Research Highlights

 

Habitability and Biosignature Preservation on Mars

The Curiosity rover of the Mars Science Laboratory mission is investigating ancient habitable environments in Gale crater, Mars. Prof. Horgan is a Participating Scientist on the mission, and is investigating how mineralogy and chemistry can be used to constrain past surface and subsurface environments. In the lab, we have shown that the abundant poorly crystalline materials identified in every MSL drill sample to date are similar to weathering products formed in cold environments on Earth. On Mars, we use multispectral images from the Mastcam camera system to study the mineralogy of the ancient sediments in Gale crater, and to help determine whether the minerals formed in the ancient lake, during burial of the sediments to turn them into rocks, or due to later fluids that moved through the rocks. Our work has shown that all three processes have played a role in producing the minerals within the sediments of Gale crater, and that the aqueous history of Gale is just as complicated as large sedimentary basins on Earth.

The Perseverance rover on the Mars 2020 mission is following up on Curiosity’s results in the ancient lake and delta environment of Jezero crater, by taking the next step to look for biosignatures, or signs of ancient microbial life preserved in the rocks. Prof. Horgan is a Co-Investigator on the Mastcam-Z camera system. The mission landed in February 2021 and explored the Jezero crater floor for a year before reaching the delta in April 2022. Outside of the mission, we’re currently conducting field studies of analogs for an ancient Jezero lake. Our work has shown that Jezero crater may preserve ancient carbonate shoreline deposits, which are a great place to search for ancient microbial biosignatures. These "bathtub ring" carbonates will be a key target for the rover.

Mastcam on the Curiosity rover took this mosaic on sol 1516 (Nov. 10, 2016), showing the red hematite-bearing lacustrine mudstones of the Vera Rubin ridge in the foreground, the clay-bearing rocks of the Glen Torridon valley where Curiosity is exploring today, and the Gediz Vallis river channel in the background.

 

Mineralogy and Paleoclimates on Ancient Mars

The climate of Mars has changed over time, from a wetter ancient environment 3+ billion years ago to the cold, dry and icy climate of today. However, how much liquid water has been present over time and its source (rainfall or snowmelt?) is not well understood. Our approach to this problem is to use minerals that formed due to surface weathering to constrain the climate. Our field research at Mars analog sites like the Three Sisters glaciated volcanic complex and the John Day Fossil Beds volcanic paleosol sequence has shown that on Earth, chemical weathering by rain and snow produce different alteration minerals, and the same should be true for Mars. The crystalline clay minerals found from orbit in the most ancient martian rocks and sediments appear to be consistent with long-term weathering under warmer climates, while the poorly crystalline alteration products identified from orbit and by rovers in less ancient and modern sediments appear to be consistent with rain and snow melt.

Collier glacier valley, North Sister OR in July 2016. This volcanic site is an excellent analog for weathering under cold and icy climates on Mars, and the sediments created by the glacier contain up to 30 wt% poorly crystalline alteration products, similar to those that have been found in lake sediments on Mars by the Curiosity rover.

 

Impacts and Volcanism on the Moon and Mars

Impacts and volcanism have shaped the surface of every planetary body. We use the mineralogy of deposits from these processes to help understand the geologic evolution of Mars and the Moon. In particular, our group has developed new techniques for mapping glass and other iron-bearing minerals across planetary surfaces. We have shown that glass is a major component of sediments on Mars, probably due to both impact and volcanic processes. Through lab work with analog samples, we have found that concentrated glass in volcanic sediments is a result of water-magma interactions during eruption, and that this process can also produce abundant poorly crystalline alteration minerals like palagonite. On the Moon, we have shown that the distribution of glass within pyroclastic deposits can be used to infer eruption style and magma volatile contents. On both Mars and the Moon, our mineral mapping combined with impact modeling from Prof. Melosh's group has shown that some basin forming impacts have been large enough to excavate mantle material - an exciting target for sample return missions!

Dark sand erodes out of layers in the north polar ice cap of Mars, forming the Abalos Undae dune field, as imaged by HIRISE in grayscale and color (NASA/JPL/University of Arizona). Orbital spectra shows that the ice cap contains fine-grained sediments from a variety of impact and volcanic sources, but that the sand creating the dunes is mainly glass, perhaps in the form of impact spherules.

