
Contents lists available at ScienceDirect

Geoderma

journal homepage: www.elsevier.com/locate/geoderma

Spatial variations of soil organic carbon stocks in a coastal hilly area of
China

Shuai Wanga,b, Qianlai Zhuangb,⁎, Shuhai Jiaa, Xinxin Jina,b, Qiubing Wanga,⁎⁎

a College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China
b Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, USA

A R T I C L E I N F O

Handling Editor: A.B. McBratney

Keywords:
Soil organic carbon
Geographically weighted regression
Spatial variability

A B S T R A C T

Quantification of soil organic carbon (SOC) stocks and their spatial variations at regional scales is a foundation to
adequately assess plant productivity and soil carbon sequestration potentials so as to establish better practices
for land use and land management. This study evaluated the spatial variation of SOC stocks from 1982 to 2012 in
Wafangdian, Liaoning Province, China. To map SOC stock, we used geographically weighted regression (GWR)
and regression kriging (RK) methods and a large set of soil samples, in which nine topographic and remote
sensing variables were observed. The GWR approach performed better than the RK approach as the former has
smaller absolute mean errors (AME), mean errors (ME), root mean square errors (RMSE) in comparison with
observational data. Our results indicated that SOC stocks have an increasing trend in northeast and southwest
mountainous areas in our study periods. Land-use changes caused by returning cultivation land to forest pro-
moted SOC accumulation. The total SOC stocks of cultivation land, grasslands and forests within 0–0.2 m of soils
were estimated to be 5.25 and 5.40 Tg in 1982 and 2012, respectively. This study provided important in-
formation of spatial variations in SOC stocks to agencies and communities in this region to evaluate soil quality
and assess carbon sequestration potentials and carbon credits.

1. Introduction

Soil has been recognized as a large sink of atmospheric CO2 (Scholes
and Andreae, 2000; Wang et al., 2004). Carbon storage within 1 m of
soil depth is about twice more carbon than stored in the atmosphere
(Watson et al., 2000; Kumar et al., 2012). SOC is a vital constituent in
carbon capture and storage to alleviate rising atmospheric CO2 con-
centrations. Globally, soils stored about 1500 Pg C (1 Pg = 1015 g)
within 1 m depth (Lal, 2004). In addition, estimation of SOC stock is
also important to assessing soil quality and plant productivity under a
changing climate so as to develop effective land management policies
(Jobbagy and Jackson, 2000; Mondini and Sequi, 2008; Don et al.,
2011; Li et al., 2012). Cost-efficient techniques for mapping SOC stock
are therefore indispensable (Mishra et al., 2010; Wang et al., 2016;
Minasny and McBratney, 2016).

Geographic or purely spatial approaches have been used to predict
soil properties at un-sampled locations since the late 1960s (McBratney
et al., 2003). SOC is affected by both natural vegetation and human
activities (Elbasiouny et al., 2014). However, due to spatial hetero-
geneity and lack of extensive sampling data, some approaches are often

not capable of accurately mapping C stocks (Batjes, 1996; Wang et al.,
2016; Wang et al., 2017). Since the advent of geographic information
systems (GIS) and high-precision remote sensing data, climate data,
terrain data and those derived variables have been widely used to es-
timate SOC stock (Kumar et al., 2012). Multiple linear regression
(MLR), regression kriging (RK), and ordinary cokriging (OCK) are often
combined with these auxiliary environmental variables to map soil
properties (Robinson and Metternicht, 2006; Grimm et al., 2008).
Consequently, the selection of prediction variables is one of the ne-
cessary steps to accurately map SOC stocks (Mishra et al., 2010).

Spatial variability of SOC stocks can be estimated by using various
techniques, which can be merged into two categories: (1) the measure
and multiply model (MMA), and (2) the soil landscape modeling (SLM)
model. In the MMA model, an average SOC stock is allocated to each
map unit of soil type or land-use type in an area (Batjes, 1996; Bernoux
et al., 2002; Guo et al., 2006). However, this approach results in con-
stant values within each map unit that cannot show its large spatial
heterogeneity of SOC stock and the error of estimated SOC are due to
using a few SOC stock data points. In contrast, the SLM model can
produce more detailed spatial variations of SOC stocks with assistance
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of auxiliary environmental variables including topography, climate,
vegetation, and remote sensing imagery. Compared with the MMA
model that does not consider the effects of environment variables in the
study area, the SLM model has lower prediction errors (Tompson and
Kolka, 2005; Mishra et al., 2010).

Since the late 1990s, a simple approach known as geographically
weighted regression (GWR) has attracted much attention and was in-
troduced for the study of digital soil mapping (DSM) (Brunsdon et al.,
1996; Fotheringham et al., 2002; Song et al., 2016). GWR can be seen as
an extension of a spatial non-stationarity regression approach at dif-
ferent locations (Kumar et al., 2012). Compared to a traditional re-
gression model, GWR is more powerful and efficient (Song et al., 2016).
Specifically, GWR is an extension of the traditional multiple linear re-
gression toward a local regression, in which regression coefficients are
specific to a location rather than being globally estimated. This model
provides a flexible parameter estimation method for the spatial non-
stationarity of regression coefficients between the target variable and
explanatory variables by measuring those coefficients locally using
local data. Owing to these merits, GWR has been applied to explore the
spatial relationships among the environmental variables (Kumar et al.,
2012), estimate complex spatial variation in parameters (Kumar et al.,
2012), model spatially heterogeneous processes (Lloyd, 2010; Mishra
et al., 2010; Song et al., 2016), and forecast the SOC stock (Mishra
et al., 2010; Kumar et al., 2012; Wang et al., 2012; Song et al., 2016).

