
Ecological Indicators 146 (2023) 109776

Available online 8 December 2022
1470-160X/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Temporal and spatial changes in soil organic carbon and soil inorganic 
carbon stocks in the semi-arid area of northeast China 

Shuai Wang a,b,c,d, Qianlai Zhuang d, Mingyi Zhou a, Xinxin Jin a,*, Na Yu a, Ting Yuan e 

a College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China 
b Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 
Beijing 100101, China 
c Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, Jülich 52428, Germany 
d Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, USA 
e Agricultural Information Institute of Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China   

A R T I C L E  I N F O   

Keywords: 
Soil organic carbon 
Soil inorganic carbon 
Digital soil mapping 
Boosted regression trees 

A B S T R A C T   

Soil organic carbon (SOC) and soil inorganic carbon (SIC) has important effects on soil physical, chemical and 
biological properties. They play an important role in coordinating the relationship between soil water and air, 
increasing soil water holding capacity and improving plant productivity. In this study, a boosted regression trees 
(BRT) model was developed to map the spatial distribution carbon stocks in the semi-arid region of Northeast 
China in 1990 and 2015. During the two periods, 10-fold cross-validation technology was used to test the per-
formance and uncertainty of BRT model. In order to construct the model, 9 environmental variables (derived 
from climate, topography and biology) and 173 (1990) and 223 (2015) topsoil (0–30 cm) samples were used. The 
comparison between estimated and observed data shows that the RMSE of SOC and SIC stocks were 0.53 kgm− 2 

and 0.19 kgm− 2 in 1990, and 0.65 kgm− 2 and 0.20 kgm− 2 in 2015, respectively. Elevation, normalized difference 
vegetation index, mean annual precipitation and Landsat band 3 were identifies as critical environmental factors 
for simulating the spatial distribution of SOC, accounting for 76.6 % and 70.3 % of the total relative importance 
in 1990 and 2015, respectively. Mean annual precipitation, mean annual temperature and topographic wetness 
index were the critical environmental factors for simulating the spatial variation of SIC during the two periods. 
Land use change also played an important role in the spatial variability of SOC and SIC stocks. In the past 25 
years, soil carbon stocks decreased from 6.2 kg m− 2 in 1990 to 5.9 kg m− 2 in 2015. The spatial distribution 
pattern of SOC was high in northeastern area and low in southwestern area during the two periods, while the 
spatial distribution pattern of SIC was opposite to that of SOC stocks. The mapped soil carbon stock distribution is 
fundamental to future study of soil carbon cycle and regional carbon balance in semi-arid regions.   

1. Introduction 

Soil carbon pools include soil organic carbon (SOC) and soil inor-
ganic carbon (SIC), which are the largest carbon reservoir in terrestrial 
ecosystems (Chang et al., 2012). The size of soil carbon is so large that 
even a small variation of its accumulation and decomposition can lead to 
a great fluctuation of atmospheric concentrations, directly affecting the 
global climate and environmental changes (Lal, 2004). Thus, soil carbon 
studies have attracted an extensive attention from the scientific com-
munity (Wan et al., 2019, Stockmann et al., 2015). With the significant 
change in global climate and environment, soil carbon pool and its 

changes have attracted extensive attention in the scientific community 
(Lal, 2004; Huang et al., 2019). It is one of the foci and hotspots of 
terrestrial ecosystem carbon cycle research and global change research, 
and also one of the core issues of a series of global change research 
programs such as the Global Carbon Project and the World Climate 
Research Programme (Schiffer and Rossow, 1983;Le Quéré et al., 2018). 

Arid ecosystems occupy 47 % of the total land area (Lal, 2001), 
including arid, semi-arid, and semi-humid areas (Reynolds et al., 2007), 
accounting for about 1/3 of the global carbon sink loss (Allen et al., 
1996). As an important part of global carbon cycle, carbon cycling in 
arid area plays an important role in regional soil carbon pools and 
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carbon budget, which is of importance in the global biogeochemical 
cycle (Li et al., 2007; Lagacherie et al., 2008). Currently, the research on 
soil carbon cycle mainly focused more on the role and status of SOC than 
SIC (Kunkel et al., 2011). However, the SIC stocks are large in semi-arid 
areas, contributing to the regional carbon cycling (Yu et al., 2020b). 
Thus considering the role of both SOC and SIC in carbon cycling is 
important in semi-arid areas. Most SOC dynamics studies focus on SOC 
stocks and carbon fixation potentials in humid and semi-humid areas 
(Lal, 2004; Martin et al., 2011; Filippi et al., 2020) while research on SIC 
dynamics is relatively less in semi-arid regions (Kunkel et al., 2011). 
Especially in the semi-arid regions of northwest Liaoning, where the 
ecological environment was gradually deteriorating due to drought and 
little rain in spring and cold and little snow in winter. Therefore, the 
study of soil carbon dynamics in semi-arid areas will contribute to the 
understanding of carbon sequestration at the global scale. 