 

Publications

P = Postdoc, G = graduate student, U = undergraduate student
Updated 08/28/2019

[64] R. Smith*, S. McLennan, B. Sutter, E. Rampe, E. Dehouck, K. Siebach, B. Horgan, V. Sun, A. McAdam, C. Achilles, N. Mangold, and M. Salvatore. X-ray amorphous sulfur-bearing phases in Gale crater sedimentary rocks, Mars. Journal of Geophysical Research - Planets, accepted.

[63] S. Ruff*, V. Hamilton, A. D. Rogers, C. Edwards, B. Horgan (2022). Olivine and carbonate-rich bedrock in Gusev crater and the Nili Fossae region of Mars may be altered ignimbrite deposits, Icarus, 380, doi: 10.1016/j.icarus.2022.114974.

[62] P. SinhaG* and B. Horgan (2022), Sediments within the icy north polar deposits of Mars record recent impacts and volcanism, Geophysical Research Letters, 49, doi:10.1029/2022GL097758.

[61] A. BrozG*, J. Clark, B. Sutter, D. Ming, V. Tu, B. Horgan, L. Silva (2022). Mineralogy and diagenesis of Mars-analog paleosols from eastern Oregon, USA, Icarus, 380, doi:10.1016/j.icarus.2022.114965.

[60] E. Rampe*, B. Horgan, R. SmithP, N. ScudderG, E. BamberU, A. RutledgeP, R. Christofferson (2022). A Mineralogical Study of Glacial Flour from Three Sisters, Oregon: An Analog for a Cold and Icy Early Mars. Earth and Planetary Science Letters, 471, 1782-185, doi:10.1016/j.epsl.2017.04.021.

[59] J. Tarnas*, K. Stack, M. Parente, A. Koeppel, J. Mustard, K. Moore, B. Horgan, F. Seelos, E. Cloutis, P. Kelemen, D. Flannery, A. Brown, K. Frizzell, P. Pinet (2021). Characteristics, origins, and biosignature preservation potential of carbonate-bearing rocks within and outside of Jezero crater, Journal of Geophysical Research - Planets, 126, doi: 10.1029/2021JE006898.

[58] N. Mangold*, S. Gupta*, O. Gasnault, G. Dromart, J. Tarnas, S. Sholes, B. Horgan, and 32 others (2021). Perseverance rover finds a delta-lake system and ancient flood deposits at Jezero crater, Mars. Science, 374, 711-717, doi:10.1126/science.abl4051.

[57] S. Holm-Alwmark*, K. Kinch, M. Hansen, S. Shahrzad, K. Svennevig, W. Abbey, R. Anderson, F. Calef III, S. Gupta, E. Hauber, B. Horgan, and 7 others (2021). Stratigraphic Relationships in Jezero Crater, Mars – Constraints on the Timing of Fluvial-Lacustrine Activity from orbital observations, Journal of Geophysical Research - Planets, doi: 10.1029/2021JE006840.

[56] K. Bennett*, F. Rivera-Hernandez, C. TinkerU, B. Horgan, D. Fey, C. Edwards, L. Edgsar, R. Kronyak, K. Edgett, A. Fraeman, L. Kah, M. HendersonG, N. Stein, E. Dehouck, A. Williams (2021). Extensive diagenesis revealed by fine-scale features at Vera Rubin ridge, Gale crater, Mars, Journal of Geophysical Research – Planets, 126, doi:10.1029/2019JE006311

[55]  R. SmithP* and B. Horgan (2021). Nanoscale variations in natural amorphous and nanocrystalline weathering products in mafic to intermediate volcanic terrains on Earth: Implications for amorphous detections on Mars. Journal of Geophysical Research – Planets, 126, doi:10.1029/2020JE006769.

[54]  R. Smith*, S. McLennan, C. Achilles, E. Dehouck, B. Horgan, N. Mangold, E. Rampe, M. Salvatore, K. Siebach, V. Sun (2021) X-ray amorphous components in sedimentary rocks of Gale crater, Mars: Evidence for ancient formation and long-lived aqueous activity, Journal of Geophysical Research - Planets, doi:10.1029/2020JE006782.