Using GWR for SOC stock mapping has been applied in various
studies at different scales. Mishra et al. (2010) compared three models
of GWR, MLR and RK in the Midwest of the United States. In those
studies GWR outperformed MLR and RK. GWR caused a reduction in
root mean square errors (RMSE) of 22% and 2% over MLR and RK. In
China, Wang et al. (2013) compared the prediction performance of
GWR and MLR and showed that the RMSE was reduced by 11%. Song
et al. (2016) compared GWR to MLR, geographically weighted ridge
regression (GWRR), kriging with an external drift (KED), and GWR plus
ordinary kriging of model residuals (GWRSK) for predicting the spatial
distribution of SOC in the Heihe basin, China. Eventually, they found
that GWR better captured the spatial variability of SOC and improving
its prediction accuracy.

Geostatistical models based on global regression coefficients are not
absolutely inferior to GWR model (Lloyd, 2010; Harris and Juggins,
2011; Song et al., 2016). It has not been shown if GWR model out-
performs the RK model (Song et al., 2016). The RK model parameters
are determined using the restricted maximum likelihood (REML)
method with two separate steps: (1) using the least square method to
determine the regression coefficient; (2) using method-of-moments
from the regression model residuals to determine the variogram para-
meters. These two steps are iterated to achieve the best fitting. This
process produces suboptimal parameters so as to produce suboptimal
prediction results (Song et al., 2016). Therefore, comparing GWR with
RK is essential to evaluating the benefits of local regression coefficients
in mapping SOC stock.

This study used a GWR approach to evaluate the spatial variability
of the SOC stocks in topsoil (0–20 cm) at a regional scale. The specific
objectives were to: (1) map SOC stocks in 1982 and 2012; (2) compare
the performance of GWR and RK models; and (3) investigate temporal
dynamics of SOC stocks from 1982 to 2012.

2. Materials and methods

2.1. Site description

This study was conducted in Wafangdian, Liaoning province, China
(121°13′-122°16′ E, 39°20′- 40°07′) (Fig. 1), covering a total area of
3827 km2. Seventy-one percent of the study area was under agriculture
and the rest mainly for garden plots and urban land. The chief crops of
study area are corn, rice, and sorghum in the mid-west plain region, and
fruit orchards in the upland areas. The elevation of this area increased

from southwest to northeast, with a range from 0 m to 772 m above sea
level. The study region has warm temperate continental monsoon cli-
mate, and it is the warmest area in the Northeast of China. The annual
mean temperature (MAT) is 9.3 °C, with the highest temperature of
37.8 °C in summer and the lowest temperature of 19.3 °C in winter. The
annual mean precipitation (MAP) ranges from 580 to 750 mm and
60%–70% of the MAP is in the rainy season (June–August), accom-
panied by heavy rainfall. Garden and forest lands are the main types
that are suitable for re-development. However, soil fertility is poor or
medium (Wang et al., 2016). The main geomorphic units are char-
acterized by complex and undulating hills systems intersected by river
valleys. According to the classification of World Reference Base for Soil
Resources (WRB) (IUSS Working Group, 2014), the dominant soil types
are Cambisols (58%) and Fluvisols (13%) in the study area.

2.2. Soil sampling

2.2.1. Soil survey data in 1982
Typical soil profiles were obtained from the Second National Soil

Survey of Liaoning Province conducted between 1979 and 1990
(OSSLP, 1990). Soil profile data include information on parent material,
cropping system, land use and soil physical and chemical properties.
However, our research only focused on the topsoil (0–20 cm) SOC and
bulk density (BD). A total of 978 topsoil data was obtained to represent
all soil types and land use types in the study area, and we randomly
selected 80% of these as the training data (782), and the remaining
were the testing data (196). The create-subset function in the geosta-
tistical module of ArcGIS 10.2 (ESRI Inc., USA) software was used for
training and testing the model. The unavailable measurements of soil
bulk density (BD) were calculated from SOC content using a pedo-
transfer function (PTF):

= − = <∗BD SOC R P1.46 0.09 ( 0.78, 0.001)2 (1)

2.2.2. Soil sampling in 2012
A total of 1195 (956 for training, 239 for testing) topsoil (0–20 cm)

samples were collected in a new survey on a 1.6 × 1.6 km grid across
the study area in 2012 (Fig. 1, right). The coordinates of sampling sites
were determined by a hand-held Global Positioning System (GPS). Each
sample site was a mixed sample based on the four corners and center
points of the 1 × 1 m square. A subsample of 1 kg per mixed sample
was isolated for laboratory analysis. SOC content of the samples was
determined by a wet oxidation method (Walkley–Black method)
(Nelson and Sommers, 1982) in Key Laboratory of Agricultural Re-
sources and Environment of Liaoning Province, Shenyang Agricultural
University. To estimate dry bulk density, 100 cm3 of undisturbed soil
cores were collected from topsoil layers and then were dried for 48 h at
105 °C for bulk density measurement.

