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Abstract. Leaf area index (LAI) is often used to quantify plant production and evapotranspiration with
terrestrial ecosystem models (TEMs). This study evaluated the LAI simulation in North America using a
data assimilation technique and a process-based TEM as well as in situ and satellite data. We first opti-
mized the parameters related to LAI in the TEM using a Markov Chain Monte Carlo method, and Ameri-
Flux site-level and regional LAI data from advanced very high-resolution radiometer. The parameterized
model was then verified with the observed monthly LAI of major ecosystem types at site level. Simulated
LAI was compared well with the observed data at sites of Harvard Forest (R2 = 0.96), University of Michi-
gan Biological Station (R2 = 0.87), Howland Forest (R2 = 0.96), Morgan Monroe State Forest (R2 = 0.85),
Shidler Tallgrass Prairie (R2 = 0.82), and Donaldson (R2 = 0.75). The root-mean-square error (RMSE)
between modeled and satellite-based monthly LAI in North America is 1.4 m2/m2 for the period of 1985–
2010. The simulated average monthly LAI in recent three decades increased by (3 � 0.5)% in the region,
with 1.24, 1.46, and 2.21 m2/m2 on average, in Alaska, Canada, and the conterminous United States,
respectively, which is consistent with satellite data. The model performed well for wet tundra, boreal for-
est, temperate coniferous forests, temperate deciduous forests, grasslands, and xeric shrublands
(RMSE < 1.5 m2/m2), but not for alpine tundra and xeric woodlands (RMSE > 1.5 m2/m2). Both the spring
and fall LAI in the 2000s are higher than that in the 1980s in the region, suggesting that the leaf phenology
has an earlier onset and later senescence in the 2000s. The average LAI increased in April and September
by 0.03 and 0.24 m2/m2, respectively. This study provides a way to quantify LAI with ecosystem models,
which will improve future carbon and water cycling studies.
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INTRODUCTION

The interaction between biosphere and the atmo-
sphere is strongly influenced by plant leaf phenol-
ogy that refers to the temporal pattern of seasonal
leaf onset and senescence (Arora and Boer 2005,
Fisher et al. 2006). Under warming conditions,
increasing greenhouse gas is expected to extend
the growing season of plant leaf (Menzel and
Fabian 1999, Beaubien and Freeland 2000, Chmie-
lewski and R€otzer 2001). However, estimating leaf

phenology with ecosystem models is still challeng-
ing although progress has been made in under-
standing the drivers of leaf phenology even at the
molecular level (Sung and Amasino 2004). In the
absence of process-based modeling of leaf phenol-
ogy, empirical approaches in ecosystem and
dynamic vegetation models have been tested with
varying degrees of success (Linkosalo et al. 2008).
At regional scales, satellite-based vegetation

indices have been used to characterize phenol-
ogy (Asrar et al. 1989, Baret and Guyot 1991,
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Zhang et al. 2003, Hurley et al. 2014, Jin and
Eklundh 2014, Balzarolo et al. 2016). Previous
studies focusing on phenology and vegetation
indices have demonstrated that spatiotemporal
data from remote sensing could be used to study
phenological trends (Liang et al. 2014, Yue et al.
2015). Various vegetation indices are often
computed using certain combinations of remote-
sensing bands, such as red and infrared. For
example, moderate-resolution imaging spectro-
radiometer (MODIS) provides a product of vege-
tation indices at a 16-d interval and a resolution
of 500 m, from which we could identify the shift
of green-up and senescence stages of different
vegetation types.

Similar to other vegetation indices, leaf area
index (LAI) is a good indicator of the seasonality
of vegetation cover change (Beck et al. 2006),
which can be used to characterize leaf phenology
changes and is closely related to the global car-
bon and water cycles. Leaf area index is defined
as total one-sided leaf area per unit ground sur-
face area (Chen and Black 1992), which determi-
nes the amount of light intercepted by canopy
(Chen and Cihlar 1996). It has been observed for
various ecosystem types using LAI-2000, tracing
radiation and architecture of canopies, and
digital hemispherical photography in the field.
Process-based models have also been used to
estimate LAI directly or by combining remote-
sensing data (e.g., Asrar et al. 1984, Asner et al.
2003). To date, there were still significant uncer-
tainties in estimating LAI using ecosystem mod-
els (Richardson et al. 2012).

