
RESEARCH ARTICLE
10.1002/2013MS000241

Parameterization and sensitivity analysis of a process-based
terrestrial ecosystem model using adjoint method
Qing Zhu1,2 and Qianlai Zhuang1,2,3

1Purdue Climate Change Research Center, Purdue University, West Lafayette, Indiana, USA, 2Department of Earth,
Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana, USA, 3Department of Agronomy, Purdue
University, West Lafayette, Indiana, USA

Abstract We developed an adjoint version of a process-based biogeochemistry model, the Terrestrial Eco-
system Model (TEM). The adjoint model of TEM was then used to: (1) conduct sensitivity studies of net ecosys-
tem production (NEP) for three terrestrial ecosystems: grassland, deciduous broadleaf forest and evergreen
needle-leaf forest; (2) rank the importance of parameters in controlling NEP; (3) optimize the model parame-
ters by assimilating eddy flux data of NEP; and (4) evaluate parameterization by extrapolating optimal parame-
ters to other sites that have the same plant functional type as the calibration sites. We found that: (1) the
maximum rate of photosynthesis (CMAX) was the most important parameter in determining NEP, while the
importance of the remaining parameters varied depending on plant functional type, suggesting that the
same ecosystem process has different degrees of importance in modeling carbon fluxes; (2) the sensitivity of
NEP to CMAX had a significant seasonal variability and the control of CMAX on NEP was much larger in growing
season (defined as from April to October) than that in nongrowing season (defined as from December to
March); and (3) after parameterization, TEM could reasonably reproduce carbon fluxes observed at eddy flux
tower sites. This study provided an effective model-data fusion framework of TEM, which could improve the
future quantification of terrestrial ecosystem carbon fluxes at both site and regional levels.

1. Introduction

Process-based biogeochemical models play an important role in quantifying the dynamics of global carbon
and nitrogen [Cao et al., 1998; Limpens et al., 2008; McGuire et al., 2001; Melillo et al., 1993; Thornton et al.,
2007]. Various ecosystem models are developed during recent decades based on different model philoso-
phies, for example, Terrestrial Ecosystem Model (TEM) [Zhuang et al., 2003], Biome-BGC [Running and Hunt,
1993], Carnegie-Ames Stanford Approach (CASA) [Potter et al., 1993], Simple Diagnostic Biosphere Model
(SDBM) [Knorr and Heimann, 1995], and Biosphere Energy Transfer Hydrology scheme (BETHY) [Knorr and
Heimann, 2001]. These models have been extensively used to estimate global carbon dynamics. However,
their results are inconsistent and highly uncertain. Intercomparison studies of different terrestrial ecosystem
models [Cramer et al., 1999, 2001; Henderson-Sellers et al., 1995; Morales et al., 2005; Schaefer et al., 2012]
show that model structure and model parameters are two major sources of uncertainty in those ecosystem
models. Thus, it is fundamentally important to reduce the existing uncertainties in order to reasonably esti-
mate regional and global carbon budgets and improve our understanding of the underlying ecosystem
processes. The uncertainty from model structure exists where physical or biogeochemical processes are rep-
resented with mathematical equations in the models [Zaehle et al., 2005]. By comparing two models that
only differ in the representation of a particular process and have an identical representation of any other
key biogeochemical processes, the model structure uncertainty can be reduced through optimization [Smith
et al., 2001]. The uncertainty of model parameters is another major source of simulation biases [Medlyn
et al., 2005]. Only a limited number of model parameters are measureable. Furthermore, these measured
parameters (either from field studies or lab experiments) are usually conditioned on specific geographical
location, plant functional type, soil characteristics, and climate condition. Under most circumstances, model
parameters are estimated based on prior knowledge and available data [Luo et al., 2003; Knorr and Kattge,
2005; Zhu and Zhuang, 2013a, 2013b, 2013c]. The goodness of the estimated parameters, however, is still
restricted to the scarcity of observational data and the limited information within a specific data set [Luo
et al., 2009]. Thus, how to effectively extract useful information from existing data to constrain the parame-
ter uncertainty becomes a critical issue.
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One effective tool to reduce the parameter uncertainties of terrestrial ecosystem models is data assimilation
(DA) [Raupach et al., 2005; Williams et al., 2009; Luo et al., 2011], which inversely estimates the unobservable
model parameters by utilizing information from the observational data. Adjoint approach is one of the most
widely used DA techniques. It belongs to the field of control theory, which essentially aims to control (mini-
mize) a predefined cost function. A typical cost function comprises two parts. First, a priori part defines the
departure between prior and posterior control variables (e.g., initial conditions, boundary conditions and
parameters) of a model, which also takes the uncertainty in the prior control variables (background error
covariance) into account. Second, an observational part quantifies the misfit between model and data, with
consideration of uncertainties in observational data (data error covariance). The cost function penalizes the
model-data misfit in time and space; also it is subject to our prior knowledge. The essential role of the
adjoint method in data assimilation is that it calculates the gradient of the cost function with respect to
model control variables using the chain rule and perturbation techniques [Schartau et al., 2001]. Then, an
optimization algorithm (e.g., Newton method) uses such gradient to estimate the decreasing direction of
the cost function. The algorithm searches along the direction and gives rise to a posterior model that is rela-
tively more consistent with observations than a prior model. Iteratively, the cost function is minimized and
the model parameters are optimized.

