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a b s t r a c t

We develop an inventory of global N2O emissions from natural ecosystem soils using an artificial neural
network approach and field observational data of N2O fluxes. We estimate that the global soil N2O source
strength from natural ecosystems is 3.37 Tg (1 Tg ¼ 1012 g) N per year with an uncertainty ranging from
1.96 to 4.56 Tg N per year in 2000. While our global estimate is lower than other existing estimates, the
spatial patterns of our simulated N2O emissions agree with other existing studies. There was a large
spatial and seasonal variability in the soil N2O emissions due to the variation in soil type, vegetation and
climate conditions. Consistent with other studies, we confirm that warm and moist tropical soils are the
major source of atmospheric N2O. As a result of the low temperatures, the high latitude ecosystems have
significantly low emission rates and contribute little (less than 0.10 Tg N per year) to the global N2O
source. The simulated annual global N2O emissions are found to be most sensitive to variation in
precipitation. This study uses the most current available data for N2O fluxes and their associated envi-
ronmental variables to quantify the global N2O emissions, and provides an independent global inventory
of this important trace gas, which will facilitate future studies of atmospheric chemistry and climate
feedbacks at the global scale.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Atmospheric nitrous oxide (N2O) is one of the most important
trace gases, contributing 0.16 Wm�2 of radiative forcing to global
warming. On a molar basis, its global warming potential is about
296 times that of CO2 on a 100-year time horizon (IPCC, 2007). The
reaction of N2O with oxygen atoms plays an important role in
stratosphere ozone depletion, producing NO, which in turn reacts
with ozone. The atmospheric concentration of N2O has increased
from 270 ppb in preindustrial times to the current level of 319 ppb.
N2O is mainly of biogenic origin. The soils of natural ecosystems
have been recognized as onemajor source of N2O. Currently, soils of
natural ecosystems are considered to emit 6.6 Tg N yr�1 of N2O,
which is about 37% of the total global surface emissions (IPCC,
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2007). This reported soil emission rate is based on a single model
estimate from Bouwman et al. (1995). However, to date, there are
more available data from laboratory experiments and field
measurements. In addition, the mechanistic understanding of the
processes and controls of soil N2O emissions have also advanced.
Thus, current emission estimates should be revised to take
advantage of the available data and knowledge.

N2O emissions from soils are produced predominantly by the
microbial processes of nitrification and denitrification, while
denitrification is also a sink for N2O (Conrad, 1996; Smith and
Conen, 2004). The factors controlling N2O emissions have been
extensively reviewed (e.g., Skiba and Smith, 2000; Bouwman et al.,
2002a). Owing to the improved knowledge of the processes and
factors responsible for N2O emissions, the bottom-up approaches,
including process-based models (e.g., Li et al., 1992; Parton et al.,
1996; Butterbach-Bahl et al., 2009) and empirical methods (e.g.,
Bouwman, 1996; Bouwman et al., 2002b; Flynn et al., 2005), have
been used extensively to estimate N2O emissions from agricultural
soils at site, regional, and global scales. In contrast with the
extensive studies on emissions from agricultural soils, less effort
has been made on the estimation of emissions from soils under
natural vegetation. Stehfest and Bouwman (2006) summarized the
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published field measurement data and developed a statistical
emission model for soils under natural vegetation, but they did not
provide an estimate at the global scale due to lack of data. More
recently, Werner et al. (2007a) estimated the total N2O source
strength of 1.34 Tg N yr�1 with an uncertainty range of
0.88e2.37 Tg N yr�1 from the global tropical rainforest soils using
a biogeochemical model, the DeNitrificationeDeComposition
(DNDC) model. To our knowledge, there is a gap in the develop-
ment of a global inventory of N2O emissions from the soils of
natural ecosystems. In this study we attempt to fill in this gap using
an Artificial Neural Network (ANN) approach as well as the avail-
able observational data of N2O fluxes.

The ANN approach has appeared as a great alternative to clas-
sical statistical modeling in many disciplines (e.g., Anghel and
Ozunu, 2006; Delon et al., 2007; Dupont et al., 2008). It is partic-
ularly useful in quantifying the responses of non-linear processes
like soil N2O emissions, which are determined by numerous direct
and indirect factors. In this study, we first use the ANN approach to
find the best non-linear regression between key environmental
factors and N2O emission fluxes. Drivenwith spatially-explicit data
of monthly climate, soils, and topography, the developed ANN is
then extrapolated to the global terrestrial ecosystem to develop
a global soil N2O emission inventory.

2. Methods

2.1. Data organization

To begin, we collect direct N2O measurements of various
terrestrial ecosystems from peer-reviewed literature (e.g., Wang
et al., 2003; Mo et al., 2006; Stehfest and Bouwman, 2006). Our
data contain 209 records for natural ecosystems at 64 sites
(Table 1). The observed sites cover a range of ecosystem types
including forests, savannas, shrublands, and grasslands under
various field conditions related to climate, soils, site management
and measurement techniques. The emissions are recorded as the
sum of emissions over a measurement period, which ranges from
a few days to several years. If the measurements cover more than
a one-year period, the emission values are then averaged to get
single-year values at a monthly time step.