Here, we use a process-based ecosystem model,
the terrestrial ecosystem model (TEM; Zhuang
et al. 2003, 2010), to estimate LAI. We then use
the simulated LAI to examine plant leaf phenol-
ogy changes. Terrestrial ecosystem model is a
process-based model that quantifies the dynamics
of carbon, nitrogen, water, and energy at a
monthly time step, using spatially explicit data of
vegetation, climate, soil, and elevation (Raich
et al. 1991, McGuire et al. 1992, Melillo et al.
1993, Zhuang et al. 2001, 2002, 2003, 2010, Felzer
et al. 2004). Terrestrial ecosystem model consists
of a set of ordinary differential equations that gov-
ern the exchanges of carbon and nitrogen between
soils, vegetation, and the atmosphere. However,
TEM’s capability to simulate LAI has not yet been
evaluated with observed data. Here, we take

advantage of available site-level and satellite-based
observation data to fully evaluate TEM. We then
conduct LAI simulations for natural ecosystems in
North America. The remote-sensing products for
the entire region and various plant function types
(PFTs) are used to evaluate the model. The changes
in leaf phenology are then analyzed using LAI
data for North America during the period of
1985–2010. This study focuses on improving
quantification of LAI as an indicator of leaf
phenology. We expect the correctly modeled LAI
and leaf phenology will improve quantification of
ecosystem water, energy, and carbon dynamics.

METHODS

Overview
We first develop LAI algorithms in TEM. We

then use a Markov Chain Monte Carlo (MCMC)
method to acquire the best parameters at site and
regional scales. Third, we verify site-level and
regional LAI estimates using AmeriFlux observa-
tional data and the advanced very high-resolution
radiometer (AVHRR) LAI product at a spatial res-
olution of 0.5° 9 0.5°. Below, we first present our
data organization at site and regional levels. Sec-
ond, we describe the model development. Third,
we describe the parameterization method and
regional simulation protocols. Finally, we intro-
duce how we conduct the leaf phenology change
analysis by comparing model simulations and
data product from remote sensing for North
America from 1985 to 2010.

In situ and satellite data
Site-level LAI observational data are collected

from AmeriFlux sites (Hagen et al. 2006, Urbanski
et al. 2007, Sulman et al. 2009). Six sites including
Harvard Forest, University of Michigan Biological
Station, Howland Forest, Morgan Monroe State
Forest, Shidler Tallgrass Prairie, and Donaldson
are selected to cover major PFTs in this region
(Figs. 1, 2). For site-level LAI calibration, we
check all AmeriFlux sites that have LAI data and
select the sites with continuous measurements for
over 4 yr with measurements for every month.
We use all the measurements available for our
studying period in North America from these six
sites to optimize LAI model parameters. These six
sites are the only ones that meet our data selection
criteria for our study in the region. We recognize
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these six sites represent a limited number of PFTs
in North America. Thus, we further calibrate the
model in a spatially explicit manner for regional
LAI simulations to quantify regional LAI more
accurately. The details of site and data description
are documented in Table 1.

Two types of remote-sensing LAI products
including AVHRR and global land surface
satellite (GLASS) are used in this study. The
third-generation LAI dataset from AVHRR
(GIMMS LAI3 g) for the period from July 1985 to
December 2010 is used (Myneni et al. 1997a, b).
The AVHRR LAI product is produced using an
artificial neural network method with resolution
of 16 km and resampled to 0.5° 9 0.5° degree
(Anav et al. 2013, Claverie et al. 2016). The
GLASS LAI algorithm (Liang et al. 2013) is based
on time-series reflectance data using general
regression neural networks. In general, the spa-
tial patterns of GLASS LAI are consistent with
MODIS and CYCLOPES products.

To conduct regional simulations, National
Centers for Environmental Prediction monthly
climate data in the period 1985–2010 at a spatial
resolution 0.5° 9 0.5° including precipitation, air
temperature, and cloudiness are used. In addi-
tion, data of soil texture, elevation, and PFTs at
the same spatial resolution are also used (Fig. 1;
Zhuang et al. 2003). Advanced very high-resolution
radiometer LAI product of 1985–2010 is used for
regional model parameterization, while GLASS
LAI is used for model evaluation.