The adjoint approach has long been used for optimizing model parameters and estimating the sensitivity
of model output with respect to model input. For example, the adjoint approach plays an important role in
data assimilation of atmospheric general circulation models [Matthew, 1986; Marchuk, 1995], atmospheric
air quality model [Elbern et al., 2000], and atmospheric chemistry transport model [Wang et al., 2001; Henze
et al., 2007; Zhang et al., 2009]. In addition, the adjoint method has been widely used in ocean circulation
models [Marotzke et al., 1999; Li et al., 2003, 2004] and in ocean biogeochemistry models [Tjiputra et al.,
2007, 2008; Senina et al., 2008]. Historically, sensitivity analysis, uncertainty quantification, and model
parameterization have been well explored in atmospheric and oceanic sciences by using the adjoint
method. However, it is still at its early stage for applications in terrestrial ecosystem biogeochemistry model-
ing. There have been only a few studies using an adjoint approach in terrestrial biogeochemistry modeling
studies. An example is the Carbon Cycling Data Assimilation System (CCDAS) developed for model-data
fusion studies [Kaminski et al., 2002; Rayner et al., 2005; Kaminski et al., 2013], which combines a carbon cycle
model and an atmospheric transport model as well as their adjoint models. This system helps to optimize
the parameters of the carbon cycle model and to constrain terrestrial carbon fluxes.

Here we develop an adjoint version of Terrestrial Ecosystem Model (TEM) [Zhuang et al., 2003]. It enables
the TEM to utilize multiple sources of observational data, including in situ carbon flux data and global-scale
MODIS GPP products. The focus of this study is to test and validate the adjoint-TEM data assimilation frame-
work and apply it at a site-level to estimate model parameters by assimilating in situ carbon flux data. The
adjoint-TEM is also used to estimate the sensitivity of model outputs with respect to model parameters. The
calculation of sensitivity with the adjoint-TEM helps to infer the optimal parameters by comparing model
prediction and observational data. This study makes another significant step forward in using an adjoint
approach to effectively quantify model sensitivity and improve model predictability by assimilating Ameri-
Flux observational NEP data.

2. Method

2.1. Overview
Adjoint code for a model could be either automatically generated using existing software, or generated
manually, i.e., line-by-line. For example, the Tangent-linear and Adjoint Model Compiler (TAMC) [Giering and
Kaminski, 1998], a software tool for generating first-order derivatives of models written in FORTRAN, has
been widely used for atmospheric [Henze et al., 2007] and oceanic modeling [Marotzke et al., 1999; Stammer
et al., 2002]. Here we manually develop the adjoint code directly from TEM model codes (where model ordi-
nary differential equations have been discretized) with an attempt to better handle the processes in the
model. The adjoint-TEM is then used to conduct the sensitivity analysis and parameter estimation (Figure 1)
at three sites with different plant functional types. The sensitivity analysis helps to rank the importance of
parameters in carbon flux simulations. The optimized parameters are validated at several other sites, which
have the same plant functional type as the parameterization sites.
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2.2. Model and Data
The Terrestrial Ecosystem Model (TEM)
[Raich et al., 1991; McGuire et al., 1992;
Melillo et al., 1993; Felzer et al., 2004;
Zhuang et al., 2001, 2002, 2003, 2010] is
a process-based biogeochemistry
model that uses spatially explicit data of
climate, vegetation, soil, and elevation
to quantify monthly fluxes of water,
energy, carbon, and nitrogen in terres-
trial ecosystems. TEM is constructed
with a set of differential equations:

dCV

dt
5GPP2RA2LC (1)

dCS

dt
5LC2RH (2)

dNV

dt
5NUPTAKE2LN (3)

dNS

dt
5LN2NETMIN (4)

dNAV

dt
5NINPUT1NETMIN2NLOST2NUPTAKE (5)

where CV ;CS;NV ;NS;NAV are state variables representing carbon in vegetation, soil, and detritus; nitrogen in
vegetation, soil, and detritus, and available inorganic nitrogen in soil and detritus, respectively. The rest of
the variables are carbon and nitrogen fluxes. GPP; RA; LC ; RH; LN;NINPUT ;NETMIN;NLOST ;NUPTAKE represent
gross primary productivity, autotrophic respiration, carbon in litters, heterotrophic respiration, nitrogen in
litters, nitrogen input from outside ecosystem, net rate of mineralization of NS, nitrogen losses from ecosys-
tem, and nitrogen uptake by vegetation, respectively. The ODEs are solved with the Runge-Kutta-Fehlberg
method [Fehlberg, 1969], where forth-order and fifth-order Runge-Kutta solutions are compared to ensure
the convergence. The whole system can be formulated as:

dy

dt
5f1ðy; p; cÞ (6)

where y is a vector of state variables; p and c refer to a set of parameters and initial conditions, respectively.
The modeled GPP is formulated as:

GPP5CMAX � f ðLEAFÞ � f ðCO2Þ � f ðTEMPÞ � f ðPARÞ � f ðothersÞ (7)

where CMAX is the maximum rate of photosynthesis carbon. f ðLEAFÞ is the leaf phenology factor. f ðCO2Þ is
the atmospheric CO2 concentration scalar factor. f ðTEMPÞ and f ðPARÞ are the temperature and light use fac-
tors, respectively. The equation also includes several other factors. More details of the definitions of the fac-
tors can be found in previous TEM studies [Raich et al., 1991; McGuire et al., 1992; Zhuang et al., 2003].

The TEM is driven with monthly data of cloudiness, air temperature, and precipitation from the Climatic
Research Unit [Mitchell et al., 2005; New et al., 1999, 2000, 2002]. Data of plant functional type, elevation,
and soil texture (the percentages of sand, silt, and clay) are obtained from a previous study [Zhuang et al.,
2003]. Global average atmospheric carbon dioxide concentrations data are based on observations in Mauna
Loa, Hawaii [Conway et al., 1994; Masarie et al., 1995].

AmeriFlux level-4 monthly aggregated NEP data are used in this study to optimize model parameters. We
focus on three typical plant functional types including grassland, deciduous broadleaf forest, and evergreen

Figure 1. Flowchart of parameter optimization combining forward TEM and
adjoint-TEM as well as AmeriFlux observational data.
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needle-leaf forest. Nine AmeriFlux sites in the U.S. are involved in this study (Table 1). Three of them are
used for sensitivity study and parameterization, and the rest are used for verification of model parameters.
Specifically, at Fort Peck site [Gilmanov et al., 2005] 7 years data (2000–2006) are used to calibrate the grass-
land. Fort Peck site is in state of Montana, experiencing a cold semiarid climate with hot wet summer and
cold dry winter. The optimal parameters are then extrapolated to two other grassland sites including Vaira
Ranch site [Baldocchi et al., 2004] and Fermi Prairie site [Miller et al., 2002], to validate the model perform-
ance. These two sites are located in different climate zones. The Vaira Ranch site experiences a Mediterra-
nean climate with severe acrid and high-temperature summer. The growing season occurs at cool and wet
winter. The Fermi Prairie site experiences a humid continental climate with humid and hot summer and
humid and cold winter. Although the environmental conditions of the three sites are distinct, the model is
expected to successfully capture their seasonal carbon dynamics after we effectively calibrate the nonlinear
responses of carbon fluxes to various climate variables. For deciduous broadleaf forest, the model is cali-
brated at Bartlett Experimental Forest site [Ollinger et al,. 2005] dominated by maple and beech forests, and
then is extrapolated to UMBS [Curtis et al., 2002; Schmid et al., 2003] dominated by maples and oaks and
Missouri Ozark [Gu et al., 2007, 2012] with Oak hickory forest. Although the dominant species are different,
the three sites are all classified into the category of deciduous broad leaf forest according to IGBP scheme
[IGBP, 1992]. Our model parameterization mainly focuses on calibrating processes of broadly defined plant
functional types. Therefore, we ignore the species-level heterogeneity and assume that the three sites are
ecologically similar. For evergreen needle-leaf forest, TEM is parameterized using 4 year data from UCI_1850
black spruce site [Goulden et al., 2006]. The model is then extrapolated to: (1) Wind River Crane Site [Falk
et al., 2002], a subalpine evergreen needle-leaf forest located in state of Colorado; and (2) Niwot Ridge [Turn-
ipseed et al., 2003, 2004], mainly vegetated by western hemlock with Mediterranean climate in state of
Washington.