[53]  K. Kinch*, J. Sølberg, B. Horgan, J. Adler, A. Hayes, J. Hurowitz, M. Rice (2021), Landing on Mars: A cross-institutional research-based seminar series, International Journal of Teaching and Learning in Higher Education, accepted.

[52]  J. Bell*, 34 co-authors, B. Horgan, and 13 others (2021). The Mars 2020 Perseverance rover Mast Camera Zoon (Mastcam-Z) Multispectral Stereoscopic Imaging Investigation, Space Science Reviews, 217doi:10.1007/s11214-020-00755-x.

[51]  A. Hayes*, P. Corlies, C. Tate, J. Bell, J. Maki, M. Caplinger, K. Kinch, K. Herkenhoff, B. Horgan, and 30 others (2021) Pre-flight calibration of the Mars 2020 rover Mastcam Zoom (Mastcam-Z) Multispectral Stereoscopic Imager, Space Science Reviews, 217, doi:10.1007/s11214-021-00795-x.

[50]  M. HendersonG*, B. Horgan, M. Rowe, K. Wall, N. ScudderG (2021), Determining the eruption style of explosive volcanic eruptions from spectroscopy of tephra deposits. Earth & Space Sciences, accepted, doi:10.1029/2019EA001013.

[49]  N. ScudderG*, B. Horgan, E. Rampe, R. Smith, A. Rutledge (2021), The effects of magmatic evolution, crystallinity, and microtexture on the visible/near-infrared and thermal-infrared spectra of volcanic rocks, Icarus, 359, doi:10.1016/j.icarus.2021.114344.

[48]  B. Horgan*, J. Johnson, A. Fraeman, M. Rice, C. Seeger, J. Bell, K. Bennett, E. Cloutis, and 10 others (2020), Diagenesis of Vera Rubin ridge, Gale crater, Mars from Mastcam multispectral images, Journal of Geophysical Research – Planets, 125, doi: 10.1029/2019JE006322.

[47]  A. Fraeman*, 27 co-authors, B. Horgan, and 13 others (2020), The origin of Vera Rubin ridge, Gale crater, Mars: Summary and synthesis of Curisoitys exploration campaign, Journal of Geophysical Research – Planets, accepted, doi: 10.1029/2020JE006527.

[46]  A. Fraeman*, J. Johnson, R. Arvidson, M. Rice, D. Wellington, R. Morris, V. Fox, B. Horgan, S. Jacob, M. Salvatore, V. Sun, P. Pinet, J. Bell, R. Wiens, A. Vasavada (2020), Synergistic ground and orbital observations of iron oxides on Mt. Sharp and Vera Rubin ridge, Journal of Geophysical Research – Planets, 125, doi: 10.1029/2019JE006294.

[45]  S. Jacob*, D. Wellington, J. Bell, C. Achilles, A. Fraeman, G. Peters, J. Johnson, B. Horgan, E. Rampe, L. Thompson, R. Wiens, S. Maurice (2020), Spectral, Compositional, and Physical Properties of the Upper Murray Formation and Vera Rubin Ridge, Gale Crater, Mars, Journal of Geophysical Research – Planets, 125, doi: 10.1029/2019JE006290.

[44]  J. LHaridon*, N. Mangold, A. Fraeman, J. Johnson, A. Cousin, W. Rapin, G. David, E. Dehouck, V. Sun, J. Frydenvang, O. Gasnault, P. Gasda, N. Lanza, O. Forni, P.-V. Meslin, S. Schwenzer, J. Bridges, B. Horgan, C. House, M. Salvatore, S. Maurice, R. Wiens (2020), Iron Mobility during Diagenesis as Observed by ChemCam at the Vera Rubin Ridge, Gale Crater, Mars, Journal of Geophysical Research – Planets, 125, doi:10.1029/2019JE006299.

[43]  K. Stack*, 41 co-authors, B. Horgan, and 23 others (2020). Photogeologic Map of the Perseverance Rover Field Site in Jezero Crater Constructed by the Mars 2020 Science Team, Space Science Reviews, 216, 127, doi: 10.1007/s11214-020-00739-x.

[42] N. Balci, Y. Gunes, J. Kaiser, S. Acker, K. Edis, B. GarczynskiG, B. Horgan (2020), Biotic and abiotic imprints on Mg-rich stromatolites: lessons from Lake Salda, SW Turkey, Biogeosciences, 37, doi: 10.1080/01490451.2019.1710784.