To generate a complete dataset covering various ecosystem
types, we retrieve climate and soil property information from the
original literature. Specifically, climate information is derived from
a historical climate database from the Climate Research Unit (CRU)
(Mitchell and Jones, 2005). Soil organic carbon and nitrogen and
bulk density in the top soil (0e30 cm) are taken from the World
Inventory of Soil Emission Potentials (ISRIC-WISE) spatial soil
database (Batjes, 2006). Based on the geographic coordinates and
experiment date of the measurement retrieved from the original
research papers, we compile the data of precipitation (P), mean air
temperature (T) of the experiment periods, soil organic carbon
(SOC), soil nitrogen content (SN), and bulk density (BD) for all
experiment sites used in this study.

2.2. Neural network development

We adapt a General Regression Neural Network (GRNN) algo-
rithm (Specht, 1991) to represent non-linear mapping between the
independent variables and dependent variable. GRNN approxi-
mates any arbitrary function between the input and output vectors
of these independent and dependent variables, drawing the func-
tion estimate directly from the training data (Cigizoglu and Alp,
2006). As the number of training samples increases, the GRNN
asymptotically converges to the optimal regression surface and the
estimation error approaches zero, with only mild restrictions on
the function. Generally, the GRNN has a four-layer architecture
consisting of an input layer, a hidden layer, a summation layer, and
a decision layer (Fig. 1; Delon et al., 2007; Cigizoglu and Alp, 2006).
In the input layer, there is one neuron for each independent vari-
able. Here, a neuron is defined as a mathematical function in an
artificial neural network. The input neurons standardize the range
of the independent variable values. These input neurons then
transfer the values to the neurons in the hidden layer. Each neuron
in the hidden layer stores the values of the independent variables
and the dependent variable and calculates a scalar function that
will be used in the summation layer. The first neuron in the
summation layer is the denominator summation unit, which sums
the weight values coming from the hidden neurons. The second
neuron of this layer is the numerator summation unit, which sums
the weight values multiplied by the actual target dependent vari-
able value for each hidden neuron. Finally, the decision layer
divides the value accumulated in the numerator summation unit by
the value in the denominator summation unit and uses the result as
the predicted target dependent variable value (e.g., Disorntetiwat
and Dagli, 2000).

Before developing a neural network, all training data for the
independent and dependent variables are standardized such that
all data have the same order of magnitudes in the input layer. The
training dataset includes an independent variable vector x (e.g.,
monthly air temperature) and a dependent variable vector
(monthly N2O emission fluxes). In the hidden layer, the scalar
function D2

i ¼ ðx� xiÞT ðx� xiÞ is used to provide values for the
summation layer. xi denotes the ith training independent vector x
(e.g., air temperature). The predicted target dependent variable, the
N2O fluxes, is defined:

y0 ¼
Pn

i¼1 yiexp
�
� D2

i =2s
2
�

Pn
i¼1 exp

�
� D2

i =2s
2
� (1)

Where the values calculated with the scalar function in a hidden
neuron i areweightedwith the corresponding values of the training
samples yi, and then passed to the numerator neuron. n is the
number of sample observations. s is the spread parameter, whose
optimal value is determined by minimizing the root mean square
error (RMSE) between the training data and the predicted values of
the dependent variable. The weight of the denominator neuron is
set to 1.0. The GRNN training algorithm uses only one adjustable
parameter s for a given training set. The magnitude of s affects the
accuracy of GRNN. Here we use “the holdout method” (Specht,
1991) to optimize the s value. This technique removes one
inputeoutput vector from the training set to build a GRNN model,
and uses the remaining vectors to predict the outputs corre-
sponding to the removed vector. Repeating the “removing” process
for each sample and storing each estimate of GRNN, the mean-
squared error (MSE) between the GRNN-predicted and the corre-
sponding sample values is calculated. The procedure is repeated by
varying the s value, and the value that minimized the MSE is
chosen for the final ANN. MATLAB codes are used in the develop-
ment of the ANN model (The Mathworks, 2006).
2.3. Global extrapolation

To extrapolate the final ANN model to the global natural
ecosystem at a monthly time step, we organize the spatially-
explicit data of climate, soil properties, and vegetation. The
climate data including monthly mean air temperature andmonthly
precipitation at a 0.5� � 0.5� resolution are from climate model
simulations from the Climate Research Unit (CRU) (Mitchell and
Jones, 2005). The spatially-explicit soil organic carbon and



Table 1
Description of the sites used in this analysis.

Site name Ecosystem
type

n Longitude
(�)

Latitude
(�)

Temperature
(�C)

Precipitation
(mm)

Carbon
content (%)

Nitrogen
content (%)

Bulk density
(g cm�3)

Length of
experiment

N2O flux (kg N ha�1 yr�1

or per measurement
period)

Reference

San Dimas, California Savanna 1 �118 34 14.8 148.6 0.82 0.1 1.34 180 0.00 Anderson and Poth
(1989)

Harvard forest, Massachusetts, USA Coniferous 2 �72.5 41.5 10.1 902 2.76 0.22 0.87e1.32 360 0.01e0.02 Bowden et al. (1990)
Kauri Creek, Australia Rainforest 4 145.5 �17.5 17.6e23.9 25.5e252.3 3.2 0.22 1.05 10e19 0.03e0.35 Breuer et al. (2000)
Lake Eacham, Australia Rainforest 4 145.5 �17 20.2e27.1 42.2e309.3 2.34 0.15 0.99 8e22 0.02e0.09 Breuer et al. (2000)
Massey Creek, Australia Rainforest 3 145.5 �17.5 19.0e24.3 69.7e236.1 5.2 0.37 0.69 10e18 0.07e0.20 Breuer et al. (2000)
Höglwald, Germany Coniferous 7 14 51 14.6 66.8 1.37 0.12 1.2 30 0.04e0.12 Butterbach-Bahl et al.