Model description
In TEM, vegetation carbon (Vc) is modeled

with a differential equation:

dVc
dt

¼ GPP� RA � LC (1)

where GPP refers to gross primary production,
RA refers to autotrophic respiration, and LC refers
to litterfall carbon. Gross primary production is

Fig. 1. Plant function type distribution in North America (Zhuang et al. 2003). AmeriFlux sites used for model
calibration are also displayed.
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Fig. 2. Terrestrial ecosystem model-simulated LAI (m2/m2) by applying the optimal parameters and in situ observa-
tional data, data assimilation is conducted for sites (a) Harvard Forest, (b) Howland forest, (c) University of Michigan
Biological Station, (d) Morgan Monroe State Forest, (e) Shidler Tallgrass Prairie and (f) Donaldson. LAI, leaf area index.
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calculated as the function of maximum rate of
photosynthesis carbon, atmospheric CO2 concen-
tration, leaf phenology, temperature, light use,
and other factors (Zhuang et al. 2003). Leaf area
index is estimated based on specific leaf area (sla):

LAIðtÞ ¼ sla � lAðtÞ � leaf ðtÞ (2)

where sla is defined as the ratio of leaf area to
dry leaf mass with units of m2�g�1�C�1, which is
one of the widely accepted leaf characteristics to
study leaf traits (Wilson et al. 1999). lA(t) (g C/m2)
is maximum biomass of the canopy, which is
defined as a function of Vc:

lAðtÞ ¼ leafmxc
1 þ kleaf � ecov�VC

(3)

where leaf(t) is a scalar and is calculated as follows:

leaf ðtÞ ¼
minleaf ;where UleafiðtÞ

Uleafi�1;max
\minleaf

UleafiðtÞ
Uleafi�1;max

; elsewhere

1; where UleafiðtÞ
Uleafi�1;max

[ 1

8>><
>>:

9>>=
>>;
(4)

The value of leaf(t) resides between minleaf and
1, and the value in between is computed as
the ratio of Uleaf(t) in each month to maximum
Uleaf(t) of the previous year.

Uleafi(t) represents the photosynthetic capacity
of mature vegetation:

UleafiðtÞ ¼ aleaf � EET
EETmax

þ bleaf

� Uleafi�1 þ cleaf (5)

where aleaf, bleaf, cleaf, and minleaf are coefficients
for the calculation of Uleafi(t). Uleafi(t) is related to
the estimated evapotranspiration (ET) and three

parameters optimized using the data assimilation
method. EET is the estimated ET, computed from
a water balance model (V€or€osmarty et al. 1998).
EETmax is the estimated maximum ET of previous
year. Parameters related to LAI simulation also
include leafmxc, kleaf, and cov (biome-specific foli-
age projection cover parameter). Different PFTs
have different sets of optimal parameters.

Model parameterization
Site-level parameterization for LAI is conducted

for different PFTs at the selected sites using obser-
vational data. At regional levels, an optimum set
of parameters for each pixel is obtained using a
spatially explicit parameterization method (Chen
and Zhuang 2012). Specifically, we generate opti-
mum parameters for each 0.5° 9 0.5° grid using
AVHRR LAI product from 1985 to 1995 while the
data for the period of 1995–2010 are used for
model evaluation at the regional scale.
To use in situ and satellite data of LAI to

parameterize the model, a MCMC technique is
used (Metropolis et al. 1953, Hastings 1970).
Markov Chain Monte Carlo is a general method
for simulation of stochastic processes with a
specific probability density function. Specifically,
a sequence of random variables is a Markov
chain when the (n + 1)th element only depends
on the nth element. One popular method to
implement MCMC uses the metropolis-hasting
algorithm. The basic idea of the algorithm is to
generate random walk values with a proposed
probability density and decide whether to accept
or reject a value based on an acceptance ratio.
Here, we sample 10,000 parameter combinations
for each site with probability P(x). The algorithm
is with following steps:

Table 1. Description of AmeriFlux sites with observed LAI for site-level data assimilation.