[41] J. Bishop, C. Gross, J. Danielson, M. Parente, S. Murchie, B. Horgan, J. Wray, C. Viviano, F. Seelos (2020), Multiple mineral horizons in layered outcrops at Mawrth Vallis, Mars, signify changing geochemical environments on Mars, Icarus, accepted.

[40] J. Huang, Z. Xiao, L. Xiao, B. Horgan, X. Hu, P. Lucey, X. Xiao, S. Zhao, Y. Qian, R. Xu, B. Xue, H. Hang, VNIS PCAM TCAM LCAM team (2020), No olivine-rich mantle material has been detected by Chang’E-4 in-situ observation, Geology, accepted.

[39] S. WarrenG, E. Kite, J-P. Williams, B. Horgan (2019), Through the thick and thin: New constraints on Mars paleopressure history 3.8 - 4 Ga from small exhumed craters. Journal of Geophysical Research, 124, doi: 10.1029/2019JE006178.

[38] R. SmithP and B. Horgan, Nano-scale variations in natural amorphous and short-range order materials, American Mineralogist, submitted.

[37] S. AckissG, B. Horgan, N. ScudderG, J. Gudnason, R. SmithP, C. Haberle, T. Thorsteinsson, The composition and crystallinity of Icelandic palagonites: An analog study for Mars, Journal of Geophysical Research - Planets, in revision.

[36] M. McBrideG, B. Horgan, M. Rowe, K. Wall, N. ScudderG. Determining the volcanic eruption Style of tephra deposits from infrared spectroscopy, Earth and Space Science, in revision.

[35] P. KinzelmanU, J. ForssU, M. SudaU, B. Horgan (2020). Preservation of surface and subsurface environments on Mars in filled fractures at Mawrth Vallis. Journal of Purdue Undergraduate Research, 9, 42-48, doi:10.5703/1288284316931.

[34] I. Smith, P. Hayne, S. Byrne, P. Becerra, M. Kahre, W. Calvin, C. Hvidberg, S. Milkovich, P. Buhler, M. Landis, B. Horgan, and 27 others,The holy grail: A strategy for unlocking the climate record stored within Mars' polar layered deposits, Icarus, accepted.

[33] F. Poulet, C. Gross, B. Horgan, D. Loizeau, J. Bishop, J. Carter, C. Orgel, J.-P. Bibring. Mawrth Vallis, Mars: A fascinating place for future in situ exploration, Astrobiology, accepted.

[32] B. Horgan, R. Anderson, G. Dromart, E. Amador, M. Rice, The mineral diversity of Jezero crater: Evidence for possible lacustrine carbonates on Mars, Icarus, 339, doi: 10.1016/j.icarus.2019.113526.

[31] M. Yant, D. Rogers, and B. Horgan, Spectral evidence for recent acid alteration on the martian surface, Icarus, in revision.

[30] iMOST (2019) The Potential Science and Engineering Value of Samples Delivered to Earth by Mars Sample Return, (co-chairs D. W. Beaty, M. M. Grady, H. Y. McSween, E. Sefton-Nash; documentarian B. L. Carrier; plus 66 co-authors), Meteoritics & Planetary Science, 54(3), 667-671 (executive summary only), doi:10.1111/maps.13232; open access web link to full report (Meteoritics & Planetary Science, vol. 54, S3-S152): doi:10.1111/maps.13242.

[29] J. Lai, B. Horgan, J. Bell (2019) Assessing martian bedrock mineralogy through “windows” in the dust using near-infrared and thermal-infrared remote sensing, Icarus, doi:10.1016/j.icarus.2019.01.019

[28] R. SmithP, E. Rampe, B. Horgan, E. DeHouck (2018) Deriving amorphous component abundance and composition of rocks and sediments on Earth and Mars, Journal of Geophysical Research - Planets, doi:10.1029/2018JE005612.

[27] E. Rampe, M. Lapotre, T. Bristow, R. Arvidson, R. Morris, C. Achilles, C. Weitz, D. Blake, D. Ming, S. Morrison, D. Vaniman, S. Chipera, R. Downs, J. Grotzinger, R. Hazen, T. Peretyazhko, B. Sutter, V. Tu, A. Yen, B. Horgan, and 9 others (2018) Sand mineralogy within the Bagnold Dunes, Gale crater, as observed in situ and from orbit, Geophysical Research Letters, doi:10.1029/2018GL079073.