(1997)
Ballyhooly, Republic of Ireland Coniferous 4 �8.5 52 9.6 89.9 3.12 0.19 1.3 3 0.00 Butterbach-Bahl et al.

(1998)
Mt. Ascutney, VT, USA Coniferous 1 �72.5 43.5 18.7 366.9 3.96 0.25 1.22 120 �0.03 Castro et al. (1993)
Mt. Washington, NH, USA Coniferous 1 �71 44.5 16.0 542.1 2.35 0.19 1.27 120 �0.01 Castro et al. (1993)
Mt. Mansfield, VT, USA Coniferous 1 �73 44.5 17.0 422.1 2 0.14 0.87 120 0.06 Castro et al. (1993)
Whiteface Mt., NY, USA Coniferous 1 �74 44.5 18.0 3.0 2.75 0.21 1.33 120 0.06 Castro et al. (1993)
Acadia, ME, USA Coniferous 1 �68.5 44.5 18.1 299.4 3.17 0.23 1.32 120 0.01 Castro et al. (1993)
Baraboo Grass 3 �89.5 43.5 11.5 232e274 0.9e2.4 0.08 1.24 240 0.03e0.04 Cates and Keeney

(1987)
Everglades, Florida, USA Marsh 1 �80.5 26 24.0 1449.6 30.08 2.26 1.34 360 1.00 Duxbury et al. (1982)
New York, USA Deciduous 1 �76.5 42.5 7.6 916.8 0.8 0.08 1.38 360 0.90 Duxbury et al. (1982)
Guánica Commonwealth Forest, SW

Puerto Rico
Tropical dry
forest

4 �66 18 25.4 1724.4 5.07e7.88 0.49e0.80 0.79e1.01 330 0.02e0.7 Erickson et al. (2002)

Fazenda Nova Vida, Rondônia, Brazil Rainforest 3 �63 �10 25.6e26.3 108.4
e1626.4

1.03 0.09 1.05 153e365 0.5e3.22 Garcia-Montiel et al.
(2003)

Lake Wingra Basin, Wisconsin, USA Marsh 4 �89.5 43.5 18.5 651.5 6.4e32.6 0.38e3.07 0.29e1.38 105e210 0.02e7.40 Goodroad and Keeney
(1984)

Lake Wingra Basin, Wisconsin, USA Grass 6 �89.5 43.5 18.5 651.5 6.5e15.6 0.51e1.30 0.39e1.17 147e184 0.09e1.40 Goodroad and Keeney
(1984)

Lake Wingra Basin, Wisconsin, USA Coniferous 4 �89.5 43.5 18.5 651.5 2.4e2.6 0.15e0.19 1.15e1.18 147e231 0.19e2.10 Goodroad and Keeney
(1984)

Poppel, Belgium Deciduous 2 5 51.5 11.0 657e1017.6 7.8 0.3 0.73 317e365 0.00 Goossens et al. (2001)
Chaguarama, Guarico State, Venezuela Savanna 2 �79.5 36.5 3.5 104.8 1.20e1.25 0.13e0.14 1.29 9 0.01 Hao et al. (1988)
10 km from Chaguarama, Guarico State,

Venezuela
Savanna 2 �79.5 36.5 3.5 104.8 1.2 0.13e0.14 1.32e1.34 9 0.03 Hao et al. (1988)

Lake Creek, Linn County, Willamette
valley, Oregon

Grass 2 �123.5 44.5 10.7 305.7 2.74e2.77 0.23e0.24 1.1e1.3 93 0.31 Horwath et al. (1998)

Jambi forest, Sumatra, Indonesia Rainforest 5 102 �1 27.5 2217.6 1.6e4.5 0.12e0.65 0.81e1.20 365 0.07e0.69 Ishizuka et al. (2002)
La Selva Biological Station, Sarapiqui

Canton, Costa Rica
Rainforest 2 �83.5 9.5 24.9 3225.6 3 0.47e0.60 0.62e0.64 365 3.74e5.86 Keller and Reiners

(1994)
Manaus, Brazil Rainforest 6 �60 �3 25e28 206.2e326.4 1 0.08 1.14e1.38 30 0.09e0.80 Keller et al. (1983)
Tena, Ecuador Rainforest 2 �77.5 �1 22.0 2.4 2.84 0.2 1.34 30 0.05 Keller et al. (1986)
Puerto Rico Tropical dry

forest
4 �66 18 19.0e30.0 37.9 1.23 0.11 1.33e1.42 30 0.02e0.30 Keller et al. (1986)

Hubbard Brook, New Hampshire, USA Deciduous 1 �71.5 44 3.2 1501.2 4.34 0.27 0.87 365 0.90 Keller et al. (1983)
Ducke Reserve, INPA, Brazil Rainforest 1 �60 3 25.0 369.3 0.92 0.09 1.22 28 0.16 Keller et al. (1988)
Kauri Creek, Queensland, Australia Rainforest 3 145.5 �17.5 23.7 677e3138 3.2 0.22 1.05 55e365 0.38e4.36 Kiese and Butterbach-

