH

1982

MAE 0.46 0.47 0.47 0.47
RMSE 0.58 0.58 0.58 0.59

R2 0.52 0.54 0.54 0.55
LCCC 0.71 0.72 0.72 0.72

2012

MAE 0.52 0.53 0.53 0.53
RMSE 0.66 0.67 0.67 0.67

R2 0.48 0.48 0.48 0.49
LCCC 0.66 0.66 0.66 0.67

Note: MAE, the mean error; RMSE, root mean squared error; R2 coefficient of determination; and LCCC, Lin’s
concordance correlation coefficient were used to evaluate accuracy.
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3.3. Importance of the Covariates

During the two study periods, the selected environmental variables showed different levels of
importance in SOC and pH prediction (Figure 5). By repeating 100 simulations, the environmental
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variables of each model were standardized to 100% (Figure 5), and the relative importance (RI) of each
environmental variable in the RF model was evaluated. In the process of SOC and pH prediction, the
environmental variables of each variable showed different RI in two periods. Elevation, NDVI, and
land use were three important variables affecting SOC distribution in both periods. Correspondingly,
TWI and MAP were the key environmental variables affecting the spatial distribution of pH.
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Figure 5. Relative importance of each variable as determined from 100 runs of the random forest (RF)
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and normalized to 100%. TWI, topographic wetness index; MAP, mean annual precipitation; MAT,
mean annual temperature; B3, Landsat TM band 3; B4, Landsat TM band 4; B5, Landsat TM band 5;
and NDVI, Normalized Difference Vegetation Index.
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3.4. Spatial Prediction of SOC and pH

The RF model was selected and iterated 100 times to generate the spatial distribution maps of
SOC and pH for 1982 and 2012 (Figures 6 and 7). The average SOC content in 1982 (18.3 + 8.7 g·kg−1)
was higher than that in 2012 (16.7 + 7.1 g·kg−1). Similarly, the average soil pH value in 1982 (7.1 + 0.7)
was higher than that in 2012 (6.5 + 0.6). The percentage of change in area of SOC and pH at different
levels is shown in Figures 8b and 9b.
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The spatial distribution of pH showed the opposite trend with SOC in both periods. For soil pH,
it is an attribute produced in the process of soil formation, which is influenced by many natural and
human factors. As far as the nature of the soil itself is concerned, the soil is neutral and acidic (5 < pH
< 7.5), especially when it is neutral (6.5 < pH < 7.5), it is sensitive to the input of acidic substances. In
1982, the area of soil pH < 7.5 in Liaoning Province accounted for 51.3% of the total area, of which the
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area of 6.5 < pH < 7.5 was 39.2%. In 2012, the total area of cultivated land with soil pH < 7.5 accounted
for 79.1%, of which the area of 6.5 < pH < 7.5 is 34.7%.
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province, with the largest area of 37,978.1 km2, accounting for 26.6% of the total area of land. 42.1% 
of the soil pH value increased, mainly distributed in the northwest and northeast of Liaoning 
Province, with an area of 60,219.5 km2 (Figure 8). 
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Figure 9. Spatial distributions of pH change (a) and area percentages of pH (b) at different levels
between the 1982 and 2012 surveys.

From 1982 to 2012, the SOC content showed a decreasing trend in the Liaoning Province, Northeast
China. The average SOC content decreased from 18.34 g·kg−1 in 1982 to 16.81 g·kg−1 in 2012, and
decreased by 1.53 g·kg−1. SOC content in 85.43% of the study area decreased mainly in the central
and eastern part of Liaoning Province, and the range of reduction was mainly between −10 g·kg−1

and −5 g·kg−1. Among them, 42.12% of the area of SOC content decreased, mainly distributed in the
central plain area of Liaoning Province.