2.3. Environmental variables

A suite of 9 environmental covariates representing topographic and
remote sensing variables were used as predictors in this study.
Environmental variables were collected and converted to raster data
through ArcGIS 10.2 (ESRI Inc., USA). Considering the widespread
extent of the data, we believed that covariates at a 30 × 30 m resolu-
tion were sufficient to meet our needs.

2.3.1. Topographic variables
Digital elevation model (DEM) data covering 30 × 30 m resolution

of the entire study area were obtained from the United States
Geological Survey (USGS, Reston, VA, USA). The elevation gradient
varies from 0 m to 722 m. The low-elevation area is mainly in the west
and southwest coastal areas (0 m), and the corresponding high-eleva-
tion areas are mainly in the northeast mountain area (722 m). Three
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primary topographic variables (elevation, slope gradient, and slope
aspect) were computed by DEM in the spatial analysis module of ArcGIS
10.2. Topographic wetness index (TWI) and catchment area (CA) were
generated in the System for Automated Geoscientific Analyses (SAGA,
Hamburg, Germany) GIS software (Olaya, 2004). TWI was calculated
based on the modified CA. As a result, TWI and CA derived values are
more realistic than using the traditional method (Yang et al., 2016).

2.3.2. Remote sensing variables
Four variables were derived from the Landsat 5 Thematic Mapper

(Landsat 5 TM). The data were acquired from the USGS (https://www.
usgs.gov/) between July and September (growing season) in 1984 and
2012 with cloud cover < 10%. ERDAS 2014 software (Environment
Systems Research Institute, California, USA, 2013) was used to correct
radiation data (Yang et al., 2016). Individual Landsat 5 TM bands in-
cluding band 3 (B3)—red (0.63–0.69 μm), band 4 (B4) —near-infrared
(0.78–0.90 μm), and band 5 (B5)—shortwave infrared (1.55–1.75 μm)
were determined as environmental variables, representing vegetation
growth, coverage and biomass, respectively (Yang et al., 2016). In ad-
dition, the Normalized Difference Vegetation Index (NDVI) was de-
termined using B3 and B4:

= − +NDVI B B B B( 4 3)/( 4 3) (2)

2.4. Land-use data

Land-use maps were raster data obtained from the National
Science & Technology Infrastructure of China, National Earth System
Science Data Sharing Infrastructure (http://www.geodata.cn). Land use
types were classified into cultivated land, grassland and forest land
according to the Second National Land Survey and Land Classification
System (Ministry of land and resources, China, 2007).

2.5. Prediction model

2.5.1. Geographically weighted regression
Geographically weighted regression (GWR) is a local estimation

procedure in which variations in rates of change are allowed so that
regression coefficients are specific to a location (Brunsdon et al., 1998;
Fotheringham et al., 2002). Suppose there are a series of target soil
properties and predictors, a conventional linear regression fitted by the
ordinary least squares (OLS) method is expressed as:

∑= + +Y i β u v β u v x ε( ) ( , ) ( , )i i
k

k i i ik i0
(3)

where (ui, vi) are the coordinates for the i location; β0 (ui, vi), is the
intercept, βk is regression coefficient, and xik is environmental variable
at the i location, and k is the number of environmental variables. The

Fig. 1. Location of sampling sites in the study area.
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regression parameters of this equation are estimated at each location i
(ui, vi). The parameters around a point i will be calibrated using the
weighted least squares approach. The estimation approach can be ex-
pressed as:

= −β u v X W u v X X W w v Y( , ) ( ( , ) ) ( , )i i
T

i i
T

i i0
1 (4)

where W (ui, vi) is an (m × m) spatial weighting diagonal matrix. (XT W
(u, v) X)−1 is the inverse matrix of independent variables, and Y is an
(m × 1) dependent variables.

The proper kernel shape and bandwidth are another important
setting for GWR model, which can be calculated using different
methods. One method is to specify a continuous and monotonic de-
creasing function of distance between one point and another. For
adaptive kernel size, this is computed with a bi-square distance decay
kernel function:

⎧
⎨⎩

− <
≥

w d d d d
d d

[1 ( / ) ]
0

if
ifij

ij i ij i

ij i

2 2

(5)

where wij = 1 at the center i (dij = 0) and wij = 0 when the distance
equals or is larger than bandwidth.

In this study, the rule of adaptive bandwidth is set to guarantee that
non-zero weights are identical with the number of observations at each
location i in the whole study area. The weight function and the optimal
bandwidth were determined based on the minimum modified Akaike
Information Criterion information (AIC) (Fotheringham et al., 2002). In
the GWR model, intensive sampling data reduce the weight and band-
width, whereas scarce sampling data increase these values (Clement
et al., 2009; Jaimes et al., 2010; Wang et al., 2013).