Site name/FLUXNET ID
Longitude
(degree)

Latitude
(degree) Plant function type Data period Reference

Harvard Forest/US-Ha1 �72.17 42.54 Deciduous broadleaf forest 2005–2008 van Gorsel et al. (2009)
UMBS/US-UMB �84.71 45.56 Deciduous broadleaf forest 1999–2007
Howland Forest/US-Ho1 �68.74 45.2 Evergreen needleleaf forest 2006 Hagen et al. (2006)
Morgan Monroe State
Forest/US-MMS

�86.41 39.32 Deciduous broadleaf forest 1999–2006 Richardson et al. (2012)

Shidler Tallgrass
Prairie/US-Shd

�96.68 36.93 Grasslands 1997–2000 Schwalm et al. (2010)

Donaldson/US-SP3 �82.16 29.75 Evergreen needleleaf forest 1999–2007 Bracho et al. (2012)

Note: LAI, leaf area index; UMBS, University of Michigan Biological Station.
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1. Initialization: First, choose an arbitrary x0~
as the initial sample, which is the initial
vector of parameters space. In the case of
LAI model, x0~ represents ðleafmxc0;kleafc0;
sla0;cov0;minleaf0;aleaf0;bleaf0;cleaf0Þ. Second,
choose an arbitrary Gaussian distribution
Qðx1~jx0~Þ (centered at x0~) as the proposed
density (or jumping distribution) for the
sampling sequence (see Table 2 for details
about initial parameter and distribution
settings).

2. Iteration: For each time step t, generate can-
didate sample x~c based on Qðx~cjx~tÞ; then cal-
culate an acceptance ratio Pðx~cÞ=Pðx~tÞ; if it is
greater than or equals 1, accept the candi-
date and set x~tþ1 ¼ x~C; if it is smaller than 1
and >0, accept the candidate with a proba-
bility of the acceptance ratio. If it is not >0,
set x~tþ1 ¼ x~t.

The Gaussian distribution Qðx~cjx~tÞ is defined
with a mean (the previous value for the parameter)
and standard deviation (50% of the original value
for the parameter) (Table 2). The best parameters
for a pixel are optimized by calculating the
root-mean-square error (RMSE) between model
simulations and AVHRR LAI. Global land surface

satellite LAI data are used for evaluating the
model parameters by comparing with model
simulations.

Regional simulations and analysis
For the regional analysis in North America,

simulations are conducted for each grid with the
optimized spatially explicit parameters for the
region. The regional simulated data are organized
to compute regional correlations between model
and satellite product. We also examine the spatial
distribution of parameter values. The sensitivity
analysis is done by varying parameter values in
the prior parameter distribution space. Further-
more, we separate the modeling results by
sub-regions including Alaska, Canada, the conter-
minous United States and by PFTs to examine the
decadal and seasonal LAI changes for different
ecosystem types and areas in the region.

RESULTS AND DISCUSSION

Comparison between modeled and observed leaf
area index
Site-level data assimilations provide a set of

optimum parameters for the six sites (Tables 1, 3).
The parameters are evaluated with the reserved

Table 2. Prior values of parameters related to leaf area index estimation.

Acronym Definition Units Mean Standard deviation

leafmxc Maximum biomass of the canopy g C/m2 500 250
kleafc Biome-specific allocation parameter None 2 1
sla Specific leaf area m2/(gC) 0.008 0.004
cov Biome-specific foliage projection cover parameter None �0.005 �0.0025
minleaf Minimum photosynthesis capacity None 0.5 0.25
aleaf Coefficient A to model relative photosynthetic capacity of vegetation None 0.5 0.25
bleaf Coefficient B to model relative photosynthetic capacity of vegetation None 0.5 0.25
cleaf Coefficient C to model relative photosynthetic capacity of vegetation None 0 0.5

Table 3. Best parameters for LAI modeling at calibration sites.