[26] A. RutledgeP, B. Horgan, J. Havig, E. Rampe, N. ScudderG, T. Hamilton (2018) Silica dissolution and precipitation in glaciated volcanic environments, and implications for Mars, Geophysical Research Letters, doi:10.1029/2018GL078105.

[25] T. Bristow, E. Rampe, C. Achilles, D. Blake, S. Chipera, P. Craig, J. Crisp, D. Des Marais, R. Downs,R. Gellert, J. Grotzinger, R. Hazen, B. Horgan, and 12 others (2018), Clay mineral diversity and abundance in sedimentary rocks of Gale crater, Mars, Science Advances,4, doi:10.1126/sciadv.aar3330.

[24] S. AckissG, B. Horgan, F. Seelos, W. Farrand, J. Wray (2018), Mineralogic evidence for subglacial volcanism in the Sisyphi Montes Region of Mars, Icarus, 311, 357-370, doi:10.1016/j.icarus.2018.03.026.

[23] H. Melosh, J. Kendall, B. Horgan, B. Johnson, T. Bowling, P. Lucey, G. Taylor (2017). South Pole-Aitken basin ejecta reveal the Moon’s upper mantle, Geology, 45(12), 1063-1066, doi:10.1130/G39375.1

[22] L. Hays, H. Graham, B. Horgan, S. Potter-McIntyre, A. Williams, D. Des Marais, M. Parenteau, E. Hausrath, T. McCollom, K. Lynch (2017). Report from the Biosignature Preservation and Detection in Mars Analog Environments Workshop, Astrobiology, 17, 363-400, doi:10.1089/ast.2016.1627.

[21] R. Smith, B. Horgan, P. Mann, E. Cloutis, P. Christensen(2017). Acid weathering of basalt and basaltic glass: II. Effects of microscopic alteration textures on spectral properties, Icarus, doi:10.1002/2016JE005112.

[20] B. Horgan, R. Smith, P. Mann, E. Cloutis, P. Christensen(2017). Acid weathering of basalt and basaltic glass: I. Near-infrared spectra, mid-infrared spectra, and implications for Mars, Icarus, doi:10.1002/2016JE005111.

[19] L. Fenton, J. Bishop, S. King, B. Lafuente, B. Horgan, D. Bustos, P. Sarrazin (2017). Sedimentary differentiation of aeolian grains at the White Sands National Monument, NM, USA, Aeolian Research, 26, 117-136, doi:10.1016/j.aeolia.2016.05.001.

[18] B. Ehlmann, F. Anderson, J. Andrews-Hanna, J. Carter, D. Catling, P. Christensen, B. Cohen, C. Dressing, C. Edwards, L. Elkins-Tanton, K. Farley, C. Fassett, W. Fischer, A. Fraeman, M. Golombek, V. Hamilton, A. Hayes, C. Herd, B. Horgan, and 28 others (2016).The sustainability of habitability on terrestrial planets: Insights, questions, and needed measurements from Mars for understanding the evolution of Earth-like worlds, Journal of Geophysical Research, doi:10.1002/2016JE005134.

[17] K. Bennett, B. Horgan, L. Gaddis, B. Greenhagen, C. Allen, P. Hayne, J. BellM, and D. Paige (2016). Complex explosive volcanic activity within Oppenheimer Crater on the Moon, Icarus,273, 296–314, doi:10.1016/j.icarus.2016.02.007.

[16] R. Soare, B. Horgan, S. Conway, C. Souness, M. El Maarry (2015). Volcanic terrain and the possible periglacial formation of “excess ice” at the mid-latitudes of Utopia Planitia, Mars, Earth & Planetary Science Letters, 423, 182–192, doi:10.1016/j.epsl.2015.04.033.

[15] K. Lynch, B. Horgan, J. Munakata Marr, J. Hanley, and 5 others (2015). Near-infrared spectroscopy of lacustrine sediments in the Great Salt Lake Desert: An analog study for Martian paleolake basins, J. Geophys. Res., 120, doi:10.1002/2014JE004707.