2.5.2. Regression kriging
Regression kriging (RK) assumes that the target variable can be

explained by independent variables through regression and the re-
siduals can be described considering the spatial autocorrelations (Hengl
et al., 2004). Our modeled SOC at an un-sampled location (u0,v0) is
estimated by summing a linear regression model and residuals:

̂= +SOC u v SOC u v ε u v( , ) ( , ) ( , )RK R OK0 0 0 0 0 0  (6)

where SOC u v( , )RK 0 0 are the final prediction values of regression kri-
ging. SOC u v( , )R 0 0 are the predictive values of the regression equation.

̂ε u v( , )OK 0 0 is the residual value at each site, which is estimated using
ordinary kriging (OK). The first part of the right-hand side of Eq. (6)
represents a multiple linear regression model describing the target
variable with the environment covariate (e.g., NDVI, elevation, and B3)
followed by the ordinary kriging based on the predicted residuals (Odeh
et al., 1995).

We interpolated the spatial distribution of SOC by RK with five
steps: (1) determine the LnC (i.e., Ln-transformed SOC) prediction
model using multiple linear regressions (MLR); (2) calculate the LnC
prediction model residuals at each sample location; (3) model the
covariance structure of the LnC residuals using a variogram model. GS
+ 7.0 statistical software (Gamma Design Software, Plainwell, MI) was
used to implement this process; (4) spatially interpolate the LnC re-
siduals through the parameters of the variogram model (Table 3); (5)
add the LnC prediction model surface to the interpolated residuals at
each prediction point.

2.6. Calculation of SOC stocks

This study analyzed the spatial variation of SOC stocks. For an in-
dividual profile with k layers (within first meter), the equation of Batjes
(1996) was used to calculate the density of soil organic carbon (SOC) in
the whole soil profile:

∑ ∑= = × × × −
= =

SOC SOC SOC BD D S(1 )
i i

k

concentration i i idensity
1

k

content
1

(7)

where SOCdensity is SOC density of whole soil profile (kg m−2),
SOCcontent is SOC content (kg m−2), BDi is the bulk density (g cm−3),

SOCconcentration is the SOC concentration (g kg−1), Di is the thickness
(m), Si is the volume fraction of fragments > 2 mm, and i represents a
specific soil layer.

2.7. Statistical analysis

Descriptive statistical analysis of soil properties and environmental
variables was carried out using SPSS 22.0. Pearson correlation coeffi-
cient was used to express the degree of linear correlation between the
variables. P values were used to detect significant levels among vari-
ables.

2.8. Model validation

Total of 196 for year 1982 and 239 for year 2012 validation sets
were used to test the predictive performance of the spatial interpolation
of GWR and RK methods. Four commonly-used indices including ab-
solute mean error (AME), mean error (ME), root mean square error
(RMSE), and model efficiency (R2), were used to compare the inter-
polation accuracy for GWR and RK. These indices were calculated as
follows:

∑= −
=

AME
n

P O1 |( )|
i

n
i i1 (8)

∑= −
=

ME
n

P O1 ( )
i

n
i i1 (9)

∑= −
=

RMSE
n

P O1 ( )
i

n
i i1

2
(10)

=
∑ −
∑ −

=

=
R

P O
O O
( )
( )

i
n

i

i
n

i

2 1
2

1
2 (11)

where Pi, Oi and O are predicted values, observed values and the mean
value of the observations at site i, respectively. n is the number of
samples.

3. Results and discussion

3.1. Exploratory data analysis

The statistical results of SOC stocks under different land-use pat-
terns in two periods are presented in Table 1. In 1982, the variation of
SOC stocks for cultivated land ranged from 1.84 to 18.96 kg m−2, with
an average of 8.57 kg m−2. Unexpectedly, the average SOC stock of
cultivated land was only 5.63 kg m−2 in 2012. Further comparison
between all land-use patterns in two periods revealed that there were

Table 1
Summary statistics of SOC stocks (kg m−2) under different land-use patterns in the two
periods.

Year Land-use patterns Min. Median Mean Max. SD CVs (%)

1982 Cultivated 1.84 8.82 8.57 18.96 4.89 57.03
grassland 1.38 9.37 9.12 20.96 3.97 43.56
forest 2.15 9.76 9.60 18.58 4.22 43.98

2012 Cultivated 0.59 4.95 5.63 13.01 2.98 52.83
Grassland 2.12 8.68 8.65 15.40 3.09 35.71
Forest 1.58 9.48 9.41 17.24 2.87 30.47

Note: Min., minimum; Max., maximum; SOC, soil organic carbon; SD, standard deviation;
CV, coefficient variation.
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decreasing trends in 2012 for land types, especially for the cultivated
land. In the cultivated land, standard deviation (SD) and coefficient of
variations (CVs) were 4.89 kg m−2 and 57.03% in 1982, and
2.98 kg m−2 and 52.83% in 2012, respectively. By contrast, we found
there were only slight changes in SOC stocks in forest and grassland
during the two periods. Moreover, SOC stocks under all land-use pat-
terns were approximately lognormal distribution and were almost
symmetrically distributed on both sides of the average values in both
periods (Fig. 2).