2.3. Adjoint-TEM Development
2.3.1. Cost Function
We define a cost function J to quantify the departure between the simulated and observed monthly carbon
fluxes:

J5Jprior1Jobs (8)

Jprior5ðp2poÞT Rp
21ðp2poÞ (9)

Jobs5
XN

i51

ðgi2go
i Þ

T
Ro

21ðgi2go
i Þ (10)

where Jprior is the part of cost function that represents the differences between updated parameters and
the prior knowledge. p and po are vectors of updated model parameter and prior model parameter. R21

p

represents the inverse of the prior parameter error covariance matrix. Our prior knowledge about the
parameters includes the upper and lower bounds [Tang and Zhuang, 2009]. We assume the variances of

Table 1. Description of AmeriFlux Flux Sites Used in This Study

ID Site Name Location Plant Functional Type Data Used Reference

Calibration Sites
1 Fort Peck 48.3�N, 105.1�W Grassland 2000–2006 Gilmanov et al. [2005]
2 Bartlett Experimental Forest 44.1�N, 71.3�W Deciduous broadleaf forest 2004–2006 Ollinger et al. [2005]
3 UCI_1850 55.9�N, 98.5�W Evergreen needle-leaf forest 2002–2005 Goulden et al. [2006]
Extrapolation Sites
4 Vaira Ranch 38.4�N, 120.95�W Grassland 2001–2007 Baldocchi et al. [2004]
5 Fermi Prairie 41.8�N, 88.2�W Grassland 2004–2007 Miller et al. [2002]
6 UMBS (Univ. of Mich. Biological Station) 45.5�N, 84.7�W Deciduous broadleaf forest 1999–2006 Curtis et al. [2002]; Schmid et al., [2003]
7 Missouri Ozark 38.7�N, 92.2�W Deciduous broadleaf forest 2004–2007 Gu et al. [2007, 2012]
8 Wind River Crane Site 45.8�N, 121.9�W Evergreen needle-leaf forest 1998–2002,

2004–2006
Falk et al. [2002]

9 Niwot Ridge 40.0�N, 105.5�W Evergreen needle-leaf forest 1998–2007 Turnipseed et al. [2003, 2004]
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prior parameters (diagonal elements of Rp) are square of 40% of the empirical parameter ranges [Kuppel
et al., 2012] and the correlations of prior parameters (off-diagonal elements of Rp) are zeros. Jobs represents
the departure between the simulated fluxes (gi) of interest and the observational data ðgo

i Þ. N denotes the
total number of time steps over the assimilation time window. R21

o is the inverse of the data error covari-
ance matrix. Traditionally, a constant data error or a fraction of the observation data is used to approximate
Ro [Braswell et al., 2005; Knorr and Kattge, 2005]. In this study, we use 20% of the observed values (with a
lower threshold of 10g � C �mon21 �m22) as a proxy of Ro. The relative NEP uncertainty for direct flux meas-
urements, suggested by Raupach et al. [2005], ranges from 20% to 50%. Before using the observed data, we
first conduct a quality control for the raw NEP data. The time series data with quality flag under 0.95 are not
used in this study. Here 0.95 means 95% of the half hourly NEP data that have been used to get monthly
NEP are high quality data. Because we have filtered out the uncertain data and the data used in the analysis
have less uncertainty in comparison with raw data, therefore, we choose 20% to determine the uncertainty
instead of the upper range of 50% in this study.

2.3.2. Adjoint Version of TEM
The adjoint-TEM is derived based on general rules of adjoint code construction [Errico, 1997; Giering and
Kaminski, 1998]. The model outputs of carbon fluxes are formulated as:

gi5f2ðy; p; cÞ (11)

where gi is the modeled carbon fluxes at the ith monthly time step. y is a vector of state variables, p and c
denote vectors of parameters and initial conditions, respectively. The adjoint-TEM will be used to calculate
the sensitivity of gi with respect to p. Equation (11) can be converted into equation (12) based on adjoint
method construction principles, in which the numerical algorithm for the monthly time step is treated as a
sequence of operators:

gi5FnfFn21f� � � fF2fF1ðy; p; cÞgggg (12)

where n represents the number of numerical steps and Fjðj 2 ½1; n�Þ refers to the model operator at each
numerical step.

Based on adjoint model construction principles [Giering and Kaminski, 1998], we define the adjoint operator
D*with equations (13) and (14):

D�gj
i5
@gi

@g
j
i

5
@FnfFn21f� � � fFj11ðgj

iÞgggg
@g

j
i

(13)

where g
j
i is defined as:

g
j
i5FjfFj21f� � � fF2fF1ðy; p; cÞgggg: (14)

With the definition of equations (13) and (14), the perturbation of the TEM modeled carbon fluxes (Dgi) can
be represented by an inner product of the adjoint operator ðD�gj

iÞ and the perturbation of the TEM fluxes at
any numerical step j ðDg

j
iÞ, which yields equations (15a) and (15b):

Dgi5 < D�gj
i;Dg

j
i > (15a)

Dgi5 < D�gj21
i ;Dg

j21
i > : (15b)

Based on the first-order Taylor expansion rule, we will have equation (15c):

Dg
j
i5

@g
j
i

@g
j21
i

� Dg
j21
i : (15c)
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Substituting equation (15c) into equation (15a) and apply the adjoint definition, we have equation (15d):