[14] B. Horgan and D. Hooper (2015). Dune Apron/Denivation Features (two entries), in Encyclopedia of Planetary Landforms, eds: H. Hargitai, A. Kereszturi, doi:10.1007/978-1-4614-9213-9.

[13] W. Farrand, T. Glotch, B. Horgan (2014). Detection of copiapite in the northern Mawrth Vallis region of Mars: Evidence of acid sulfate alteration. Icarus, 241, 346-357, doi:10.1016/j.icarus.2014.07.003.

[12] B. Horgan, E. Cloutis, P. Mann, J. BellM(2014). Near-infrared spectra of ferrous mineral mixtures and methods for their identification in planetary surface spectra, Icarus, 234, 132-154, doi:10.1016/j.icarus.2014.02.031.

[11] B. Horgan (2013). Planetary Science: Evolved Magma on Mars (News & Views). Nature Geoscience, doi:10.1038/ngeo2010.

[10] L. Fenton, R. Hayward, B. Horgan, and 15 others (2013) Summary of the Third International Planetary Dunes Workshop: Remote Sensing and Image Analysis of Planetary Dunes, Flagstaff, Arizona, USA, June 12–15, 2012. Aeolian Research, 8, 29-38, doi:10.1016/j.aeolia.2012.10.006.

[9] G. Berard, D. Applin, E. Cloutis, J. Stromberg, R. Sharma, P. Mann, S. Grasby, R. Bezys, B. Horgan, and 7 others (2013). A hypersaline spring analogue in Manitoba, Canada for potential ancient spring deposits on Mars. Icarus, 224, 399–412, doi:10.1016/j.icarus.2012.12.024.

[8] M. Rice, E. Cloutis, J. Bell, D. Bish, B. Horgan, S. Mertzman, M. Craig, R. Renaut, B. Gautason, B. Mountain (2013). Reflectance spectra diversity of silica-rich materials: Sensitivity to environment and implications for detections on Mars. Icarus, 223, 499-533, doi:10.1016/j.icarus.2012.09.021.

[7] J. Huang, C. Edwards, B. Horgan, P. Christensen, M. Kraft, L. Xiao (2012). Identification and mapping of dikes with relatively primitive compositions in Thaumasia Planum on Mars: Implications for Tharsis volcanism and the opening of Valles Marineris. Geophysical Research Letters, 39, L17201, doi:10.1029/2012GL052523.

[6] B. Horgan, J. Bell (2012). Widespread weathered glass on the surface of Mars, Geology, 40, 391-394, doi:10.1130/G32755.1.

[5] B. Horgan, J. Bell (2012). Seasonally active slipface avalanches in the north polar sand sea of Mars: Evidence for a wind-related origin, Geophysical Research Letters, 39, L09201, doi:10.1029/2012GL051329.

[4] L. Fenton, M. Bishop, M. Bourke, C. Bristow, R. Hayward, B. Horgan, and 5 others (2010). Summary of the Second International Planetary Dunes Workshop: Planetary Analogs — Integrating Models, Remote Sensing, and Field Data. Aeolian Research,2, 173-178, doi:10.1016/j.aeolia.2010.09.001.

[3] B. Horgan, J. Bell, E. Noe Dobrea, E. Cloutis, D. Bailey, M. Craig, L. Roach, J. Mustard (2009). Distribution of hydrated minerals in the north polar region of Mars, Journal of Geophysical Research,114, E01005, doi:10.1029/2008JE003187.

[2] M. Kangas, M. Ansmann, B. Horgan, N. Lemaster, R. Leonardi, A. Levy, P. Lubin, J. Marvil, P. McCreary, T. Villela (2005). A 31 pixel flared 100-GHz high-gain scalar corrugated nonbonded platelet antenna array, IEEE: Antennas and Wireless Propagation Letters, 4, 245-248, doi:10.1109/LAWP.2005.852578.

[1] M. Kangas, M. Ansmann, K. Copsey, B. Horgan, R. Leonardi, P. Lubin, T. Villela (2005). A 100-GHz High-gain Tilted Corrugated Nonbonded Platelet Antenna, IEEE: Antennas and Wireless Propagation Letters, 4, 304 – 307, doi:10.1109/LAWP.2005.855638.