A Pearson correlation analysis (Barnes et al., 2005) was performed
to check the relationships between the Ln-transformed SOC stocks with
the environmental variables (Table 2). Ln-transformed SOC stocks were
significantly correlated to elevation, with smaller correlation coeffi-
cients in 1982 (0.18) than in 2012 (−0.83). In 2012, the correlation
coefficients between SOC stocks and the variables of slope gradient,
TWI, and CA (−0.65, 0.59 and−0.28) were higher than those in 1982.
Surprisingly, there were significant correlations between all remote
sensing image variables and SOC stocks in 1982. Environment variables
within each subgroup such as topography and remote sensing variables
and between subgroups had some multicollinearity. To alleviate the
multicollinearity problem, a stepwise linear regression was performed
for dropping closely-related predictor variables (Table 3). Based on the
results, we chose the linear regression Model C to be our final multiple
linear regression (MLR) models for both periods. Due to the variance
inflation factors of all covariates in the model were< 10, there was no
multicollinearity problem in the modeling process during the two per-
iods (Table 4). Those models explain 45% and 72% of the variance in
SOC stocks in the both periods (adjusted R2 is 0.45 and 0.72, respec-
tively). The MLR model is expressed as:

= + − + −

+
− + +

−

LnC Slope aspect B B B

CA
Elevation NDVI Slope gradient

TWI

1.871 0.0004 0.0009 3 0.0029 4 0.0014 5

0.00002
0.0002 0.6325 0.0054

0.0381

1982

(12)

= + + −

−
− − −

+

LnC Slope aspect B B

CA
Elevation NDVI Slope gradient

TWI

2.189 0.0002 0.0004 3 0.0005 5

0.00004
0.0046 0.0644 0.0035

0.0462

2012

(13)

3.2. Model parameters

3.2.1. Regression coefficients
A regression analysis of SOC stocks against nine environmental

variables was iterated using GWR with a variable bandwidth adopted
according to the density of sample data around each regression location
in both periods. Regression coefficients between GWR model estimates
of SOC stocks and each predictor variable, and the contribution of each
prediction variable to the SOC stocks at each location were provided
(Fig. 3). The coefficients of each predictor variable were different at
each location, indicating that the SOC stocks vary with spatial location.
The map of regression coefficients (Fig. 3) clearly showed the spatial
variability characteristics of the environmental variables in the study
area. The spatial non-stationarity of correlation coefficients between
SOC stocks and predictor variables were illustrated by means of the
local regression parameters of GWR model (Wang et al., 2012).

The regression coefficients exhibited considerable variations across
the study area in both periods (Fig. 3). The effects of NDVI, B3, B4, and

Fig. 2. Boxplot of SOC stocks in 1982 and 2012 derived for different environmental variables. SOC: Soil Organic Carbon; TWI: topographic wetness index; CA: catchment area; B3:
Landsat TM band 3; B4: Landsat TM band 4; B5: Landsat TM band 5; NDVI: Normalized Difference Vegetation Index.
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B5 changed from strongly negative to strongly positive in 1982. Cor-
respondingly, NDVI, elevation, and TWI strongly varied in 2012. The
average regression coefficient of GWR model in 2012 was close to the
regression coefficient of MLR model.

3.2.2. Variogram parameters
Table 5 lists the fitted parameters of the variogram models for the

Ln-transformed SOC stocks (LnC) and its residuals. LnC and its residuals
show a clear spatial dependence. For an auto-variogram model, the
ratio of C0/(C0 + C) represents the spatial heterogeneity caused by
random variation in the proportion of the total system. The ratios of
0–25%, 25–75%, and larger than 75% represented a strong, moderate
and weak, spatial correlation, respectively (Cambardella et al., 1994). If
the ratio was high, this variation between samples was more caused by
random factors. The ratio for LnC is 27% and 16% in 1982 and 2012,
showing moderate and strong spatial dependences, which means that
SOC stocks are jointly impacted by natural and human activities. The
ratios of residuals indicate that they had moderate spatial dependencies

in the both periods.

3.3. Model performance

In order to assess the performances of GWR and RK, the 196 (for
year 1982) and 239 (for year 2012) validation points were used for
testing the prediction accuracies of the two models. Table 6 shows the
predictive performance of GWR and RK using AME, ME, RMSE, and R2

statistics developed using modeled data and validation data for the two
study periods. Accuracy verification indicates that the GWR model had
lower AME, ME, and RMSE in the both periods (Table 6). A similar
conclusion can also be drawn from the density distribution at validation
sampling sites (Fig. 4), which clearly shows that GWR model was su-
perior to RK model in fitting the raw data. In addition, the adjustable R2

between the predicted and observed values at the verification sites also
showed that GWR performs better than the RK model in the both per-
iods.