Dgi5 < D�gj
i;
@g

j
i

@g
j21
i

� Dg
j21
i > 5 <

@g
j
i

@g
j21
i

 !T

� D�gj
i ;Dg

j21
i > : (15d)

By comparing equations (15d) and (15b), the operation rule of the adjoint operator D* can be written as
equation (16):

D�gj21
i 5

@g
j
i

@g
j21
i

 !T

� D�gj
i5ðH

j
iÞ

T � D�gj
i (16)

where ðHj
iÞ

T refers to the transpose of the Jacobian matrix. Equation (16) links the slope information during
month i from numerical step j (right hand side) to numerical step j 2 1 (left hand side). We use this inverse
operation rule of the adjoint operator (equation (16)) to sequentially integrate all intermediate results of

transpose of the Jacobian matrix
�

@g
j
i

@g
j21
i

�T
j 2 ½1; n� to get the gradient of the TEM output fluxes gi with

respect to the parameter p:

rpgi5
@g1

i

@p

� �T

…
@g

j
i

@g
j21
i

 !T

…
@gn

i

@gn21
i

� �T

5ðH1
i Þ

T � � � ðHj
iÞ

T � � � ðHn
i Þ

T : (17)

Proceeding from right to left in equation (17), the order of the rpgi calculation is from the @gn
i

@gn21
i

� �T
term to

the @g1
i

@p

� �T
term. With the help ofrpgi , the gradient of the cost function J with respect to model parameters

p can be calculated as:

@J
@p

5
@Jprior

@p
1
@Jobs

@p
(18a)

@Jprior

@p
5Rp

21ðp2poÞ (18b)

@Jobs

@p
5
XN

i51

rpgT
i � R21

o � ðgi2go
i Þ: (18c)

Since the cost function J is convex, we are able to iteratively find the minimal point with optimization algo-
rithms (section 2.5). Equation (18a) explicitly provides the optimization algorithm with necessary gradient
information.

2.4. Sensitivity Study
In the sensitivity analysis, we run the model for 20 years (1989–2008) and collected the monthly model sen-
sitivity of NEP to parameters of interest. Therefore, the analysis is based on 240 samples at each site. We
conduct the sensitivity analysis at three sites representing three plant functional types including grassland
(Fort Peck, 48.3�N, 105.1�W), deciduous broadleaf forest (Bartlett Experimental Forest, 44.1�N, 71.3�W), and
evergreen needle-leaf forest (UCI_1850, 55.9�N, 98.5�W). Twenty-six parameters are tested in this study.
These parameters are selected based on previous TEM sensitivity study [Tang and Zhuang, 2009] and they
are associated with ecosystem processes of photosynthesis (e.g., CMAX, KI, KC), autotrophic respiration (e.g.,
RAQ10A0, KR), soil respiration (e.g., RHQ10, KDC), nitrogen uptake (e.g., NMAX), and leaf phenology (e.g., ALEAF,
BLEAF, CLEAF, MINLEAF). Detail definition and empirical ranges are documented in Table 2. The sensitivity is nor-
malized with equation (19):

Si5

dg
dpi
� j rpi

rg
jPn

j51ðj
dg
dpi
� rpi

rg
jÞ

(19)
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where dg
dpi

is the sensitivity of the modeled NEP with respect to a specific parameter pi. i ranges from 1 to 26
and refers to the 26 parameters of interest. The normalized sensitivity for each parameter (Si) is calculated
by dividing the specific sensitivity by the sum of the total sensitivities. A weight factor ðj rpi

rg
jÞ is used, since

the values of different parameters are over a range of several orders of magnitude and the units of different
parameters are usually different. rpi is standard deviation of a specific parameter, which is defined as 40%
of its empirical range; rg is standard deviation of modeled NEP, which is calculated from the model output
of NEP time series. The original sensitivity dg

dpi
multiplying the weight factor j rpi

rg
j results in a new sensitivity

value dg
dpi
� j rpi

rg
j, which is a unit-less quantity. The normalized sensitivities (Si) for different model parameters

vary from 21 to 1. They are comparable, although the original values of sensitivities vary over several orders
of magnitude. Si provides a feasible ranking criteria to assess the importance of model parameters in con-
trolling the model outputs [Brun et al., 2001; Medlyn et al., 2005].