Bahl (2002)
Pin Gin Hill, Queensland, Australia Rainforest 3 146 �17.5 21.3e23.7 677e3138 9.15 0.66 0.79 55e365 0.33e6.89 Kiese and Butterbach-

Bahl (2002)
Bellender Ker, Queensland, Australia Rainforest 3 146 �17.5 21.3 677e3138 3.1 0.26 1.09 55e365 1.33e7.45 Kiese and Butterbach-

Bahl (2002)
Kruger Park, South Africa Savanna 2 22.5 �31 25.0 0.1 1.9e2.5 0.05e0.09 1.6 13e15 0.01 Levine et al. (1996)
Manaus, Brazil Rainforest 5 �60 �3 27.8 75.6e2018.4 1 0.07e0.22 0.87e1.34 11e365 0.03e2.2 Luizão et al. (1989)
La Selva Biological Station, Sarapiqui

Canton, Costa Rica
Rainforest 3 �83.5 9.5 25.0 227.1 2.25 0.19 0.87e1.05 10 0.04e0.06 Matson and Vitousek

(1987)
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Turrialba, Costa Rica Rainforest 1 �83.5 10 22.0 184 2.02 0.16 1.46 10 0.04 Matson and Vitousek
(1987)

Hawaii Rainforest 3 �84 10.5 16.0 332.8 1.03 0.09 1.32e1.39 10 0.00 Matson and Vitousek
(1987)

Manaus, Brazil Rainforest 5 �60 �3 28.1 102.7 1.6e8.4 0.08e0.26 0.87e1.38 45 0.01e1.08 Matson et al. (1990)
Fazenda Nova Vida, Rondônia, Brazil Rainforest 1 �63 �10 26.0 2228.4 1.03 0.09 1.39 365 1.94 Melillo et al. (2001)
Kiel, Germany Deciduous 2 10 54 8.4 735.6 3.4e42 0.2e2.4 0.6e1.1 365 0.4e4.9 Mogge et al. (1998)
Dinghu Mountain, Guangdong, China Coniferous 3 112.5 23 21.4 1927 1.58e3.1 0.09e0.19 1.21e1.41 365 1.86e5.18 Mo et al. (2006)
Colorado, USA Grass 1 �105 39.5 17.8 249 1.4 0.13 1.32 62 0.14 Mosier et al. (1981)
US Dept. Energy Hanford site, South-

Central Washington
Grass 1 �120.5 47 8.6 313.2 2.66 0.24 1.34 365 0.15 Mummey et al. (1997)

Yurimaguas, Loreto Province, Peru Rainforest 2 �76 �6 26 2200 1.1 0.08 1.25e1.41 365 0.80 Palm et al. (2002)
Ft. Collins, Colorado, USA Grass 2 �104.5 38.5 10.6 476.4 0.57 0.07 1.32e1.34 365 0.08e0.16 Parton et al. (1988)
Central Scotland Deciduous 3 �4.5 56.5 8.7 828.8 14.35 0.01 1.22e1.32 210 1.15e2.29 Pitcairn et al. (2002)
Brasilia, Brazil Savanna 3 �48 �16 25.0 108.3 5.18e6.06 0.26e0.32 1.08e1.33 1 0.00 Poth et al. (1995)
Molokai, Hawaii Rainforest 1 �155 19.5 15.9 2500 8.9 0.49 1.33 365 0.16 Riley and Vitousek

(1995)
Kauai, Kokee State forest, Hawaii Rainforest 1 �155.5 20 16.1 2410 3.99 0.05 1.22 365 0.26 Riley and Vitousek

(1995)
Kohala, Hawaii Rainforest 1 �155.5 20 16.1 2540 3.99 0.05 1.38 365 0.39 Riley and Vitousek

(1995)
Kilauea, Hawaii Rainforest 1 �157 21 16.1 2410 4.24 0.01 1.29 365 0.02 Riley and Vitousek

(1995)
Puu Makaala, Hawaii Rainforest 1 �159.5 22 16.6 3800 1.7 0.07 1.35 365 0.23 Riley and Vitousek

(1995)
Guri Dam, Bolivar State, Venezuela Savanna 4 �63 8 27.5 150 1.09e3.50 0.08e0.13 0.87e1.35 20 0.01e0.12 Sanhueza et al. (1990)
Estanción Biológica de los Llanos,

Calabozo, Guárice state
Savanna 1 �67.5 9 30.0 75.5 0.9 0.08 1.29 19 0.03 Sanhueza et al. (1994)

Langenlonsheim, Bingen, Germany Deciduous 2 7.5 49.5 9.1 808.8 2.8e7.2 0.21e0.29 1.33 360 0.67e0.73 Schmidt et al. (1988)
Bechenheim, Alzey, Germany Deciduous 2 8 49.5 11.0 697.2 2.4e3.4 0.11e0.18 1.33e1.35 360 0.67e0.92 Schmidt et al. (1988)
Ober-Olm, Mainz, Germany Deciduous 2 8 50 8.6 823.2 2.8e3.6 0.16e0.30 1.08e1.32 360 0.26e0.33 Schmidt et al. (1988)
Nylsvley Reserve, South Africa Savanna 2 28.5 �24.5 28.8 48.9 1.09e1.42 0.06e0.16 1.34e1.35 10 0.02 Scholes et al. (1997)
Mainz, Germany Grass 3 8.5 50 10.0 45.5e546 0.8e2.3 0.12 1.32e1.38 32e71 0.02e0.13 Seiler and Conrad