Although study areas, experimental design, sampling strategy, and
verification method to predict SOC stocks are different from previous
studies using GWR and RK models, our results were not inferior. In the
Midwest of the United States, Mishra et al. (2010) compared MLR, RK
and GWR models to predict SOC stocks and their ME and RMSE values
are larger in comparison to this study. Kumar et al. (2012) developed a
GWR plus kriging model to explain 36% of the variance of SOC stocks in
the state of Pennsylvania, America. Meanwhile, they also used the RK
model as a comparison for the prediction of SOC stocks but R2 was only
0.23. In addition, the spatial distribution of SOC stocks predicted by
GWR and RK models and the validation analysis show that there are
some differences among the predicted results with the two methods. An
apparent difference is that the SOC stock maps obtained by GWR shows
the southwest and northeast mountain areas have higher SOC than that
obtained using RK (Fig. 5b and Fig. 6b), suggesting that the GWR model
is more accurate than the RK model in estimating the spatial variation
of the study area. Although the RK model combines the advantages of
PK and MLR, it does not deal with non-stationary spatial relationships
between variables within the study area. The GWR model can effec-
tively overcome this problem by using non-stationary regression model.

Table 2
Relationships between Ln-transformed SOC stocks with all predictors in 1982 and 2012 surveys.

Property LnC Elevation Slope aspect Slope gradient TWI CA B3 B4 B5

1982
Elevation 0.18**
Slope aspect −0.04 −0.19**
Slope gradient −0.20** −0.55** 0.49**
TWI 0.09* 0.19** −0.12** −0.38**
CA 0.16** 0.64** −0.26** −0.72** 0.24**
B3 −0.30** −0.14** 0.02 0.07 0.03 −0.13**
B4 0.40** 0.03 −0.07 −0.05 0.05 −0.04 0.37**
B5 −0.31** −0.04 −0.05 −0.06 0.09** 0.01 0.67** 0.15**
NDVI 0.63** 0.21** −0.09** −0.17** 0.04 0.12** −0.57** 0.41** −0.42**
2012
Elevation −0.83**
Slope aspect −0.12** 0.13**
Slope gradient −0.65** 0.68** 0.14**
TWI 0.59** −0.56** −0.38** −0.73**
CA −0.28** 0.21** 0.18** 0.17** −0.30**
B3 0.21** −0.20** −0.03 −0.17** 0.16** −0.08*
B4 0.02 −0.03 −0.05 −0.03 0.02 0.01 0.39**
B5 0.08* −0.10** −0.03 −0.07* 0.07* −0.02 0.70** 0.12**
NDVI −0.25** 0.23** −0.01 0.20** −0.18** 0.11** −0.67** 0.25** −0.54**

Note: Significant relationship between two variables with p < 0.05 shown in “*”; Significant relationship between two variables with p < 0.01 shown in “**”. Correlation coefficients
(r) and their significance (p) are also presented. CA, catchment area; TWI, topographic wetness index; B3, Landsat TM band 3; B4, Landsat TM band 4; B5, Landsat TM band 5; NDVI,
Normalized Difference Vegetation Index.

Table 3
Results of the stepwise linear regression analysis using nine environment variables.

Year Property Model R2 Adjusted R2 Std. error of
the estimate

F value p-value

1982 LnC Model A 0.05 0.04 0.54 13.75 0.0001
Model B 0.44 0.42 0.42 201.00 0.0001
Model C 0.45 0.45 0.41 73.33 0.0001

2012 LnC Model A 0.72 0.72 0.29 496.89 0.0001
Model B 0.08 0.07 0.52 26.03 0.0001
Model C 0.73 0.72 0.28 313.69 0.0001

Note: Model A represents all topographic variables to model; Model B represents all re-
mote sensing variables to model; Model C represents all topographic and remote sensing
variables to model.

Table 4
Variance inflation factors for MLR model and GWR model.

Year Elevation Slope
aspect

Slope
gradient

TWI CA B3 B4 B5 NDVI

1982 1.80 1.36 2.65 3.00 1.19 5.81 3.63 1.95 4.67
2012 1.96 1.24 1.13 2.93 2.72 6.05 2.73 2.14 4.15
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3.4. SOC stocks maps and spatial variation

The spatial distributions of SOC socks predicted by GWR and RK in
1982 and 2012 show a similar spatial pattern or trend (Figs. 5 and 6).
High SOC stocks are usually concentrated in high mountains (forest and
grassland) where less influence of human disturbance. Lower SOC
stocks mostly appear in cultivation land or other land at low elevation
where soil is frequently disturbed by human activities. The spatial
patterns of SOC stocks in 1982 were closely related to vegetation-re-
lated variables, and this conclusion had been tested in recent relevant
studies (Mishra et al., 2010; Kumar et al., 2012; Wang et al., 2016).
Elbasiouny et al. (2014) reported vegetation was an important factor to

Fig. 3. The regression coefficients of geographical weighted regression (GWR) in 1982 (left) and 2012 (right).

Table 5
Parameters of the semivariogram models for the Ln-transformed SOC stocks and its residuals in both periods.

Item Model Nugget
(C0)

Still
(C0 + C)

Proportion
C0/(C0 + C)

Range
(km)

Cofficient
of determination
(R2)

RSS

LnC1982 Linear 0.291 1.062 0.274 12.62 0.809 2.43E-03
RK1982 residuals Linear 0.284 1.052 0.270 13.86 0.73 1.17E-03
LnC2012 Spherical 0.109 0.681 0.160 12.61 0.958 4.82E-03
RK2012 residuals Exponential 0.051 0.225 0.227 13.92 0.831 4.82E-04

Table 6
Comparison of the performances of GWR and RK using AME, ME, RMSE, and coefficients
of regression (adjusted R2) with validation data in the both periods.