The spatial-temporal variability of soil attributes is the result of the 
interaction of natural and human factors, which can be classified into 
five major elements: climate, terrain, parent material, time and biology 
(McBratney et al., 2003). Because there are many influencing factors, it 
is challenging to carry out spatial prediction of soil properties on the 
regional scale. Digital Soil Mapping (DSM) technology provides a fast 
and economical method for spatial prediction of SOC and SIC in large- 
scale areas based on a small number of sampling point data and major 
environmental covariates (Martin et al., 2011; McBratney et al., 2003; 
Yang et al., 2020b). In DSM methods, the spatial-temporal change of soil 
carbon stocks was estimated by using multi-period soil carbon sample 
data. In order to explore the relationship between SOC and SIC values 
and environmental factors (such as annual average temperature, annual 
precipitation, elevation, etc.), to find powerful prediction factors or in-
dicators related to the distribution of SOC and SIC values, and to draw 
the spatial change map of SOC and SIC according to the field observation 
results, some researches have been carried out. In general, the rela-
tionship between soil attributes and environmental factors is nonlinear 
and complex, so the machine learning algorithm which can effectively 
solve these problems is introduced into the spatial prediction of soil 
attributes (Martin et al., 2011; Song et al., 2016; Wang et al., 2018; Yang 
et al., 2020c). 

Among different DSM technologies, tree-based models are widely 
used to predict soil properties, such as soil salt, pH, SOC, and texture 
(Martin et al., 2011; Wang et al., 2017; Wang et al., 2018). Compared 
with traditional methods, tree-based models have better performance 
and effectiveness (Carslaw and Taylor, 2009; Wang et al., 2019; Yang 
et al., 2020a). The most reliable prediction model is included in DSM 
toolbox. The boosted regression trees (BRT) model can improve the 
performance of the model by training multiple regression tree models 
and combining them to predict, which can effectively avoid the problem 
of transition fitting, effectively deal with nonlinear and complex prob-
lems, and solve qualitative and quantitative problems (Cheong et al., 
2014; Yang et al., 2016a,b). Thus BRT model is widely used in remote 
sensing science, epidemiology, ecology, and fishery science (Müller 
et al., 2013; Cheong et al., 2014; Wang et al., 2016). However, there are 
few studies on the spatiotemporal changes of SOC and SIC with the 
method. 

The purpose of this study is to apply the relevant principles of 
quantitative pedology to analyze the spatiotemporal changes in SOC and 
SIC stocks in northwest Liaoning. The specific research objective are to: 
(1) establish a mathematical model to predict SOC and SIC stocks based 
on environmental impact factors and sampling data in 1990 and 2015; 
(2) quantify the key environmental variables of SOC and SIC stock 
changes; (3) reveal the spatial distribution characteristics of soil carbon 
stocks under different land use patterns in 1990 and 2015; and (4) 
analyze the spatiotemporal change rules of soil carbon stocks in the 
region during the past 25 years (1990–2015). 

2. Materials and methods 

2.1. Study area 

The study area is located in the semi-arid area of northwest Liaoning 
in northeast China (latitude 39.98◦-43.48◦N; longitude 118.83◦- 
124.43◦E), referring to Chaoyang, Tieling and Fuxin. Northwest Liaon-
ing refers to Chaoyang, which is located in the long and narrow area on 
the south edge of Horqin sandy land, the largest in China. The terrain is 
dominated by hills and mountains, and the terrain is stepped down from 
southwest to northeast. This area belongs to the temperate monsoon 
climate area of semi humid to semi-arid transition. It is dry and windy in 
spring, hot and rainy in summer, cool and dry in autumn and cold and 
dry in winter. The mean annual temperature (MAT) is 6.4–8.5 ℃, the 
annual sunshine hours are 2850–2960 h, the mean annual precipitation 
(MAP) is 300–700 mm, the annual average evaporation and gale days 
are 1000–1500 mm and 22–32 d, respectively. The annual accumulated 
temperature is higher and the precipitation is less. It is known as the 
“nine droughts in ten years” and is a heavy drought area in Liaoning 
Province. There are three major water systems in the area, namely 
Liaohe River, Daling River and Raoyang River. According to the Chinese 
Soil Taxonomy (Gong, 2002), the dominant soil types are Aridosols (48 
%) and Primosols (23 %), and the soil layer is relatively thin (mostly 
10–30 cm). The vegetation has the characteristics of both North China 
flora and Inner Mongolia flora temperate steppe Quercus forest. The 
area is primarily dominated with sparsely-distributed shrubs and herbs. 

2.2. Soil sampling collection 

2.2.1. Soil survey data for 1990 
In 1990, the soil survey data was obtained from Agricultural Tech-

nology Extension Centers in Chaoyang, Fuxin and Tieling. The database 
comprised 171 soil profile information databases (Fig. 1), including soil 
physical and chemical properties, land-use types, soil types, parent 
material information, slope gradient, slope aspect, mean annual pre-
cipitation (MAT), mean annual temperature (MAT) and other informa-
tion. In this database, the SOC and SIC contents were measured using the 
Walkley black wet combination method (Nelson and Sommers, 1982) 
and a gas volume method (Raskin, 1983), respectively. To estimate dry 
bulk density, 100 cm3 of soil cores dried for 48 h at 105 ◦C for bulk 
density measurement. The soil sample sits were mainly covered with 
cultivated land (n = 73), forest (n = 52) and grassland (n = 46). This 
study focused on the SOC and SIC of topsoil (0–30 cm) in the dataset. We 
used Pedo-Transfer Functions (PTFs) to fill some missing bulk density 
values in the database with formula: 

BD = 1.32 − 0.07∗
̅̅̅̅̅̅̅̅̅̅
SOC

√ (
R2 = 0.73,P < 0.001

)
(1)  

where BD represents bulk density; SOC represents SOC content in topsoil 
layer (0–30 cm). 