From the changes of the two periods, the soil in Liaoning Province showed a weak acidification
trend in the past 30 years. The areas with serious acidification were mainly in the northwest and
central regions. The area of acidification (pH < −2) was 15,118.9 km2, accounting for 10.6% of the
total soil area. Weak acidification (−1 < pH < 0) is distributed in most areas of the province, with the
largest area of 37,978.1 km2, accounting for 26.6% of the total area of land. 42.1% of the soil pH value
increased, mainly distributed in the northwest and northeast of Liaoning Province, with an area of
60,219.5 km2 (Figure 8).
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4. Discussion

4.1. Model Performance

The uncertainty of the RF model prediction is shown in Figures 3 and 4. These results revealed
that the RF model had excellent performance in predicting the spatial distribution of SOC and pH
in 1982 and 2012. It was worth noting that there might be some uncertainties in this study, such as
sampling error, experimental error, and simulation error. Although the environmental conditions,
sampling strategies, and sampling methods in this study were different from previous studies, the
performance of the RF model prediction was comparable to those studies. Were et al. [24] used the
RF model to predict the SOC stocks in an Afromontane landscape, and concluded that the RF model
could explain 52% of the spatial changes of SOC in this region. Yang et al. [23] used the RF model to
interpret SOC in the northeastern margin of the Qinghai-Tibet Plateau. They found the model could
explain 68% of the SOC changes in the region. A study in the Dano catchment (southwest Burkina
Faso), Hounkpatin et al. [36] only explained 14% of SOC stocks variability using the RF model.

4.2. Effects of Covariates on SOC and pH

Topography, as one of the five major soil-forming factors, has a vital impact on soil moisture,
temperature conditions, and spatial distribution of other soil-forming substances [17]. Therefore,
spatial variability of soil properties was closely related to topographic factors [18,22]. In this study, it
could be found that the topographic variables showed higher RI in 2012 (32% in 2012 and 19% in 1982).
The results showed that topographic variables play the most important role in SOC spatial prediction in
both periods. Altitude affects the microclimate in the region, forms different hydrothermal conditions,
and indirectly affects microbial activity, which leads to the decomposition and transformation of SOM
and the change of soil pH. This conclusion has been verified by Tsui et al. [37] and Martin et al. [38]
in their research. In addition, TWI and the slope gradient of topographic variables were important
environmental variables affecting the spatial variability of SOC in the established RF model (Figure 7
and Table 2). TWI takes into account the effects of topography and soil properties on soil moisture
distribution, and plays an important role in the spatial distribution of SOC and pH [14].

Similarly, slope gradient also affected the movement of surface soil moisture and the loss of
mineral carbon at the profile scale [18,19]. This conclusion has been confirmed in Denmark and China,
respectively [22,24]. However, in Tsui’s research, it was pointed out that slope gradient had a negative
impact on SOC spatial distribution, which could be attributed to the fact that there is lower vegetation
productivity on steeper slopes, meaning less vegetation biomass on more sloping lands. In addition,
there is less precipitation retention (more runoff) on these sloping areas and less moisture available
for plant growth. At the same time, this is also often a result of erosion, both natural and man-made.
In the process of soil erosion, most of the SOC will be displaced and redistributed along with the
soil, resulting in a sharp decline in SOC, and some of the organic carbon will be mineralized in the
process of erosion and released into the atmosphere in the form of CO2 [39]. The damage caused by
moderate erosion and severe erosion is far greater than that caused by mild erosion. Compared with
the soil that has not been eroded or slightly eroded, the SOC in the soil that has been eroded seriously
decreases due to the loss of most organic carbon. Anderson et al. [39] studied the black calcareous soils
in Saskatchewan, Canada, and found that 70% of soil organic carbon was lost on heavily eroded slopes,
while only 40% of soil organic carbon was lost on slightly eroded slopes. Harden et al. [40] found that
nearly 100% of the SOC had been lost after nearly 100 years of farmland cultivation near the Mississippi
State, USA. They believed that 80% of the lost organic carbon was caused by soil erosion. For soil pH,
higher salinity is likely due to higher erosion on sloping lands, removing less saline soil materials
and exposing more saline subsurface materials. The main reasons can be explained as follows: Soil
with high salinity has a low degree of development, low plant biomass, less humus, plant root and
microbial hyphae, dispersed soil particles, and less aggregate, which results in a high soil erodibility
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and a large amount of soil erosion under the same rainfall intensity. Soils formed on acid parent rocks
(such as granite and sandstone) generally have lower pH than those formed on limestone.