Year Item AME ME RESE R2

1982 GWR 2.99 −0.47 3.78 0.78
RK 3.50 −0.70 4.58 0.76

2012 GWR 1.04 0.19 1.40 0.80
RK 1.14 0.33 1.46 0.61

Note: AME: absolute mean error; ME: mean error; RMSE: root mean square error; and R2,
model efficiency.

Fig. 4. Density distribution of mean SOC stocks (kg m−2) predicted using geographically weighted regression (GWR) and regression kriging (RK) in 1982 (left) and 2012 (right).
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affect the amount and quality of SOC through litterfall. In addition, the
spatial distribution of SOC stocks in 2010 was also closely related to
topographic variables, especially the elevation (Fig. 5, Fig. 6, and
Fig. 8b). The vertical distribution of SOC at topsoil 20 cm depth along
longitude 121.8°E is displayed. In mountain areas, SOC stocks showed a
sharp discontinuity. The effect of elevation on SOC has been demon-
strated by recent studies (Mishra et al., 2010; Song et al., 2016; Wang
et al., 2016; Wang et al., 2018). Song et al. (2016) reported that the
SOC increased significantly with the increase of elevation. Different
elevation gradients affected the input and loss of SOC mainly through

indirect controls such as precipitation and temperature (Wang et al.,
2016).

To facilitate the analysis of the spatial variation of SOC stocks, the
data in two periods were classified into ten grades according to the
method of cluster analysis. In 1982, SOC was mainly distributed at le-
vels F (7–9 kg m−2), G (9–11 kg m−2), and H (11–13 kg m−2), ac-
counting for about 51% of the total area (Fig. 7). The lowest SOC (level
A) was mainly distributed in the western and northwestern coastal
areas, and the Central Plains area was also scattered. Level A was
mainly distributed in Mountainous and Hilly Areas of east area

Fig. 5. Spatial distribution of SOC stocks predicted by (a) RK model in 1982, (b) GWR model in 1982, (c) and (d) small areas outlined with black color in left large areas for showing
detailed information.
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(Fig. 5b). Similar to 1982, SOC stocks were higher in the three levels of
F, G and H, and also have higher distribution at I (13–16 kg m−2) level,
which accounts for 66% of the total area in 2012 (Fig. 7). In the two
periods, the SOC stocks were mainly distributed in the northeastern
mountains with densely natural vegetation, while the low SOC stocks
were mainly distributed in the western and southwest coastal areas
(Fig. 5 and Fig. 6). Comparing the two periods, it was found that SOC
stocks in this region has an aggregation effect during the thirty-year
period. Specifically, A level was converted to B, C, and D levels, while

the J level was converted to the I and H levels. H and I levels increased
by 4% and 6% of SOC stocks, while A and J levels were reduced by 6%
and 4%, respectively.

The change of land-use pattern had a great influence on the spatial
distribution of SOC stocks (Bae and Ryu, 2015; Zhao et al., 2015; Wang
et al., 2016). During the thirty years, land-use types had been changed
dramatically due to urbanization increase, resulting in dramatic
changes of SOC stocks. In Jiangsu Provence, China, Zhao et al. (2015)
obtained a similar conclusion, indicating that when land was converted

Fig. 6. Spatial distribution of SOC stocks predicted by (a) RK model in 2012, (b) GWR model in 2012, (c) and (d) small areas outlined with black color in left large areas for showing
detailed information.
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to cultivation land and forest land, the land SOC stocks decreased. SOC
decreasing mainly occurred in the coastal low-hills area and the central
plain area, concentrated in three levels of less than −5, −5 to −2.5
and −2.5 to 0 kg m−2 (Fig. 8a), accounting for two-fifths of the total
area. The highest increase (> 5 kg m−2) was in northeastern moun-
tainous regions nearly 11% of the entire study area (Fig. 9). The level of
2.5–5 kg m−2 was mainly distributed in the low-hilly areas of the east
and southwest of Wafangdian City (18%). Decreasing SOC stock (−2.5
to 0 kg m−2) was widely distributed in the central plain area and the

coastal areas.

3.5. Effects of land-use change on SOC stocks

Land-use patterns, together with soil property characteristics and
plant production significantly influence SOC stocks (Wang et al., 2016).
The land-use change will alter soil environment such as soil texture and
moisture, which indirectly affects the accumulation and decomposition
rate of organic matter in soils (Don et al., 2011; Yang et al., 2016; Wang
et al., 2016). For instance, Zhao et al. (2015) analyzed the spatial and
temporal changes of soil organic matter in Jiangsu, China, due to the

Fig. 7. Area percentages of different SOC levels and changes in 1982 and 2012 surveys:
Level A < 3 kg m−2, 3 kg m−2 < Level B < 4 kg m−2, 4 kg m−2 < Level
C < 5 kg m−2, 5 kg m−2 < Level D < 6 kg m−2, 6 kg m−2 < Level E < 7 kg m−2,
7 kg m−2 < Level F < 9 kg m−2, 9 kg m−2 < Level G < 11 kg m−2,
11 kg m−2 < Level H < 13 kg m−2, 13 kg m−2 < Level I < 16 kg m−2, Level
J > 16 kg m−2.