(1981)
Mayombe, Congo Rainforest 3 12.5 �4 22.4e26.6 0e135.6 3.5 0.23 0.97e1.34 1 0e0.05 Serca et al. (1994)
Dunslair Heights, NW England Coniferous 3 �2.5 54.5 7.5 1143.6 4.52 0.24 1.31e1.39 240 0.06e0.22 Skiba et al. (1997)
Bush Estate, Edinburgh Deciduous 2 �3 56 13.8 202 1.09 0.1 1.22e1.38 120 0.09e0.15 Skiba et al. (1997)
Devilla forest, Central Scotland Coniferous 2 �4 57 5.4 1015.2 9.27 0.44 1.21e1.36 180e330 0.23e0.26 Skiba et al. (1997)
South Scotland Grass 3 11.5 55.5 18.2 26.7 1.72 0.15 1.29e1.37 3 0.00 Skiba et al. (1998)
Central Scotland Grass 4 �4.5 56.5 12.6 129.3 14.35 0.66 0.87e1.38 7 0.02e0.09 Skiba et al. (1998)
Central Scotland Mixed forest 13 �4.5 56.5 8.4 953.4 14.35 0.66 0.87e1.48 150e210 0e0.25 Skiba et al. (1999)
Barataria Basin, Louisiana, USA Marsh 4 �91.5 29.5 19.9 1509.6 20.47 1.55 0.10e0.28 360 0.31e0.55 Smith et al. (1983)
Fazenda Nova Vida, Rondônia, Brazil Rainforest 1 �63 �10 25.6 183 1.03 0.09 1.37 1 0.01 Steudler et al. (2002)
Paragominas, Pará State, Brazil Grass 3 �47.5 �3 27.0 2377e2730 2.63 0.26 0.96 151e365 0e0.07 Verchot et al. (2006)
Paragominas, Pará State, Brazil Rainforest 6 �47.5 �3 27.0 2377e2730 2.47e2.9 0.22e0.26 0.96e0.99 151e365 0.35e2.43 Verchot et al. (2006)
Chamela, Jalisco State, Mexico Tropical dry

forest
3 �105 19.5 25.1 341.9 1.4 0.15 1.32e1.37 30 0.01e0.19 Vitousek et al. (1989)

Island of Molokai, Kamakou Preserve,
Hawaii

Tropical dry
forest

3 �157 21 19e22 58.3e100 4.24 0.29 1.33e1.38 30 0.02e0.07 Vitousek et al. (1989)

Xilin River basin, Inner Mongolia, China Grass 5 1.6 44 1.0 250e480 1.85 0.19 1.32 365 0.39e2.55 Wang et al. (2003)
La Selva Biological Station, Costa Rica Rainforest 2 �83.5 9.5 22.9 3372 7.3e7.6 0.4 0.66e0.77 365 1.28e1.42 Weitz et al. (1998)
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Fig. 1. Schematic diagram of the generalized regression neural network architecture based on Cigizoglu and Alp (2006).

Table 2
Spearman correlations between different factors and N2O fluxes at the observational
sites.

Parameter T P SOC SN BD Length of exp.

Coefficient 0.09 0.45 0.25 0.32 �0.32 0.38
p-value 0.18 <0.001 <0.001 <0.001 <0.001 <0.001

Q. Zhuang et al. / Atmospheric Environment 47 (2012) 66e7570
nitrogen and bulk density in the top soil (0e30 cm) are taken from
the spatial soil database of the World Inventory of Soil Emission
Potentials (ISRIC-WISE) (Batjes, 2006). The ISRIC-WISE data are re-
sampled to a resolution of 0.5� � 0.5�. The vegetation type and area
data are derived from the combined land cover product of the
Moderate Resolution Imaging Spectroradiometer (MODIS) on board
Terra and Aqua (Land Cover Types Yearly L3 Global 0.05� CMG,
MCD12C1, Year 2001) from the NASA Goddard Space Flight Center
website (http://modis-land.gsfc.nasa.gov). The International Geo-
sphere and Biosphere (IGBP) land-cover classification system is
used to extract the vegetation type and area information.

To estimate global emissions of N2O from natural ecosystem
soils, we first run the ANN model to estimate monthly N2O emis-
sion rates for each grid cell in 2000. Based on the simulated N2O
emission rates and the vegetation type and area data, we calculate
the emissions for each grid cell, and then generate the global
inventory.

2.4. Model sensitivity

To assess the sensitivity of the obtained ANNmodel, we conduct
thirty other global simulations, altering climate and soil input
parameters uniformly for each grid cell at the global scale. The
input data of P, SOC, SN and BD are changed at three levels (small:
�10%,medium:�25%, large:�50%), while T is altered by�1.0,�2.5,
and �5.0 �C, respectively. Each variable is individually increased or
decreased at the three levels. In each of these sensitivity simula-
tions, when a single variable is changed, the other variables are held
as same as they are in the “baseline” simulation that is driven with
the unchanged global input data. The sensitivity is then calculated
as the percentage change between the estimated annual emissions
of each sensitivity simulation and the “baseline” simulation.