Climate variables had important effects on SOC and pH. Previous studies have shown that
SOC and pH are significantly correlated with climate variables [18,23]. MAT and MAP are the most
critical climate variables affecting the spatial distribution of SOC and pH in the region scale [18,23].
Previous studies had shown that elevation had an important impact on temperature and precipitation
in microclimatic environment [14,23]. In this study, there was a highly significant and strong negative
correlation among elevation, MAP, and MAT in the two periods (Table 2). Elevation was highly
correlated with MAT and MAP, indicating that elevation might be a more important controlling factor
than temperature and precipitation, so it could be used as a strong predictor of climate index and SOC
status [14]. However, elevation also influences both natural and man-influenced soil erosion which
directly affects SOC and pH. In high temperature and rainy areas, weathering and leaching are strong,
salt base is easy to leach, and acid soil is easy to form [19]. However, in semi-arid or arid areas, the
natural soil has less salt base leaching. On the contrary, because of the large evaporation of soil water,
the salt-based substances in the lower layer tend to accumulate in the upper layer of the soil with the
increase of capillary water, which makes the soil have a calcareous reaction [15,18].

Remote sensing variables were the main environmental variables affecting SOC in 1982, while in
2012 they were topography variables (Figure 5). NDVI (RI > 69%) had a high indicator capacity for
topsoil SOC in Liaoning Province during 1982. Vegetation patterns and composition changes as land
use and management changes, so too species change due to cropland replacing natural vegetation
change (NDVI). Solid crop canopies due to crop cover would influence NVDI differently than native
vegetation. This conclusion is consistent with previous studies [25,26]. Minasny et al. [41] revealed
that NDVI was not only an outstanding predictor, but also played an active role in soil microbial
activities, affecting the spatial distribution of SOC. NDVI had a low impact on the spatial distribution
of SOC in 2012, mainly because a large number of forests, grasslands, and wetlands were converted to
agricultural land from 1982 to 2012. Some studies [8,14,42] concluded that since China’s reform and
opening up in the 1980s, land-use change has had a significant impact on the spatial change of SOC.
The effect of vegetation on pH is mainly due to the selective absorption of ions by plant roots and the
activity of soil microorganisms [2,9]. Soil under coniferous forests is beneficial to fungal growth, and
the soil is acidic. In addition, the effect of artificial fertilization is more significant now. In the fields
where acid fertilizers such as ammonium sulfate are often applied, the soil becomes acidic [16]. Among
all remote sensing variables, NDVI and B3 were the key variables affecting SOC prediction in 2012.
B4 and B5 could indirectly reflect the status of land use, so they could represent the spatial change
of SOC under different land-use patterns. Wiesmeier et al. [43] and Adhikari and Hartemink [44]
suggested that NDVI, B3, and B4 were the main predictors of SOC spatial distribution, which was
consistent with our research. For soil pH, NDVI and B3 were the crucial remote sensing variables
affecting its spatial distribution in 2012. In addition, the high spatial resolution remote sensing data
could significantly improve the prediction performance of the model, which could be attributed to
the fact that high-precision remote sensing data can better characterize the vegetation variation in
the region.

Land use has a significant impact on SOC and pH by affecting soil properties and biomass
production. Rapid changes in land use, such as the transition from forest to cultivation or grassland,
have resulted in completely different soil environments in terms of soil moisture and temperature. It
significantly affects the kinetics of organic matter accumulation and decomposition. Zhao et al. [45]
reported that SOM increased the most in Jiangsu Province when dry land was changed into paddy
fields in the past 26 years, which was 5.4 ± 3.9 g·kg−1. From 1982 to 2012, SOC changed with land-use
types. In the absence of land-use change, SOC has also undergone substantial changes. This can be
attributed to a large number of crop production activities and human activities (building houses and
roads, etc.), but no increase in soil biomass input. Zhao et al. [46] considered the profile characteristics
of pH value and exchangeable acid of red soil under different vegetation types. It was concluded that
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acid-causing substances secreted by plant aboveground parts and roots could promote surface soil
acidification through leaching and ion exchange. In addition, surface soil acidification also could be
due to the use of acid forming fertilizers as land is converted to crop production. Guo et al. [47] showed
that vegetation types could affect the movement of soil salt ions (i.e., Cl−, SO2

−4, CO2
−3, HCO−3, Na+,

K+, Mg2+, and Ca2+).