Fig. 8. Spatial distribution of (a) SOC changes between 1982 and 2012 surveys, (b) Elevation.

Fig. 9. Area percentages of SOC changes at different levels between 1982 and 2012
surveys.
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land-use change. Our study also found that, due to changes from forest
to grasslands, SOC stocks increased 0.012 and 0.003 Tg, respectively,
during the thirty-year period. In contrast, the cultivated lands reduced
0.038 Tg SOC with no land-use change (Table 7). In changed land-use
types, averages of SOC stocks ranged from −0.001 Tg to 0.203 Tg. The
greatest change occurred when cultivated land was converted to forest
(C-F) (Table 7). The smallest change existed in F-C (Forest land-Culti-
vation land). Along longitude 121.8°E in the both periods SOC stocks
varied with an increasing trend of land-use changes from 1982 to 2012
(Fig. 10).

These results suggested that land-use changes played various roles
in SOC stocks. Overall, the area had an increase of SOC stocks (con-
verted to forest) from 1982 to 2012, because of reforesting formerly-
cultivated land and protecting natural forests. Over the three decades of
the Reform and Opening-up, 545 km2 of cultivated lands have been

converted into forests, SOC stocks increased by 0.21 Tg in the study
area. Since the returning-farmland policy was implemented, the accu-
mulation of litter and the increase of underground root biomass result
in more SOC (Zhao et al., 2015). In addition, the forest increases the
number and activity of soil microorganisms and animals, accelerating
the turnover of organic matter, and deepening trees' rooting system,
which are conducive to the accumulation of SOC (Don et al., 2011; Bae
and Ryu, 2015; Zhao et al., 2015). In general, there was an overall
increase in SOC stocks (Table 7) when lands are converted to forest and
grassland, but converting to cultivated lands decreases SOC.

3.6. Uncertainties in the present study

There are some uncertainties in this study. First, due to the difficulty
of data acquisition, the remote sensing data of 1982 was from 1984.
Because there were some subtle changes in the land-use patterns in
these two years, which may bias our estimation. Second, the soil data of
1982 came from the historical data of the second national soil survey
and from different departments with possible sampling and laboratory
analysis errors. Third, the unavailable measurements of BD in 1982
were calculated from SOC content by using a Pedo-Transfer Functions
(PTFs) (Formula 1). Because there are different soil types, land-use
patterns, and vegetation types in this study area, the PTFs might have
overestimated or underestimated the value of BD. Finally, our estimated
SOC stocks were limited to 20 cm soil depth, which might have led to
an underestimation of SOC because usually there was a large amount of
SOC stocks deeper than this layer.

Table 7
Change of SOC stocks under different land-use patterns during 1982–2012.

Major land use types Area (km2) SOC stocks (kg m−2) Change

1982 2012

Cultivation-cultivation (C-C) 215.00 0.311 0.273 −0.038
Cultivation-forest (C-F) 544.92 0.932 1.135 0.203
Cultivation-grassland (C-G) 54.04 0.072 0.085 0.013
Grassland-grassland (G-G) 174.23 0.253 0.266 0.012
Grassland-cultivation (G-C) 319.11 0.433 0.383 −0.049
Grassland-forest (G-F) 1676.07 3.046 3.054 0.008
Forest-forest (F-F) 80.47 0.188 0.190 0.003
Forest-cultivation (F-C) 4.74 0.007 0.006 −0.001
Forest-grassland (F-G) 7.37 0.009 0.015 0.005
Sum 3075.94 5.252 5.407 0.156

Fig. 10. Vertical distribution of SOC stocks at the top 20 cm soil depth along longitude 121.8°E in the both periods.
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4. Conclusions

GWR and RK as two geostatistical methods were compared and
analyzed for estimating SOC stocks in 1982 and 2012. Accuracy ver-
ification showed that the GWR method had reliable prediction with
smaller prediction errors, and was superior to the RK method in the
both periods. The spatial distribution patterns of SOC stocks obtained
using GWR and RK methods also showed SOC was closely related to
environmental variables, while the GWR model performs better in the
local areas. Overall, the GWR method reasonably captured the spatial
distribution characteristics of SOC stocks in the two periods.

Land-use changes caused by returning cultivation land to forest
were the primary drivers to the increase of SOC stocks in this area.
Topography was one of the major factors that led to regional differences
in SOC stocks. The SOC had an increasing trend in the northeast and
southwest mountainous area during the two periods. Since the 1990s,
dramatic changes has taken place in land use such as the lands covered
with natural vegetation being converted to cultivated land. This change
of land-use pattern in the central plains showed a decreasing trend. The
total SOC in cultivation land, grassland and forest in their topsoil
(0–20 cm) was estimated at 5.25 and 5.40 Tg in 1982 and 2012, re-
spectively. Considering the importance of SOC stocks in regional carbon
cycling and environmental management, precise spatial mapping of
SOC stocks will potentially help stakeholders to take reasonable land
use and management measures for ecological restoration and re-
construction in this study area.
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