Site Harvard Forest UMBS Howland Forest Morgan Monroe State Forest Shidler Tallgrass Prairie Donaldson

leafmxc 653.586 579.135 634.889 702.178 585.261 590.308
kleafc 1.775 2.172 2.225 2.825 2.113 1.902
sla 0.0094 0.0066 0.0099 0.0071 0.0114 0.0103
cov �0.000521 �0.001031 �0.000616 �0.000329 �0.00031 �0.0006
minleaf 0.367 0.375 0.542 0.194 0.128 0.49
aleaf 0.797 0.343 0.181 0.239 0.592 0.224
bleaf 0.527 0.487 0.674 0.463 0.434 0.649
cleaf 0.135 0.13 0.374 0.0195 �0.115 0.102

Note: LAI, leaf area index; UMBS, University of Michigan Biological Station.
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data that have not been used for parameteriza-
tion. For various ecosystems, the RMSE between
observed and simulated LAI is smaller than
0.8 m2/m2 and correlation coefficients are >0.75
(Table 4, Fig. 2). The seasonality of the observed
LAI is well produced with the model. The site-
level simulations are also compared well with
GLASS LAI product at different sites (RMSE rang-
ing from 0.15 to 0.78 m2/m2).

Spatially explicit parameterization shows that
the parameters are with different magnitudes for
each PFT (Table 5, Fig. 3). Some parameters such
as kleafc and sla have smaller spatial variations
compared to other parameters such as aleaf and
bleaf. This is because some parameters are more
directly related to LAI in the model. Our previous
study demonstrated that the varying parameters
across space better simulated ecosystem carbon
dynamics (Chen and Zhuang 2012). We thus use
the derived spatially explicit parameters based on
satellite data for our regional LAI simulation.

At the regional scale, the simulated LAI for
each PFT varied across space, and the simulation
compares well with the satellite data for each

PFT (Table 6). The TEM performs well for all rep-
resentative PFTs with R2 ranging from 0.66 to
0.80 and RMSE from 1.05 to 2.32 m2/m2. For bor-
eal forest as a major PFT in this region, the model
performs well with R2 of 0.76 and RMSE of
1.12 m2/m2. For other seven PFTs, the model per-
forms similarly with RMSE <2.4 m2/m2.
The regression between simulated and remote

sensing-based monthly LAI has the slope of 1.38
and 0.84, which is close to 1, for tundra and
grasslands, respectively (Fig. 4). In addition,
satellite-based LAI is saturated at 6 m2/m2, while
TEM-modeled LAI has more reasonable values.
In general, the model performs well for tundra,
boreal forest, temperate coniferous/deciduous
forest, grasslands, and xeric shrublands and
slightly deteriorates for temperate deciduous for-
ests (RMSE = 2.32 m2/m2) (Table 6). Using the
spatially explicit parameters, the TEM better sim-
ulates LAI compared to using a single set of
parameters for each PFT in the region. The corre-
lation analysis suggests that monthly LAI is
highly correlated with temperature (R2 = 0.76)
and precipitation (R2 = 0.46) in North America.

Table 4. Model-data fitting statistics of site-level LAI between model simulations and observations.

Site Correlation coefficient Slope Intercept (m2/m2) RMSE (m2/m2)

Harvard Forest 0.96 0.93 0.50 0.49
UMBS 0.87 0.78 0.57 0.40
Howland Forest 0.96 0.82 0.97 0.15
Morgan Monroe State Forest 0.85 0.73 0.76 0.78
Shidler Tallgrass Prairie 0.82 0.67 0.33 0.49
Donaldson 0.75 0.59 2.06 0.67

Note: LAI, leaf area index; RMSE, root-mean-square error; UMBS, University of Michigan Biological Station.

Table 5. Optimal parameters from regional assimilation organized by plant function type from 1985 to 2010.

Type Leafmxc kleafc sla cov minleaf aleaf bleaf cleaf

Alpine tundra
and polar
desert

642 � 240 1.66 � 0.16 0.010 � 0.003 �0.0006 � 0.0045 0.11 � 0.17 0.60 � 0.15 0.39 � 0.07 0.10 � 0.04

Wet tundra 442 � 235 1.67 � 0.14 0.008 � 0.002 �0.0004 � 0.0011 0.22 � 0.19 0.53 � 0.17 0.38 � 0.07 0.11 � 0.06
Boreal forest 578 � 203 1.68 � 0.42 0.008 � 0.001 �0.0013 � 0.0097 0.08 � 0.13 0.50 � 0.13 0.37 � 0.05 0.12 � 0.02
Temperate
coniferous
forest

714 � 154 1.76 � 0.82 0.009 � 0.002 �0.0115 � 0.0315 0.27 � 0.22 0.38 � 0.15 0.38 � 0.11 0.12 � 0.06