4.3. Estimates of SOC and pH

During these two periods, the spatial distribution of SOC showed a trend of low in the southwest
and high in the east. The areas with high SOC content usually occurred under grassland and forest
landscape units, which were usually less influenced by human beings. However, the areas with low
SOC content mainly concentrated in low altitude plain areas, which were often disturbed by human
activities. In 1982, we concluded that the spatial distribution pattern of SOC was closely related
to the distribution of vegetation-related variables such as NDVI, which had been proved in recent
studies [14,19,25]. Elbasiony et al. [48] revealed that vegetation affects SOM content by affecting the
amount of vegetation litter entering the soil. In addition, the tillage also promoted OM oxidation of
SOM/SOC. Surprisingly, the spatial distribution of SOC content in 2012 was also closely related to the
topographic variables, especially elevation (Figure 5). Recent studies had demonstrated the effect of
elevation on SOC [18,19,22,23]. Were et al. [24] concluded that SOC increased with altitude under an
African mountainous landscape. Different elevation gradients affected SOC input and loss mainly
through precipitation, temperature, and indirect control. Different altitudes can form different climatic
zones, resulting in different precipitation and temperatures, thus indirectly affecting the input and loss
of organic matter [14].

In 1982 and 2012, the spatial distribution pattern of pH was opposite to that of SOC. Soil pH is an
attribute of soil formation, which is affected by many natural and human factors. This is mainly due
to the input of acidic substances (mainly due to the use of acid-forming fertilizers and unreasonable
planting and management methods) leading to the slow acidification of land soil. Overall, the area of
land soil acidified in Liaoning Province has reached 82.1% in the past 30 years. In view of the present
situation of land in Liaoning province, we need to improve management to reduce soil acidification.
Emphasis is put on the use of soil acidifiers such as lime, calcium, magnesium, phosphorus, potassium,
silicon, and chemical fertilizers, combined with straw returning and organic fertilizer application,
which can effectively improve soil pH, improve soil aggregate structure and physical and chemical
properties, improve the growth conditions of crop roots, and reduce soil acidification [1,6]. Less
salt-based ion leaching and leaching of active aluminum in soil can reduce the activity of heavy metals
in soil, thus improving the quality of cultivated land and crop yield and quality [2,9].

From 1982 to 2012, the SOC content showed a decreasing trend in the Liaoning Province, Northeast
China. It is mainly distributed in the central plain area of Liaoning Province, which was the main
commodity grain production area of Liaoning Province, with a long history of reclamation, leading to a
significant reduction in SOC content. In Northeast China, Wang et al. [49] found that, with the increase
of land reclamation years, the amount of SOC in topsoil decreased significantly. Their analysis showed
that the mineralization rate of SOC after land reclamation was higher than that before reclamation, and
the amount of SOC returned annually decreased with the increase of reclamation years. The increase of
SOC content accounted for only 14.6% of the total study area, mainly distributed in the southwestern
and southern coastal areas of Liaoning Province, which was closely related to the implementation of
the policy of returning farmland to forestry and grassland in this region. In the southern coastal area
of Liaoning Province, Wang et al. [14] used a BRT model to predict the soil organic carbon content in
the two periods of the study area. They found that the area was characterized by carbon accumulation
in the past 20 years, and pointed out that the policy of returning farmland to forestry was the main
reason for the increase of SOC in this area.
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5. Conclusions

We used the RF model to predict the spatial distribution characteristics of SOC and pH at two
periods (1982 and 2012), based on which we determined the key environmental factors affecting their
spatial-temporal changes. The results showed that the RF model was a powerful and effective DSM
modeling method for predicting SOC and pH spatial patterns in both periods based on higher R2

and LUCC, and lower MAE and RMSE. Surprisingly, the spatial distribution patterns of SOC and
pH presented opposite patterns in the two periods. Over the 30-year period, the mean SOC and
pH decreased from 18.75 to 16.89 kg−1 and 6.98 to 6.59, respectively. The northeastern part of the
study area had higher SOC levels than the rest of the area. We found elevation and NDVI were the
two key variables affecting SOC distribution in both periods, while TWI and MAP was the main
drivers affecting the spatial distribution of pH. Overall, this study mapped SOC and pH through
DSM techniques with reasonable accuracy. Our findings from this study could promote ecological
restoration, assist soil conservation, agricultural production planning, and environmental management
in a more rational manner for Liaoning Province in northeastern China.
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