2.2.2. Soil sampling in 2015 
Due to the large East-West span of the study area, and the terrain is 

mainly mountainous and hilly areas, considering the time and economic 
cost, it is difficult to collect the samples in large quantities. In order to 
accurately obtain the spatial variation of SOC and SIC in the complex 
geographical landscape units in the region, a purpose sampling method 
(Yang et al., 2019; Zhu et al., 2008) was selected to design the sampling 
scheme. Firstly, we selected the environmental variables of MAP, MAT, 
elevation, slope gradient, normalized difference vegetation index, and 
topographic wetness index, and clustered them by using the fuzzy c- 
means clustering method. As a result, we obtained 16 landscape units. 
Secondly, depending on the land use patterns, soil type and road 
accessibility, for each landscape unit, 15–20 sampling points are 
collected, and 223 sampling points are finally obtained (Fig. 1). Finally, 
the number of sampling sites for cultivated land, grassland and forest 
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was 104, 68 and 51, respectively. A hand-held GPS was used to locate 
each sampling geographic coordinate. The sampling depth of each point 
is 30 cm, and 100 cm3 of undisturbed soil cores were collected at the 
center (15 cm) for the laboratory to determine the soil bulk density. 
After that, about 1 kg samples were collected from each site at the same 
location for later SOC and SIC measurements in the Central Laboratory 
of the college of land and environment, Shenyang Agricultural Univer-
sity, China. The determination methods of SOC, SIC and dry bulk density 
were the same as those in 1990. 

2.3. Environmental variables 

Nine environmental variables including MAP, MAT, elevation (ELE), 
slope gradient (SG), topographic wetness index (TWI), Landsat band 3 
(B3), Landsat band 4 (B4), Landsat band 5(B5), and normalized differ-
ence vegetation index (NDVI), which represent climate, topography and 
biology among the five soil forming factors, are used to predict SOC and 
SIC reserves in the surface layer of Northwest Liaoning Province. 
Because these variables are obtained from different departments and 
platforms, we used Arcgis10.2 (ESRI Inc., USA) software to resample 
them to 90 m × 90 m spatial resolution, and unify the projection co-
ordinates of environmental variables into WGS_1984_UTM_Zone_50N 
coordinate system for later modeling and analysis. 

Climatic datasets of 1990 and 2015 were obtained from China 
Meteorological Data Service Center (https://data.cma.cn/en), 
composed of MAT and MAP. These climatic data were based on 1 km 
grid data generated by Kriging interpolation from 673 weather stations 

across China. A 90 m spatial resolution Shuttle Radar Topography 
Mission (SRTM) digital elevation model (DEM) data was downloaded 
from the United States Geological Survey (USGS). The elevation gradient 
of the study area ranged from 1 m to 1235 m. The high elevation was 
mainly distributed in the southwest low mountains and hills, and the 
low altitude was mainly distributed in the northwest. Two topographic 
variables (ELE, SG) were derived from SRTM DEM in ArcGIS 10.2 using 
a spatial analysis model. The System for Automated Geoscientific Ana-
lyses Geographic Information System (SAGA GIS) software was used to 
calculate TWI by SRTM DEM. B3, B4 and B5 representing vegetation 
formation, coverage and biomass (Wang et al., 2018) were obtained 
from Landsat TM and ETM + dataset and downloaded from the USGS 
with a 30 m × 30 m spatial resolution, covering the growing season from 
July to September in 1990 and 2015. NDVI was derived from B3 and B4 
to detect the vegetation growth status and vegetation coverage: 

NDVI = (B4 - B3)/(B4 + B3) (2)  

2.4. Boosted regression trees and their uncertainty 

The BRT model was proposed by Friedman et al. (2000), which 
consists of boosting and regression trees (Elith et al., 2008). Boosting 
technology was an improvement based on random gradient of decision 
tree (Wang et al., 2016). It used all samples at once and changes the 
weight of the samples in each round of training. The goal of the next 
round of training was to find a function to adapt to the residual error of 
the previous round. When the residual was small enough or reached the 

Fig. 1. Maps of sampling sites in Liaoning Province in 1990 and 2015 surveys.  
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maximum number of iterations, it stopped iterating. BRT model could 
deal with soil environmental problems in complex landscape area flex-
ibly and avoid nonlinear interactions between variables. In comparison 
with the traditional regression model, BRT model had better prediction 
performance, especially in the spatial simulation of soil properties, and 
have been widely used in spatial prediction research. In this study, we 
use the “demo” software package developed by Elith et al. (2008) and 
build the model in R language environment (R Development Core Team, 
2013). To evaluate the prediction uncertainty of SOC and SIC stocks 
during the two periods, we iterated 100 times of the BRT model and 
obtained an average standard deviation map. 