Temperate
deciduous
forest

649 � 155 1.66 � 0.89 0.008 � 0.001 �0.0373 � 0.0482 0.12 � 0.18 0.52 � 0.19 0.35 � 0.09 0.11 � 0.04

Grassland 575 � 208 1.66 � 0.13 0.010 � 0.003 �0.0003 � 0.0000 0.23 � 0.21 0.50 � 0.20 0.37 � 0.11 0.11 � 0.05
Xeric shrubland 399 � 227 1.67 � 0.13 0.008 � 0.001 �0.0003 � 0.0002 0.40 � 0.18 0.43 � 0.19 0.40 � 0.15 0.13 � 0.08
Tropical forest 615 � 197 2.09 � 1.18 0.008 � 0.001 �0.0332 � 0.0468 0.45 � 0.15 0.34 � 0.21 0.48 � 0.18 0.09 � 0.14
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Temperature plays a more significant role in LAI
changes (Table 7).

To determine the distribution of LAI changes
in North America, three sub-regions including
Alaska, Canada, and the conterminous United
States are analyzed (Fig. 5). In Alaska, monthly
LAI did not change significantly with an increase

of 0.02 m2/m2 from 2001 to 2010 compared with
that in 1981–1990. The highest monthly average
is in September, from 1.68 to 1.86 m2/m2. In
Canada, monthly average LAI increased by
0.015 m2/m2 and RMSE < 0.1 m2/m2. In the con-
terminous United States, there was the largest
increase by 0.06 m2/m2, with an ineligible

Fig. 3. Distribution of optimum parameters for spatially explicit regional simulations: (a) leafmxc (gC/m2), (b)
kleaf, (c) sla (m2/(gc)), (d) minleaf (unitless), (e) aleaf (unitless), (f) bleaf (unitless), (g) cleaf (unitless).
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Fig. 4. Comparison between simulated monthly leaf area index (LAI) (m2/m2) and remote-sensing (advanced very
high-resolution radiometer) LAI product of North America categorized by plant function type: (A) Alpine tundra and
polar desert; (B) Wet Tundra; (C) Boreal forest; (D) Temperate coniferous forests; (E) Temperate deciduous forests;
(F) Grasslands; (G) Xeric Shrublands; (H) Xeric Woodland. Y-axis is simulated data, and X-axis is satellite data.

Table 6. Fitting statistics of regional leaf area index simulations and satellite data.

Plant function type Number of simulation grids R2 RMSE (m2/m2)

Alpine tundra and polar desert 510 0.71 2.25
Wet tundra 1432 0.76 1.05
Boreal forest 3613 0.76 1.12
Temperate coniferous forests 1496 0.66 1.15
Temperate deciduous forests 449 0.67 1.32
Grasslands 1541 0.76 1.35
Xeric shrublands 725 0.69 1.27
Tropical forests 345 0.80 2.13

RMSE, root-mean-square error.
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increase (>0.1 m2/m2) from September to Decem-
ber. The conterminous United States contributes
the most to the average LAI increase in North
America during the three-decade study period.
The modeled LAI fits best with satellite-based
LAI product in the conterminous United States
(R2 = 0.81, slope = 0.78), while model also cap-
tures the satellite-based LAI for Alaska and
Canada (Fig. 5).

Different sub-regions show various correla-
tions with climate. In Canada, monthly LAI has
higher correlations (R2 = 0.78) with air tempera-
ture than in the conterminous United States
(R2 = 0.68), while lower correlations with precip-
itation (R2 = 0.30) than in the conterminous Uni-
ted States (R2 = 0.58). Leaf phenology in higher
latitude regions are more affected by tempera-
ture and less by precipitation (Table 8).