2.5. Uncertainty analysis

A regional or global inventory of soil N2O emissions would
typically have a wide range of emission estimates. The uncertainty
in these inventories is mainly due to uncertain model structure and
input data (IPCC, 2007). In our study, the uncertainty induced by
input data can be revealed through sensitivity analysis. Here, we are
mostly concerned with the uncertainty induced from the devel-
oped ANN model. Since the ANN is a highly non-linear system, and
only provides the optimized value of weights, it is difficult to
directly quantify the uncertainty range of the model through
parametric inference. The model uncertainty is thus assessed
through developing a number of alternative models using the
delete-one cross-validation approach (Zhuang et al., 2008).
Specifically, we randomly sample 150 data points from the orga-
nized measurement data. These samples are used to develop a new
ANN model. The new model is then scaled up to obtain a new
estimate of global emissions. These steps are repeated one hundred
times to obtain one hundred sets of global estimates. The 95%
confidence intervals of all estimates of N2O emissions are consid-
ered to be the range of model uncertainty, and are thus applied to
the final inventory calculations to define the lower and upper
uncertainty bounds of the global N2O inventory.

3. Results and discussion

3.1. Artificial neural networks

Before developing the ANN, we first conducted a Spearman rank
correlation analysis to identify the keyenvironmental factors forN2O
emissions using the measured flux data and organized independent
variable data. The pair-wise correlation showed that soil N2O emis-
sions are significantly correlated with climate, soil properties, and
the length of experiments (Table 2). Precipitation is the most
important control for soil N2O emissions. The high correlation
between precipitation and N2O flux is consistent with field obser-
vations, suggesting that water availability strongly constrains soil

http://modis-land.gsfc.nasa.gov


Fig. 2. Comparisons between the measured and modeled N2O emissions. Dashed line
is the 1:1 line.
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nitrification and denitrification processes (Lu et al., 2006). Investi-
gation at the site level indicates that temperature governs the
seasonal variation in N2O fluxes (Skiba and Smith, 2000). However,
our analysis showed that temperature is onlyweakly correlatedwith
N2O fluxes across different sites, suggesting that temperature may
not linearly affect soil N2O emissions. For instance, as a previous
study suggested, although temperature controls the processes of
decomposition, nitrification, and denitrification, the ratio of N2O to
N2 generally increases with decreasing temperature (Bouwman
et al., 2002a). Furthermore, high N2O emissions have even been
observed inwinter due to the accumulation of soil N in freezeethaw
cycles, despite the rather low temperatures (Kaiser andRuser, 2000).

The heterogeneity of soil properties is also an important control
on the variation in soil N2O emissions. SOC and SN are important
substrates for the soil microbial processes of nitrification and
denitrification, while bulk density impacts the extent of anaerobic
zones in the soil profile. Overall, correlation analyses suggest that
precipitation, temperature, SOC, SN and bulk density are primarily
responsible for interannual and inter-site variability in soil N2O
emissions. Further, the length of the experiment is an important
factor which affects the quantification of N2O emissions.

Based on our correlation analysis, we thus consider the
following explanatory variables as the model inputs: P, SOC, SN, BD,
Fig. 3. Spatial patterns of soil N2O emissions
and the length of experiments. As temperature has been recognized
to be strongly related to soil processes associated with N2O emis-
sions (Bouwman et al., 2002a), we also consider temperature as
input variable despite theweakly linear correlation. By applying the
“holdout” method (Specht, 1991), we obtain the optimized spread
parameter s as 0.82. The GRNN is established to estimate N2O
emissions from natural soils with the spread parameter. The coef-
ficient of determination (r2) between the observed and simulated is
0.94 (p < 0.01). The simulated N2O fluxes are close to the observed
data (RMSE ¼ 0.29 kg N ha�1). The linear regression between the
simulated and measured N2O emissions is rather close to the 1:1
line (Fig. 2).
3.2. Global N2O emissions

We estimate that the annual global N2O emissions from soils
under natural vegetation, encompassing an area of 92.34 million
km2, were 3.37 Tg N in year 2000. The simulated N2O emission rates
exhibit a large spatial variability (Fig. 3). The spatial patterns of the
simulated emissions agree with previous studies by Potter et al.
(1996) and Stehfest and Bouwman (2006), indicating that soil and
climate characteristics are major factors. The simulated emission
patterns show that the tropics are a predominant source of N2O. The
highest emissions occurred in the Amazon, Southeast Asia, and
Central Africa. These regions generally receive a large amount of
annual rainfall and are characterized by soils with high clay and
organic carbon contents. Such conditions favor the microbial N
turnover processes and consequently promote high N2O production
(Granli and Bockman,1994). Lower N2O emissions occurred in some
temperate regions, such as East Asia, Europe, Australia, and North
America. Some boreal regions, like south Russia and Canada, also
exhibited relatively high N2O emission rates, exceeding 0.20 kg
N2OeN ha�1 yr�1 due to high soil organic matter content and rela-
tively moist climate. Stehfest and Bouwman (2006) also simulated
a similar spatial pattern of N2O emission rates ranging from 0 to
0.25N2OeNha�1 yr�1 in the same regions. In contrast, the soils in the
northernhigh latitudes andregions characterizedbydrought climate
(e.g., Sahara and Arab) only contributed negligible emissions. The
finding that N2O emissions in tropical regions exceed those in the
high latitudes and drought regions is in agreement with the litera-
ture, and suggests that thermal and hydrological regimes control soil
processes at all levels by governing organic matter decomposition,
nitrification and denitrification rates (Fig. 4; Bouwman et al., 2002a).