2.5. Model validation 

A 10-fold cross-validation method with four common validation 
indices including mean absolute error (MAE), root mean square error 
(RMSE), coefficient of determination (R2), and Lin’s concordance cor-
relation coefficient (LCCC) (Lin, 1989) was used to evaluate the per-
formance of the BRT model in the two periods. Among them, MAE was 
used to evaluate the deviation degree of prediction value. The closer to 
0, the better the prediction result. RMSE was used to evaluate the overall 
accuracy of the prediction results. The smaller the value was, the higher 
the prediction accuracy of the model was. R2 was used to evaluate the 
goodness of fit of the model. The closer the value was to 1, the higher the 
reference value of the model was. LCCC was used to measure the degree 
of 1-to-1 line distribution between the predicted value and the measured 
value. The closer the LCCC was to 1, the higher the degree of agreement 
between the predicted value and the observed value was, and the 
stronger the prediction ability of the model was. The specific calculation 
formula are: 

MAE =
1
n

∑n

i=1
|xi − yi| (3)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(xi − yi)

2

√

(4)  

R2 =

∑n
i=1(xi − y)2

∑n
i=1(yi − y)2 (5)  

LCCC =
2r∂x∂y

∂2
x + ∂2

y + (x + y)2 (6)  

where xi and yi are measured values and model predicted values at 
sampling site i; x and y are the average values of measured values and 
predicted values; ∂x and ∂y are the variance between measured values 
and predicted values; n is the number of sampling points; r is the Pearson 
correlation coefficient. 

2.6. Calculation of SOC and SIC stocks 

This study focused on the temporal and spatial variation of soil 
carbon stocks in the semi-arid area of northeast Liaoning Province. 
Therefore, it was necessary to accurately calculate the SOC and SIC 
stocks of the topsoil (0–30 cm) at the sampling location. The calculation 
formulas are as follows: 

SOCdensity =
∑k

j=1
SOCcontent × BDj × Dj ×

(
1 − Sj

)
(7)  

SICdensity =
∑k

j=1
SICcontent × BDj × Dj ×

(
1 − Sj

)
(8)  

where SOCdensity, SICdensity, SOCcontent, and SICcontent are the SOC density, 
SIC density, SOC content, and SIC content, respectively; BDj, Dj, and Sj 

represent the bulk density, the soil layer thickness, and the coarse 
fraction content greater than 2 mm, and the coarse fraction content was 
calculated by a weighting method; k is the layer of soil profile; j is the 
specific level, this study is limited to 30 cm. 

To further reveal the causes of these changes in this study region, we 
calculated the changes in soil carbon stocks under the main land use 
types including cultivated land, forest land, and grasslands. In order to 
further explore the variable trend of soil carbon stocks in Northwest 
Liaoning Province in the past 25 years, we calculated the spatial varia-
tion maps of soil carbon stocks in the two periods. 

3. Results 

3.1. Descriptive statistics 

The descriptive statistical results of SOC and SIC stocks with selected 
environmental variables at all sampling sites were shown in Figs. 2 and 
3. In 1990, the SOC and SIC stocks were 0.38–14.82 kg m− 2 and 
0.18–3.13 kg m− 2, with the average values were 4.79 kg m− 2 and 1.33 
kg m− 2, respectively. The corresponding average values of SOC and SIC 
in 2015 were 4.69 kg m− 2 and 1.64 kg m− 2, respectively. In addition, we 
also calculated the skew coefficients of SOC and SIC stocks, which were 
1.14 vs 1.08 in 1990 and 0.78 vs 1.46 in 2015, respectively. Therefore, 
the data did not follow the standard normal distribution. So in the 
process of building model, it is necessary to carry out logarithmic 
transformation to make it conform to the normal distribution. Re-
lationships between logarithmic conversion of SOC stocks (kg m− 2) and 
SIC stocks (kg m− 2) with all predictors were shown in Table 1. During 
the two periods, MAP, NDVI, ELE and SG were positively correlated with 
the logarithmic conversion of SOC stocks, while MAT, TWI, B3, and B4 
were negatively correlated. Correspondingly, MAT, TWI, and B4 were 
positively correlated with the logarithmic conversion of SIC stocks, 
while MAP, ELE, SG, and NDVI were negatively correlated. 

3.2. Model performance and uncertainty 

Twenty percent of all sampling points were randomly selected as 
independent testing dataset to evaluate the prediction performance of 
BRT model during the two periods (Table 2). In order to ensure the 
stability of model performance, BRT model was iterated 100 times and 
its average value was calculated as the final prediction result. The results 
of model validation showed that the BRT model was efficient and robust 
in predicting the spatial distribution of SOC and SIC stocks in both pe-
riods, because the BRT model had higher R2 and LCCC, lower MAE and 
RMSE. In addition, in order to evaluate the uncertainty of BRT model, 
we calculated the average standard deviations (SDs) of prediction results 
using BRT model with 100 iterations. In 1990, the SDs of SOC and SIC 
stocks were 0.047 kg m− 2 and 0.046 kg m− 2, respectively. In 2015, the 
SDs of SOC and SIC stocks were 0.049 kg m− 2 and 0.066 kg m− 2, 
respectively. The BRT model presented low uncertainty in both periods 
(Fig. 4). 