From 1985 to 2010, temperate coniferous and
temperate deciduous LAI increased by 0.03 and
0.06 m2/m2, respectively. The increase of monthly
LAI of deciduous forests is mostly due to increased
monthly mean temperature. Overall, TEM captures
the maximum and minimum monthly LAI for wet
tundra, boreal forests, temperate coniferous forests,
temperate deciduous forests, grasslands, and xeric
shrublands, with RMSE < 0.5 m2/m2. Average
monthly LAI shows different trends for different
PFTs (Fig. 4). We further separated the contermi-
nous United States into four sub-regions including
southwest (California, Nevada, Utah, Colorado,
Arizona, New Mexico, Oklahoma, and Texas),
southeast (Arkansas, Louisiana, Mississippi, Ala-
bama, Georgia, Florida, South Carolina, Tennessee,
North Carolina, Kentucky, Virginia, and West
Virginia), northwest (Washington, Oregon, Idaho,
Montana, Wyoming), and northeast (Maine,

New Hampshire, Vermont, Massachusetts, Rhode
Island, Connecticut, New York, New Jersey, and
Pennsylvania). TEM performs similarly for these
sub-regions with R2 ranging from 0.65 to 0.86. In
the northwest, the model performs the best
(R2 = 0.86) (Fig. 6).

Phenology change analysis
Our modeled LAI results indicate that there

was a phenology trend of earlier spring and later
autumn, which have been reported in several pre-
vious studies (Myneni et al. 1997a, b, Barichivich
et al. 2013, Keenan et al. 2014). Modeled monthly
LAI in April and September all increased between
two decades from 1981–1990 to 2001–2010 at
0.03 m2/m2 for April and 0.24 m2/m2 for Septem-
ber, respectively (Fig. 7). There was an increase of
LAI at 0.3 m2/m2 between the 1980s and 2000s in
majority area of North America. The exception
occurs mostly at high latitudes or lands covered
with vegetation that typically has low LAI. Simi-
larly, AVHRR LAI data product also indicated
that there was an increase of monthly LAI in April
and September from the 1980s to 1990s, especially
in the conterminous United States, demonstrating
phenology changed with an earlier leaf start and
later leaf fall. Analysis for each PFT shows tem-
perate deciduous forests had the most obvious
change. Our temporal regression between LAI in
April and September and time shows positive cor-
relations for April (R2 = 0.72) and September
(R2 = 0.64), respectively, suggesting there are sig-
nificant increases of April and September LAI
over the period.
In general, the region had an earlier greening

trend fromMarch to June, primarily due to temper-
ature increasing during the study period (Fig. 5).
April LAI increased more in the conterminous
United States (0.04 m2/m2) compared to Alaska
(0.003 m2/m2) and Canada (0.001 m2/m2). Similarly,
the increase of LAI also occurred in September in

Table 7. Correlation between forcing data and mod-
eled LAI.

Site (a) (b)

Harvard Forest 0.75 0.48
UMBS 0.72 0.52
Howland Forest 0.65 0.42
Morgan Monroe State Forest 0.68 0.45
Shidler Tallgrass Prairie 0.52 0.39
Donaldson 0.55 0.41

Notes: LAI, leaf area index; UMBS, University of Michigan
Biological Station. Column (a) shows correlation between LAI
and temperature; column (b) shows correlation between LAI
and precipitation.

Table 8. Correlation between forcing data and LAI
simulation for each sub-region.

Sub-region in North America (a) (b)

Alaska 0.56 0.43
Canada 0.78 0.3
Conterminous United States 0.68 0.58

Notes: LAI, leaf area index. Column (a) shows correlation
between LAI and temperature; column (b) shows correlation
between LAI and precipitation.
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Fig. 5. Comparison between modeled and satellite-based monthly average leaf area index for three
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sub-regions in North America: (a) Alaska; (b) Conterminous United States; (c) Canada. Y-axis is simulated data,
and X-axis is satellite data.

(Fig. 5. Continued)

Fig. 6. Comparison between modeled (Y-axis) and satellite-based (X-axis) monthly average leaf area index for
four sub-regions in the Conterminous United States: (a) Southwest; (b) Southeast; (c) Northwest, (d) Northeast.
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Alaska (0.05 m2/m2), Canada (0.04 m2/m2), and the
conterminous United States (0.27 m2/m2).

Compared with other recent studies focused
on phenology in North America using remote-
sensing data (Richardson et al. 2012, Melaas
et al. 2016), our simulations showed similar pat-
terns of earlier spring onset and longer growing
season in the region. However, the shift of the
end of growing season is harder to capture than
the start of growing season in our simulations.