2.5. Parameters Optimization and Uncertainty Reduction
The parameterization protocol is with the following steps (Figure 1): (1) Starting from prior estimation of
parameters, we run the forward TEM to simulate carbon dynamics and also obtain all the intermediate sen-

sitivity information ð @g
j
i

@g
j21
i

ÞT i 2 ½1; n1�; j 2 ½1; n2� (i denotes monthly time step and j denotes numerical step

during each month); (2) Use the adjoint-TEM to calculate the gradient of the model outputs of interest to
parameters by integrating the intermediate sensitivities; (3) Use the simulated flux NEP, together with
observational NEP to construct a cost function J; (4) Calculate sensitivity of the cost function with respect to

model parameters @J
@p

� �
and employ optimization algorithms to minimize the cost function as well as

update the model parameters; and (5) Define a constraint e, which is a small value. In each iteration, we

check if @J
@p

is smaller than e and the parameters are between the predefined empirical upper and lower

bounds. If so, the model parameters are believed to be well constrained, otherwise go to step (1) and iterate
the steps.

In step 4, with the help of the sensitivity of model outputs to parameters (step 2) and the definition of the
cost function (step 3), we estimate the sensitivity of the cost function (J) with respect to the parameters (p).

Table 2. Twenty-Six Parameters of TEM Involved in This Study

ID Acronym Definition Units Lower Bound Upper Bound

1 CMAX Maximum rate of photosynthesis C g m22 mon21 50 1500
2 KI Half saturation constant for PAR used by plants J cm22 d21 20 600
3 KC Half saturation constant for CO2-C uptake by plants l L L21 20 600
4 TMAX Maximum temperature for GPP �C 25 35
5 TMIN Minimum temperature for GPP �C 212 21
6 TMAXOPT Maximum of optimum temperature for GPP �C 15 25
7 ALEAF Coefficient A to model the relative photosynthetic capacity of vegetation None 0.1 1
8 BLEAF Coefficient B to model the relative photosynthetic capacity of vegetation None 0.1 1
9 CLEAF Coefficient C to model the relative photosynthetic capacity of vegetation None 0 0.5
10 MINLEAF Minimum photosynthesis capacity of vegetation None 0.2 0.8
11 NMAX Maximum rate of N uptake by vegetation mg m22 mon21 20 700
12 KN1 Half saturation constant for N uptake by vegetation g m23 0.5 10
13 RAQ10A0 Leading coefficient of the Q10 model for plant respiration None 1.35 3.3633
14 RAQ10A1 First-order coefficient of the Q10 model for plant respiration �C21 20.054577 20.051183
15 RAQ10A2 Second-order coefficient of the Q10 model for plant respiration �C22 0.0022902 0.0024381
16 RAQ10A3 Third-order coefficient of the Q10 model for plant respiration �C23 20.0000417 20.0000397
17 KDC Heterotrophic respiration rate at 0�C g g21 mon21 0.0005 0.007
18 RHQ10 Change in heterotrophic respiration rate due to 10�C temperature change None 1 3
19 MOISTMAX Maximum soil moisture content for heterotrophic respiration % 80 100
20 MOISTMIN Minimum soil moisture content for heterotrophic respiration % 20 80
21 MOISTOPT Optimum soil moisture content for heterotrophic respiration % 0 20
22 NUP Ration between N immobilized and C respired g g21 0.005 0.1
23 KN2 Half saturation constant for N uptake by organisms g m23 0.5 1
24 CFALL Proportion of vegetation carbon loss as litter fall g g21 mon21 0.0001 0.015
25 NFALL Proportion of vegetation nitrogen loss as litter fall g g21 mon21 0.003 0.012
26 KR Plant respiration rate at 0�C g g21 mon21 1027.5 1021.5
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Such sensitivity indicates the searching direction for parameter optimization. A Quasi-Newton method is
used in this study to find the minimal point of the cost function and estimate optimal parameters:

pnew5pold2d � a (20)

d5

@J
@p

@2J
@p2

(21)

where pnew and pold are updated and previous model parameters, respectively. a is the step size obtained
by performing an inexact line search [Wolfe, 1969]. d is the search direction calculated by dividing gradient
vector @J

@p
by Hessian matrix @2 J

@p2, where the gradient vector is explicitly calculated with equations (18a–18c)
and Hessian matrix is approximated with the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method [Broyden,
1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970]. The data from eddy flux measurements at Fort Peck,
Bartlett Experimental Forest and UCI_1850 sites are used to parameterize grassland, deciduous broadleaf
forest and evergreen needle-leaf forest ecosystems, respectively (Table 1). The optimal parameters are
extrapolated to two other sites that have the same plant functional types as the calibration sites to verify
the effectiveness of the model parameterization.

The uncertainty of optimal model parameters could be calculated with the inverse of second-order deriva-
tive (or inverse covariance) at the minimal point of a cost function [Rayner et al., 2005; Scholze et al., 2007].
However, in this study the adjoint model of TEM only provides first-order derivative. Thus, we use linearity
approximation (at the minimum of the cost function) to calculate posterior parameter uncertainty ðRpost

p Þ as
follow [Kaminski et al., 2002; Kuppel et al., 2012]:

Rpost
p 5

XM

i51

HT
i R21

o Hi1R21
p

 !21

(22)

where Ro and Rp are observation error covariance matrix and parameter prior error covariance matrix, respec-
tively. Hi is the Jacobian matrix at the minimum of the cost function J. i starts from 1 to M, covering the length
of assimilation time window. The uncertainty reduction is defined as: 12 rpost

rprior

� �
� 100% [Knorr and Kattge,

2005], where rpost square root of diagonal elements from Rpost
p and rprior is 40% of prior parameter ranges.