3.3. Relative importance of environmental variables 

By iterating BRT model for 100 times, the average relative impor-
tance (RI) of 9 environment variables was calculated and normalized to 
100 %. We found that each environmental variable had different RI in 
SOC and SIC prediction (Fig. 5). ELE, NDVI, MAP B3, and MAT were the 
key environmental factors affecting SOC stocks, accounting for 76.6 % 
and 70.3 % of the total RI in 1990 and 2015, respectively. Corre-
spondingly, MAP, MAT, elevation and TWI were the key environmental 
factors affecting the spatial distribution of SIC stocks, accounting for 
68.1 % and 69.7 % of the RI in 1990 and 2015, respectively. 
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3.4. Spatial prediction of soil carbon stocks 

In this study, 100 iterations of BRT were selected for spatial pre-
diction of SOC and SIC stocks, and the average value of their results was 
calculated as the final spatial distribution map of SOC and SIC stocks 
(Fig. 6). SOC stocks in 2015 (4.2 ± 1.4 kg m− 2) were lower than those in 
1990 (4.6 ± 1.5 kg m− 2). Similarly, SIC stocks in 2015 (1.8 ± 0.6 kg 

m− 2) were lower than those in 1990 (1.5 ± 0.5 kg m− 2). In order to 
better xplore the spatial and temporal changes of soil carbon stocks in 
this region, we added SOC and SIC maps during the two periods in 
ArcGIS 10.2 using grid calculation module to obtain the spatial distri-
bution map of soil carbon stocks in 1990 and 2015 (Fig. 7), respectively. 
In addition, soil carbon stocks decreased from 6.2 ± 1.9 kg m− 2 in 1990 
to 5.9 ± 1.9 kg m− 2 in 2015. According to the spatial distribution maps 

Fig. 2. Mean values of SOC stocks (a) and SIC stocks (b) for different land use patterns in 1990 and 2015.  

Fig. 3. Boxplots of SOC and SIC stocks with different environmental variables at sampling sites in 1990 and 2015.  
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of soil carbon stocks in the two periods, the soil carbon stocks gradually 
decreased from northeast to southwest. 

The spatial variation maps of soil carbon stocks in the two periods 
was calculated (Fig. 8), the results showed that soil carbon stocks 
decreased mainly in the northeast and central regions, accounting for 70 
% of the total area of the study area, and the decline range was between 
− 2–1 kg m− 2 and − 1–0 kg m− 2, accounting for 66 % of the total area 
(Fig. 8b). Soil carbon stocks increased mainly in the southwest of 
Northwest Liaoning Province, accounting for 30 % of the total area of 
the study area. 

3.5. Changes of soil carbon stocks under different land use patterns 

The changes in soil carbon stocks under the main land use types was 
calculated (Table 3), we found that the decrease of soil carbon stocks 
was mainly due to the cultivated lands with no land-use changes, and the 

decrease was 5.54 Tg C. The increase mainly came from forest and 
grassland with no land use change, increasing by 1.44 and 1.42 Tg C, 
respectively. 

4. Discussion 

4.1. Effects of environmental factors on SOC and SIC stocks 

Climatic factors had important impacts on the spatial distribution of 
SOC and SIC stocks (Wynn et al., 2006; Wang et al., 2018). Previous 
studies (Batjes, 1996; Papatheodorou et al.,2004; Na et al., 2010; Filippi 
et al., 2020) have shown that SOC and SIC were significantly correlated 
with climatic variables, which is further verified in this study (Fig. 5). In 
the processes of carbon input and output, vegetation productivity and 
microbial decomposition and transformation are affected by climate 
conditions such as rainfall and temperature (Li et al., 2019). SOC stocks 
were strongly affected by rainfall and temperature. SOC content in 
natural ecosystem decreased exponentially with the increase of tem-
perature (Willaarts et al., 2016). Compared with the arid area, the semi- 
arid area had more MAP, larger cultivated land area, and the soil erosion 
intensity increases correspondingly (Na et al., 2010). The organic matter 
attached to the light clay particles of the topsoil was also lost with the 
soil, which reduced the accumulation of soil organic matter (Wynn et al., 
2006). However, the vegetation coverage in the arid area was low, but a 
large number of biological crusts grow on the soil surface, which not 
only makes the surface soil tend to be fixed, but also strengthens the soil 
(Yang et al., 2016; Wang et al., 2018; Filippi et al., 2020). Drought 
environment is not conducive to plant growth; high temperature can 
promote microbial activity and accelerate organic matter mineraliza-
tion, but is not conducive to the synthesis and accumulation of soil 
humus, resulting in low SOC stocks (Filippi et al., 2020). 

MAP was an important component in the process of calcium car-
bonate deposition (CaCO3) (Bolinder et al., 2007). In semi-arid area, 
appropriate soil moisture content was conducive to the formation of 
CaCO3. Lal (2004) conducted that vegetation and microbial activities 
could significantly change the infiltration of water, thus changing the 
leaching of SIC and precipitation of secondary carbonate. The profile 
distribution of SIC affected by leaching is also considered to be more 
complex. Even under the combined action of heavy rainfall and violent 
biological activities, carbonate is almost completely leached (Na et al., 

Table 1 
Relationships between logarithmic conversion of SOC stocks (kg m− 2) and SIC stocks (kg m− 2) with all predictors in the 1990 and 2015 surveys.  