Greening feature characterized as increasing LAI
varied among different PFTs (Fig. 7). Temperate
deciduous forests had a larger increase than other
PFTs, with 0.07 m2/m2 in April and 0.31 m2/m2 in
September. Boreal forests, accounting for 30% grids
in North America, had an increase of 0.04 m2/m2

in April and 0.27 m2/m2 in September, respectively.
Previous studies have demonstrated the response
of vegetation phenology to warming climate in a
similar way (e.g., Zhang et al. 2007). In addition to
the increased LAI magnitude, it is widely

acknowledged that the timing of phenological
events including start and end of growing season
is sensitive to climate change in various regions
(Chuine et al. 2004, Liu et al. 2016). Our analysis
indicates that the timing of the leaf start and leaf
fall is significantly and positively correlated
(R2 > 0.5, P-value < 0.01) between modeled LAI in
April and September (Fig. 8), suggesting that the
growing season length has increased in the last
few decades in North America, which is consistent
with recent studies (Myneni et al. 1997a, b, Keenan
et al. 2014).
Our LAI and phenology analysis is limited by

the availability of quality observation data of LAI.
Leaf area index data are often only available for
growing season at observational sites. Thus, the
parameters are not well constrained for capturing
the LAI seasonality. Our uncertainty analysis by
varying parameters of LAI within the prior proba-
bility distribution indicates that the simulated
monthly regional LAI varies by 36% (Fig. 9). For

Fig. 7. Average monthly terrestrial ecosystem model-modeled leaf area index (LAI) increase in April (a) and
September (b) from 1981–1990 to 2001–2010; Average monthly advanced very high-resolution radiometer LAI
increase in April (c) and September (d) from 1985–1990 to 1991–2000.
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Fig. 9. Uncertainty analysis of modeled regional leaf area index (LAI) by varying parameters between 1985
and 2010: upper bound, lower bound, and mean month LAI values.

Fig. 8. Correlation coefficients between terrestrial ecosystem model-simulated leaf area index in April and
September from 1985 to 2010.
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the study period, the increase of regional LAI is
(3 � 0.5)% due to uncertain parameters. In addi-
tion, LAI is modeled as a function of vegetation
carbon with a few parameters, which does not
sufficiently represent the processes determining
LAI. Future improvement shall include more bio-
logical processes related to leaf phenology.

Future applications of LAI modeling
Our next steps include integrating the

improved LAI modeling into GPP and ET quan-
tification with TEM. In previous studies of car-
bon dynamics with TEM (e.g., Zhu and Zhuang
2013), LAI was not used for modeling GPP. With
our spatial-explicitly calibrated LAI, we now
could improve GPP simulations, thus net pri-
mary production (NPP) and net ecosystem pro-
duction defined as the difference of NPP and
heterotrophic respiration. We will also be able to
integrate LAI into ET quantification with TEM.
Previously, we have used the Penman-Monteith
equation to estimate ET by using satellite-based
or observed LAI with TEM (e.g., Liu et al. 2013).
With improved LAI modeling, we could improve
the quantification of ET using TEM for certain
time periods and spatial areas of interest that are
not limited within satellite-based LAI periods
and regions, such as for the 21st century and the
whole North America. The improved LAI model-
ing within TEMs could also be an important
component in earth system models to quantify
feedbacks between terrestrial biosphere and the
climate.

CONCLUSIONS

This study improves LAI algorithms within a
process-based biogeochemistry model to study
phenology patterns in North America. Observa-
tional LAI data from AmeriFlux network are
used to optimize parameters. Remote-sensing
data of AVHRR LAI product are used to opti-
mize parameters at regional scales. Comparison
between model simulations and satellite-based
LAI for the region shows that the model is able
to estimate the seasonality and interannual vari-
ability of LAI in the region. The average LAI in
recent three decades has increased by 3% on
average in the region. The simulated monthly
average LAI increase during study period was
1.24, 1.46, and 2.21 m2/m2, in Alaska, Canada,

and the conterminous United States, respectively,
which is consistent with satellite observations. In
comparison with satellite data, the model cap-
tured the phenology change for key plant func-
tional types from 1985 to 2010. The model also
performed well to capture the regional phenol-
ogy change in Alaska, Canada, and the contermi-
nous United States. This study provides a way to
estimate the changes in LAI and phenology,
which will improve future carbon and water
cycling quantification for the region.
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