The spatial variation in soil N2O emissions is attributed to the
distribution of vegetation, in addition to the effects of climate and
under natural vegetation in year 2000.



Fig. 4. Seasonal variation of soil N2O emissions under natural vegetation.
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soil type (Table 3). The N2O source strength varied greatly across
different types of natural ecosystems mainly due to their corre-
sponding climate and soil conditions (Table 3). Among the natural
ecosystems, the evergreen broadleaf forest areas are the most
important sources of atmospheric N2O, and accounts for 30% of the
global annual N2O emissions under natural vegetation (Table 2). On
a per unit area basis, the evergreen broadleaf forest also shows the
highest soil N2O emissions at 0.81 kg N ha�1 yr�1. As previously
mentioned, tropical conditions and regions with high soil organic
contents favor soil N2O production and thus account for the high
flux; this finding is also supported by the findings from field
experiments and observations (e.g., Keller and Reiners, 1994;
Breuer et al., 2000; Werner et al., 2007b). The woody savannas are
the second largest emitter, accounting for 17% of the total emis-
sions. Although the typical anoxic soils of wetlands are generally
considered unfavorable for N2O production, the total N2O emis-
sions from natural wetlands are still considerable (Blais et al., 2005;
Dalal and Allen, 2008). Moreover, N2O “hotspots” in sub-tropical
wetlands suggest that the N2O budget for wetlands should not be
negligible (Corredor et al., 1999). Our results also indicated that
wetlands are characterized as considerable N2O emitters, with an
annual rate of 0.36 kg N ha�1 yr�1 (Table 3). In contrast, as a result
of low temperatures, the high latitude ecosystems, including
evergreen needleleaf forests and deciduous needleleaf forests, have
significantly low emission rates and contribute little to the global
Table 3
Estimates of soil N2O emissions of different vegetation types in the year 2000.

Vegetation types Area
(million km2)

N2O source strength
(Tg N yr�1)

N2O flux
(kg N ha�1 yr�1)

Evergreen needleleaf
forest

4.07 0.05 0.11

Evergreen broadleaf
forest

12.64 1.03 0.81

Deciduous needleleaf
forest

1.42 0.02 0.12

Deciduous broadleaf
forest

2.05 0.07 0.36

Mixed forests 5.85 0.13 0.22
Closed shrublands 2.34 0.06 0.27
Open shrublands 18.78 0.31 0.17
Woody savannas 14.20 0.59 0.42
Savannas 7.73 0.41 0.54
Grasslands 14.58 0.31 0.21
Wetlands 0.92 0.03 0.36
Vegetation mosaic 7.76 0.35 0.45
Total 92.34 3.37 0.36
source (less than 0.10 Tg N per year). The intermediate emission
rates and source strength occurred in the mixed forests, grasslands
and shrublands.

N2O emissions from soils under natural vegetation had signifi-
cant seasonal variation in each hemisphere (Fig. 4). Emissions from
the Northern Hemisphere exhibited one seasonal peak. The peak
emissions occurred in August, while winters had low emissions. In
contrast to the north, N2O emissions changed in the opposite phase
in the Southern Hemisphere. In spite of the contrasting patterns of
seasonal emissions, the two hemispheres had almost equal source
strengths for annual N2O emissions at about 1.7 Tg N2OeN yr�1.
Consequently, the total global N2O emissions did not exhibit
a significant seasonality, owing to this offsetting effect. The summer
emissions were slightly higher than in other seasons.
Fig. 5. Sensitivity studies of soil N2O emissions under natural vegetation to changes in
air temperature, precipitation, soil organic carbon, soil nitrogen content, and bulk
density. The values are for the year 2000. The changes are calculated based on the
“baseline” simulation using the unchanged global input data.



Fig. 6. Standard deviation (SD) of annual N2O emission rates simulated with the one hundred ANN models.
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3.3. Model sensitivity

By altering the input variables individually, we conduct a model
sensitivity analysis (Fig. 5). The most sensitive input variable is
precipitation. The pronounced sensitivity of the simulated N2O
emissions to changes in precipitation agrees with earlier studies,
suggesting that the soil water conditions controls N2O production
through affecting nitrification and denitrification processes (Li
et al., 2000). Further, N2O emissions did not change uniformly
with precipitation. “Large” increases in precipitation reduced N2O
emissions. This phenomenon agrees with experimental findings
that suggest that precipitation reduces the production of N2O in
favor of denitrification to N2 when soil moisture reaches a certain
level (e.g., Conrad, 1996; Dobbie and Smith, 2003). Increasing
temperature at a “small” level favors more global N2O emissions
than increasing temperatures at a “medium” level. The elevated
temperature could lead to a substantial reduction in soil moisture
due to increased transpiration. Thus, increasing temperature at
a “large” level can have a reducing effect on N2O emissions.
Increasing soil organic carbon content and bulk density enhances
N2O emissions. In contrast, the global N2O emissions were barely
changed in response to alterations in soil nitrogen content (Fig. 5).
The sensitivity of N2O emissions to changes in SOC is a consequence
of the dependency of microbial activity on the total available
carbon fraction in soils. An increase in bulk density will decrease
total pore volume, and thus oxygen diffusion into the soil profile.
The increasing extent of anaerobic zones in the soil profile favors
denitrification, and consequently promotes N2O production. Over-
all, the availability of carbon, nitrate, and the oxygen supply are the
most important factors controlling soil denitrification rates and
N2O production (Bouwman et al., 2002a). In general, the model is
less sensitive to the changes in soil properties than to climate.
Fig. 7. Probability distribution and the 95% confidence intervals of the simulated
annual global N2O emissions with the one hundred ANN models.
3.4. Uncertainty of the global inventory estimate