Year Property SOC stocks SIC stocks ELE SG TWI MAP MAT B3 B4 B5 

1990 SIC stocks  − 0.32**           
ELE  0.23**  − 0.16**          
SG  0.12**  − 0.17**  0.43**         
TWI  − 0.26**  0.21**  − 0.57**  − 0.62**        
MAP  0.49**  − 0.57**  0.33**  0.14*  − 0.23**       
MAT  − 0.53**  0.29**  − 0.29**  − 0.17*  0.27**  − 0.33**      
B3  − 0.20**  0.06  − 0.17**  − 0.16*  0.06  − 0.15**  0.14**     
B4  − 0.14**  0.19**  − 0.19**  − 0.09  0.05  0.22**  − 0.24**  0.71**    
B5  0.19*  − 0.03  0.01  − 0.07  − 0.03  − 0.23**  0.18**  0.75**  0.82**   
NDVI  0.41**  − 0.21**  0.15**  − 0.10  0.02  0.34**  − 0.27**  − 0.32**  0.47**  − 0.39**  

2015 SIC stocks  − 0.24**           
ELE  0.21**  − 0.23**          
SG  0.19**  − 0.16**  0.32**         
TWI  − 0.18**  0.22**  − 0.53**  − 0.46**        
MAP  0.52**  − 0.53**  − 0.24**  0.17**  − 0.18**       
MAT  − 0.33**  0.24**  − 0.33**  − 0.20**  0.23**  − 0.24**      
B3  − 0.19**  − 0.09*  − 0.08  − 0.19**  0.09**  − 0.16**  0.08*     
B4  − 0.17**  0.15**  − 0.05  − 0.18*  0.07  0.24**  − 0.19**  0.74**    
B5  0.13*  − 0.05  − 0.02  − 0.13*  0.04  − 0.21**  0.15**  0.83**  0.78**   
NDVI  0.27**  − 0.23**  0.27**  − 0.08  -0.11**  0.27**  − 0.28**  − 0.36**  0.33**  − 0.37** 

Note: p < 0.05 shown in “*”; p < 0.01 shown in “**”. SOC, soil organic carbon; SIC, soil inorganic carbon; ELE, elevation; SG, slope gradient; TWI, topographic wetness 
index; MAP, mean annual precipitation; MAT, mean annual temperature; B3, Landsat band 3; B4, Landsat band 4; B5, Landsat band 5; and NDVI, Normalized Dif-
ference Vegetation Index. 

Table 2 
Summary statistics of boosted regression tree (BRT) verification in predicting 
SOC and SIC stocks using a 10-fold cross-validation method in 1990 and 2015.  

Property Year Index Units Min. Median Mean Max. 

SOC stocks 1990 MAE kg m− 2  0.37  0.38  0.39  0.40 
RMSE kg m− 2  0.52  0.53  0.53  0.54 
R2 –  0.61  0.64  0.64  0.66 
LCCC –  0.71  0.73  0.74  0.78 

2015 MAE kg m− 2  0.47  0.48  0.48  0.50 
RMSE kg m− 2  0.62  0.65  0.65  0.67 
R2 –  0.53  0.54  0.55  0.57 
LCCC –  0.67  0.67  0.68  0.69  

SIC stocks 1990 MAE kg m− 2  0.12  0.14  0.14  0.15 
RMSE kg m− 2  0.17  0.19  0.19  0.20 
R2 –  0.61  0.64  0.64  0.66 
LCCC –  0.76  0.79  0.79  0.81 

2015 MAE kg m− 2  0.15  0.16  0.16  0.17 
RMSE kg m− 2  0.19  0.20  0.20  0.21 
R2 –  0.55  0.56  0.57  0.59 
LCCC –  0.70  0.71  0.72  0.73 

Note: MAE,mean absolute error; RMSE, root mean squared error; R2, coefficient 
of determination; and LCCC, Lin’s concordance correlation coefficient; Min., 
minimum; Max., maximum. 
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2008). However, the leaching loss of natural soil base was less in semi- 
arid or arid areas. On the contrary, due to the large evaporation of soil 
water, with the increase of capillary water, the base materials in the 
lower layer tend to accumulate to the upper layer, resulting in calcium 
reaction in the soil (Papatheodorou et al., 2004). Therefore, climatic 
factors such as MAT and MAP had obvious effects on the distribution of 
SOC and SIC stocks, which were important covariates for spatial distri-
bution prediction. 

Topography was an important factor in the process of soil formation 
(Wang et al., 2016). It not only controls the redistribution of water and 
heat resources, but also affects the material circulation process and in-
tensity of soil ecosystem, and has a profound impact on soil properties 
(Martin et al., 2011; Yang et al., 2016; Wang et al., 2018). Topography is 
an important factor to affect ecosystem material and energy flows 
(McBratney et al., 2003). As the most important topography variable, 
ELE does not directly affect SOC and SIC stocks, but changes the dis-
tribution of soil organic matter through altering bioclimatic factors such 
as rainfall and temperature (Yang et al., 2016). In addition, in the 
southwest of Liaoning Province, the mountainous and hilly areas are the 
main ones. The terrain factors such as SG and slope position were easy to 
cause geological subsidence and soil erosion, and a large amount of soil 
nutrients are lost, which was not conducive to the accumulation of 
organic matter, resulting in the minimum SOC stocks in this region. 

The biological variables were the most important factor affecting the 
spatial variation of SOC stocks in both periods (Fig. 5). This conclusion is 
consistent with previous findings (Wynn et al., 2006; Willaarts et al., 

2016; Yang et al., 2020). Wang et al. (2017) found that biological related 
variables were closely related to the spatial distribution of SOC stocks, 
and they were the main source of topsoil SOC stocks and controlled the 
amount of organic matter entering the soil. In this study, we also found 
that NDVI and B3 are the most important environmental factors among 
all biological variables in predicting SOC stocks, and they represent the 
biomass and productivity of vegetation to a certain extent. In the Qilian 
Mountains of China, Yang et al (2016) used BRT and RF models to 
predict the topsoil SOC in an alpine ecosystem, and concluded that NDVI 
and B3 are the powerful environmental factors among the four biomass 
variables (NDVI, B3, B4, and B5). Surprisingly, biological variables 
showed the lowed relative importance in the spatial simulation of SIC 
stocks. Through analysis, we believed that the source and distribution of 
SIC stocks were often influenced by multiple factors such as pedogenic 
parent material, soil moisture, climate, salinity and soil type. Similar 
conclusions have been reached in previous studies (Wu et al., 2009; 
Wang et al., 2010, Rong et al., 2012). 