3. Results and Discussion

3.1. Validating Adjoint Code of TEM
Developing adjoint code of TEM is a key step of this study. Before using the adjoint-TEM to optimize model
parameters, we check the accuracy of the adjoint code by comparing the sensitivity calculated with adjoint-
TEM with that calculated with a finite difference method.

The test simulations are carried out at the Bartlett Experimental Forest site from 2004 to 2006. By assuming
local linearity, the finite difference sensitivities of NEP with respect to 26 parameters of interest are
calculated:

@NEP
@P

5
NEPðp1DpÞ2NEPðpÞ

Dp
: (23)

We run the forward TEM twice for each parameter, one with Dp perturbation of the parameter, the other
without perturbation. Dp50:001 � p is used for all the test simulations.

Adjoint code of TEM is also used to calculate the sensitivities of NEP with respect to 26 parameters. At each
numerical step, intermediate sensitivities are collected during the forward simulation. The intermediate sen-
sitivities are then integrated by using equation (17) to calculate @NEP

@p
.

The adjoint-based sensitivities are fully evaluated against finite-difference-based sensitivities (Figure 2). The
Pearson correlation coefficient (R2) is 0.99993, which means that the sensitivities calculated with adjoint
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code is consistent with those calculated
with finite difference method. Thus, the
accuracy of the adjoint codes of TEM is
ensured.

3.2. Sensitivity Study
The sensitivity of carbon fluxes to
parameters indicates the importance of
model parameters in affecting carbon
flux simulations. With normalization
(equation (19)), the normalized sensitiv-
ities (Si) provide insight into the relative
importance of each parameter in con-
trolling different carbon fluxes. Figures
3a–3c show the normalized sensitivity
(mean value and standard deviation) of
each model parameter at three different
plant functional types. In Figure 3, from
left to right, the parameters are ranked
according to their mean Si. Specifically,
we find that: (1) CMAX is the most sensi-
tive parameter to affect NEP for all three

plant functional types. The mean of the normalized @NEP
@CMAX

is around 0.15, 0.15, and 0.25 for grassland, decidu-
ous broadleaf forest, and evergreen needle-leaf forest, respectively. The standard deviations are around
0.15 at all three sites. This is consistent with the sensitivity study results using a Bayesian inference

Figure 3. Normalized sensitivity of NEP with respect to 26 parameters at three sites: (a) grassland site Fort Peck; (b) deciduous broadleaf
forest site Bartlett Experimental Forest; and (c) evergreen needle-leaf forest site UCI_1850. The ranking of parameters is based on the
mean of their normalized sensitivities, from left (most sensitive) to right (most insensitive). Standard deviation of the sensitivity for each
parameter is depicted as an error bar.

Figure 2. Validation of the adjoint code of TEM by comparing the adjoint-based
sensitivity and finite difference-based sensitivity. The reference line has slope of
1 and intercept of 0.
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technique [Tang and Zhuang, 2009]; (2)
the rankings of the other parameters’
sensitivity are generally different
among different sites indicating that
the same ecosystem process has differ-
ent degree of importance in controlling
NEP for different plant functional types.
For example, at deciduous forest site,
two leaf parameters, MINLEAF and BLEAF

are ranked second and fourth, respec-
tively. It indicates the importance of
leaf phenology in modeling deciduous
forest ecosystem carbon fluxes. At the
grassland site, RAQ10A0 (plant respira-
tion parameter) and RHQ10 (soil respira-
tion parameter) are ranked second and
fourth. While the ranks of leaf parame-
ters are relatively low, which means the
respirations (autotrophic and hetero-
trophic) are secondary dominant proc-
esses in modeling grassland carbon
dynamics.