Based on one hundred ANN simulations, we find that a larger
uncertainty usually accompanies a higher emission rate (Fig. 6). The
estimates with different ANN models did not significantly differ at
a grid cell level, as indicated by the standard deviations rarely
exceeding 1.00 kg N ha�1 yr�1. The one hundred ANN models
provide a frequency distribution of the estimated global emissions
(Fig. 7). We define the model-induced uncertainty of our global
estimates as a range between the lower bound (1.96 Tg N yr�1) and
the upper bound (4.56 Tg N yr�1) of the 95% confidence intervals,
with a mean global estimate of 3.37 Tg N yr�1.
Our estimates of global N2O emissions are lower than other
exiting estimates. For example, Potter et al. (1996) estimated that
the global emissions from natural soil to be 6.1 Tg N yr�1 using
a process-based model. Bouwman et al. (1995) estimated the
emissions to be 6.6 Tg N yr�1 using a simple regression model with
a range of 3.3e9.0 Tg N yr�1 Liu (1996) estimated the global back-
ground N2O emissions to be 11.33 Tg N yr�1 based on DNDC (Li et al.,
1992). Nevison et al. (1996) estimated the global N2O emissions
from both natural and managed soils to be 9.5 Tg N yr�1 using
a nitrogen biosphere model. Themean annual global N2O emissions
estimated by Xu et al. (2008) for 1980e2000 were 13.31 Tg N yr�1

with a range of 8.19e18.43 Tg N yr�1 through a stoichiometric
relationship of N2O and CO2 emissions from ecosystems, including
cropland. Their simulated higher soil respiration of CO2 may induce
a higher N2O estimate (Xu et al., 2008). The spatial patterns of our
simulated emission rates agreewithmost previous studies (e.g., Liu,
1996; Potter et al., 1996; Werner et al., 2007a). Further, consistent
with other studies (e.g., Matson and Vitousek, 1990; Bouwman
et al., 1995; Stehfest and Bouwman, 2006), we confirm that trop-
ical soils are a major source of atmospheric N2O. Some studies have
quantified N2O emissions especially from the tropical ecosystems.
For example, Melillo et al. (2001) estimated the emissions to be
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1.3 Tg N yr�1 from tropical forests in the Amazon basin
(5.4 million km2), which is significantly higher than our estimate
of 1.03 Tg N yr�1 for the global tropical forest. In their study, the
soil N2O emission is only determined by net nitrogen minerali-
zation rates, rather than the multiple controlling factors consid-
ered in our study. Further, their estimates were calculated based
on a loss rate of 1.4% for nitrogen mineralization. This static frac-
tion may not be able to account for the heterogeneity of soil N2O
emissions in that large of an area. Stehfest and Bouwman (2006)
estimated N2O emissions from closed tropical forests to be
1.17 Tg N yr�1, which is close to our calculation of 1.03 Tg N yr�1.
Recently, a detailed process-based biogeochemical model
ForestDNDC-tropica was applied by Werner et al. (2007a) to
determine the N2O source strength of tropical rainforest ecosys-
tems. Their estimates of 1.34 Tg N yr�1 for the total source strength
are slightly higher than our estimates, but the vegetation category
and the area extent of their calculation is also different from those
used in our study.

A considerable uncertainty in developing the global inventory
still exists. To reduce the uncertainty, more N2O emission
measurements and associated data for climate, soils, and vegeta-
tion, as well as finer-resolution spatial data are needed. The
processes of nitrification and denitrification that determine the N
cycling within ecosystems (e.g., N mineralization and N uptake by
plants) and exchanges between ecosystems and the atmosphere
(e.g., production and release of NO and N2 in addition to N2O)
should be explicitly modeled.

4. Conclusions

Based on published N2O emission measurements, we develop
a model to estimate natural soil N2O emissions using an artificial
neural network approach. The ANN model fit well with observed
N2O emissions. We find that the annual global N2O emissions are
most sensitive to variations in precipitation. The model-induced
uncertainty is assessed by developing one hundred alternative
ANN models using different sample data. We estimate that the
global soil N2O source strength from natural ecosystems is on
average 3.37 Tg N yr�1 with an uncertainty range of
1.96e4.56 Tg N yr�1 for the year 2000. The simulated N2O emis-
sions show a large spatial and seasonal variability due to varia-
tions in soil, vegetation, and climate conditions. Consistent with
other studies, we confirm that tropical soils are the major source
of atmospheric N2O.
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