4.2. Effects of land use change on soil carbon stocks 

Land use is the most direct result of human activities (Adhikari et al., 
2019). Under different land use patterns, the disturbance degree of 
surface vegetation and soil is different, resulting in significant differ-
ences in soil carbon stocks (Wang et al.,2016; Li et al., 2010; Yu et al., 
2020a). Our study further clarified the effects of land-use change on soil 
carbon stocks. We found that forest and grassland without land-use 

Fig. 4. Average standard deviation map with 100 iterations using BRT model for SOC stocks in 1990 (a) and 2015 (b) and SIC stocks in 1990 (c) and 2015 (d).  

S. Wang et al.                                                                                                                                                                                                                                   



Ecological Indicators 146 (2023) 109776

8

change increased carbon stocks by 1.44 and 1.42 Tg C in the past 25 
years, respectively, while cultivated land carbon decreased by 5.54 Tg C 
(Table 3). Changes in land-use patterns will lead to changes in vegeta-
tion types, soil microorganisms, and soil physical and soil chemical 
properties, which will affect the amount and decomposition rate of soil 
organic matter, and then affect SOC stocks at different degrees (Song 
et al., 2016; Yigini and Panagos, 2016; Wang et al., 2017). SIC mainly 
refers to carbonate existing in arid and semi-arid soils, and its content is 
related to the lithology of parent material (Chang et al., 2012; Du and 
Gao, 2020; Yu et al., 2020a). Land use change will affect the leaching 
and deposition process of SIC, and then affect the SIC stocks (Wu et al., 
2009; Du and Gao, 2020). In the Wisconsin of USA, Huang et al. (2019) 
applied a modified space-for-time substitution method to estimate the 
spatial and temporal variations of SOC stocks over a 150-year period. 
They concluded that the spatial variation of SOC stocks at 0–30 cm was 
mainly affected by land cover and soil types with the largest SOC stocks 
found in forest and wetland and spodosols. Wu et al. (2009) used soil 
profile data (China’s second national soil survey) to investigate the 
spatial distribution of SIC for the entire country under present day 
conditions as well as changes in SIC under historical land use conditions. 
They also found that human activity may have had a great impact on SIC 
stocks. 

The regional soil carbon stocks were decreased from 1990 to 2015 
(Table 3) due to the main land use type as cultivated land in this area, 
which was China’s commodity grain base (Wang et al., 2017). Soil 
organic matter formed by the residual organic matter of cultivated crops 
in soils was not lower than the organic matter consumed due to 
mineralization (Nyssen et al., 2008; Chang et al., 2012). This leads to the 
decrease of soil fertility every year, especially in recent years with the 

gradual decrease of cultivated land area and the continuous increase of 
population (Na et al., 2010; Wang et al., 2016). In the southeast of the 
region, the trend of increasing soil carbon stocks was mainly due to the 
implementation of the policy of returning farmland to forest and pro-
tecting natural forest (Fig. 7). Over the past 25 years, 2262 km2 of 
cultivated had been converted to forest, and soil carbon stocks had 
decreased by 0.22 Tg C (Table 3). Since the implementation of this 
policy, the accumulation of litter and the increase of underground root 
biomass have led to more soil carbon stocks. In addition, forest increased 
the number and activity of soil microorganisms and animals, accelerated 
the turnover of organic matter, deepened the rooting system of trees, 
and was conducive to the accumulation of soil carbon stocks. However, 
as this region is the main commodity grain base in China, the imple-
mentation time of the conversion of farmland to forests in this region 
varies. In relatively large regions, this policy was implemented only in 
recent 5–10 years (Wang et al., 2018). Overall, there was not an 
increasing trend in soil carbon storage changes. In a lake retreat area of 
the Ethiopian Rift Valley, Nyssen et al. (2008) concluded that land use 
and cover changes lead to loss of vegetation cover and subsequent 
change in SOC and soil quality. In general, soil carbon stocks increased 
after returning cultivated land to forest and grassland (Table 3), but the 
change to cultivated land will reduce soil carbon stocks. 

4.3. Relationships between SOC and SIC stocks 

We found that SOC and SIC stocks have a significant negative cor-
relation in the semi-arid (Table 1). They showed opposite correlations 
with the selected environmental variables in the two periods (Fig. 6). 
This finding was confirmed in previous studies (Wang et al., 2010; 

Fig. 5. Average relative importance map of each environmental variable derived from 100 BRT model iterations in predicting SOC stocks in 1990 (a) and 2015 (b) 
and in predicting SIC stocks in 1990 (c) and 2015 (d). 
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Zhang et al., 2013; Du and Cao, 2020). By comparing the spatial dis-
tribution of SOC and SIC stocks in the two periods, we find that there 
was an opposite and different trend of change in the topsoil, while the 
southwest of the study area had higher SOC stocks but lower SIC stocks. 
At the edge of Gurbantunggut Desert in Northwest China, Rong et al. 
(2012) found that the SOC increased from the topsoil to the bottom, but 
there was an opposite change trend of SIC. Chang et al. (2012) believed 
that afforestation affected SOC and SIC, and afforestation within 20 cm 
of the profile increased SOC and decreased SIC. However, some studies 
showed that there was a positive correlation between SOC and SIC 
stocks (Chadwick et al., 1994; Li et al., 2010; Cao, 2012). Li et al. (2010) 
found that, compared with fallow soil, long-term continuous cropping or 
rotation of different crops significantly increased the mass fraction of 
various forms of carbon in 0–40 cm soil layer, increased SOC by 47–139 
%, and increased SIC by 20–26 %. In the Tengger Desert of China, Zhang 
et al. (2009) concluded that the distribution pattern of organic matter in 
light brown calcareous soil was similar to that of calcium carbonate in 
natural environment, and there was a significant positive correlation 
between SOC and SIC, and the change trend was the same. Therefore, 
the SOC and SIC dynamics were complex. In the future research on soil 

carbon stocks in arid and semi-arid areas, both SOC and SIC dynamics 
and their influence factors should be considered. 

4.4. Limitations in the current study 

BRT model well predicted SOC and SIC stocks in the semi-arid area of 
northwest Liaoning in northeast China. However, there were some un-
certainties in this study. First, some soil profile data in 1990 were 
missing bulk density data, which was supplemented with Pedo-Transfer 
Functions (PTFs). This may lead to prediction error. Second, the soil data 
in 2015 were collected and analyzed by different groups, which may 
lead to sampling and measurement errors. Third, environmental data 
were obtained from different departments and platforms, and the data 
accuracy was different. Therefore, some data may be lost in the process 
of resampling. Fourth, the content and distribution of SIC are affected by 
multiple factors such as soil parent material, soil moisture, climate, 
salinity and soil type. This kind of environmental data should be fully 
introduced into the spatial prediction of SIC stocks. But due to the dif-
ficulty of data acquisition, this study only obtained climatic data, which 
may cause prediction errors in predicting SIC stocks. Finally, this study 

Fig. 6. Average spatial distribution maps from 100 BRT model iterations in predicting SOC stocks in 1990 (a) and 2015 (b) and in predicting SIC stocks in 1990 (c) 
and 2015 (d). 
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was only limited to the study of topsoil carbon stocks (0–30 cm) in 
Northwest Liaoning Province. This will underestimate the total soil 
carbon stocks, because usually more soil carbon stocks are in deep soils 
instead of topsoil. 

5. Conclusion 

BRT model was used to predict the spatial distribution of SOC and 
SIC stocks in the semi-arid region of Northeast China. The main envi-
ronmental factors affecting the spatial and temporal changes of SOC and 
SIC stocks were identified and the temporal and spatial changes of soil 

carbon stocks were estimated. We found that BRT model was able to 
predict the spatial distribution of SOC and SIC stocks with high R2 and 
LCCC and low MAE and RMSE in comparison with the observation data. 
In addition, SOC and SIC stocks showed opposite spatial distribution 
characteristics in the two periods. During the 25 years, SOC stocks 
decreased from 4.9 kgm− 2 in 1990 to 3.9 kgm− 2 in 2015, corresponding 
SIC stocks increased from 2.9 kg m− 2 in 1990 to 4.2 kg m− 2 in 2015. 
However, soil carbon stocks decreased by 1 kg m− 2 during the 25 years, 
the spatial distribution pattern gradually increased from southwest to 
northeast. In addition, we found ELE, NDVI, MAP and B3 were the key 
environmental factors for simulating SOC stocks, correspondingly, MAP, 

Fig. 7. Average spatial distribution maps of soil carbon stocks in 1990 (a) and 2015 (b).  

Fig. 8. Spatial distributions of soil carbon stocks change (kg m− 2) (a) and area percentages of soil carbon stocks (kg m− 2) (b) at different levels between 1990 
and 2015. 

S. Wang et al.                                                                                                                                                                                                                                   



Ecological Indicators 146 (2023) 109776

11

MAT, elevation and TWI were the key environmental factors for simu-
lating the spatial distribution of SIC stocks during the two periods. We 
also found that land use change played an important role in the spatial 
variability of SOC and SIC stocks. In general, the prediction accuracy 
was high and reasonable. The predicted temporal and spatial distribu-
tion of soil carbon stocks is valuable information for soil and water 
conservation, environmental protection and agricultural production 
planning in Northwest Liaoning Province. 
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Major land use types Area (km2) Soil carbon stocks 
(Tg C) 

Change (Tg C) 

1990 2015  

Cultivation-cultivation 
(C–C)  

18983.00  118.02  108.65  − 9.37 

Cultivation-forest (C-F)  2262.00  14.08  13.86  − 0.22 
Cultivation-grassland (C-G)  1862.00  11.21  11.53  0.32 
Forest-cultivation (F-C)  3010.00  18.57  18.39  − 0.18 
Forest-forest (F-F)  4228.00  23.98  25.42  1.44 
Forest-grassland (F-G)  1213.00  7.42  7.98  0.56 
Grassland-cultivation (G-C)  2350.00  14.47  14.60  0.13 
Grassland-forest (G-F)  995.00  6.09  6.44  0.35 
Grassland-grassland (G-G)  3684.00  21.59  23.01  1.42 
Sum  38587.00  235.42  229.88  − 5.54  
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