Compared with global sensitivity analy-
sis [Tang and Zhuang, 2009; Pappas
et al., 2013], adjoint sensitivity analysis
provides local sensitivity knowledge
over the course of simulation time win-
dow [Cariboni et al., 2007]. Such local
sensitivities could help to understand
how the model sensitivities evolve
with time. Since the maximum rate of
photosynthesis carbon (CMAX) is the
most sensitive parameter, we analyze
the seasonal variation of model sensi-
tivity to CMAX (Figure 4a). The sensitiv-
ities are much higher in growing
season (defined as from April to Octo-
ber) than those in nongrowing season
(defined as from December to March).
The model sensitivity to the parameter
changes with time is also found in pre-
vious studies [e.g., Prihodko et al.,
2008]. This finding is important for
improving model predictability. For
example, the low sensitivities in non-
growing season indicate that the eco-
system carbon budget is more affected
by other factors rather than photosyn-
thesis rate. Thus, optimizing CMAX may
only improve the quantification of NEP
over growing season. To improve the
quantification of winter NEP, other
parameters should be optimized. We
also find that the sensitivities of several

Figure 4. Seasonal variation of the normalized sensitivities of NEP to: (a) CMAX, (b)
KDC, and (c) MOISTMAX at grassland, deciduous broadleaf forest and evergreen
needle-leaf forest sites. CMAX sensitivities are high in growing season (defined as
from April to October in this study) and low in nongrowing season (defined as
from December to March in this study). KDC and MOISTMAX sensitivities, however,
are relatively low in growing season and high in nongrowing season.
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soil respiration-associated parameters have strong seasonal variations. For example, the model sensitivities
to KDC (soil respiration rate) and MOISTMAX (soil moisture effect on soil respiration rate) are relatively high
during nongrowing season than during growing season (Figures 4b and 4c). This indicates that soil respira-
tion and soil moisture (rather than photosynthesis rate) dominates the nongrowing season carbon fluxes.

3.4. Parameter Optimization and Uncertainty Reduction
The prior and posterior model parameters’ values are shown in Table 3. The three sets of optimized parame-
ters are our current best estimations for grassland, deciduous broadleaf forest, and evergreen needle-leaf
forest, respectively. The most sensitive parameter CMAX is 834 g C mon21 m22 at grassland is 18% higher
than its prior value. And the deciduous broadleaf forest optimal CMAX (1498 g C mon21 m22) is only 10%
higher than the prior (1352 g C mon21 m22). At needle-leaf forest site, our posterior CMAX (557 g C mon21

m22) is much lower (28%) than the prior value. The differences between prior and posterior model parame-
ters indicate the change of the mean of parameter. Previous researches suggest that, in the model optimiza-
tion, the change of parameter uncertainty is as important as the change of parameter value [Raupach et al.,
2005; Williams et al., 2009]. Here we use the uncertainty reduction defined as ð12 rpost

rpriorÞ � 100% to quantify
the uncertainty changes of TEM model parameters.

Through data assimilation, uncertainties of prior CMAX are reduced by 57%, 80%, and 86% at grassland,
deciduous broadleaf forest and evergreen needle-leaf forest sites, respectively. The uncertainty reduction is
lower at grassland site than the other two sites. Two other parameters associated with the plant photosyn-
thesis are half saturation constant for CO2 uptake by plant (KC) and half saturation constant for photosyn-
thetic active radiation (PAR) used by plant (KI). We find that the uncertainty reductions of KC and KI are also
lower at grassland site than those at forest sites (Table 3). Parameters representing the temperature effect
on photosynthesis (TMAX, TMIN and TMAXOPT) are all not well constrained by the observational data, except
that uncertainty of TMIN in evergreen needle-leaf forest is reduced by half. While, parameters associated
with leaf phenology effects on photosynthesis (ALEAF, BLEAF, CLEAF, and MINLEAF) are constrained relatively

Table 3. Prior and Optimized Parameters for Grassland, Deciduous Broad Forest and Evergreen Needle-Leaf Foresta

Grassland Deciduous Broadleaf Forest Evergreen Needle-Leaf Forest

Parameters Prior Optimal
Uncertainty

Reduction (%) Prior Optimal
Uncertainty

Reduction (%) Prior Optimal
Uncertainty

Reduction (%)

CMAX 704.858 834.663 57.2 1352.016 1498.176 80.7 777.335 557.7487 86.2
KI 339.5 349.2 35.8 75.47 73.8148 92.9 39.7 43.76698 91.9
KC 442.72 403.9068 25.7 315.62 420.3171 74.5 231.96 40.71388 75.0
TMAX 38 30.50582 2.8 34 34 0 34 34 0
TMIN 0 0 0 0 0 0 21 28.97047 52.3
TMAXOPT 32.7 32.7 0 30.9 30.9 0 30 30 0
ALEAF 0.318 0.370962 37.5 0.863 0.895904 68.9 0.477 0.489425 6.7
BLEAF 0.376 0.377533 21.3 0.362 0.378411 85.1 0.368 0.392235 58.6
CLEAF 0.184 0.134152 43.3 0 0.0004 84.9 0.315 0.322962 54.8
MINLEAF 0.1 0.1 0 0.02 0.02 0 0.5 0.471896 50.2
NMAX 22.746 22.74606 84.3 49.16 50.14823 95.1 21.135 596.8661 0.005
KN1 0.004 0.003654 13.0 0.004 0.004158 73.4 0.004 0.002217 0.07
RAQ10A0 2.357 2.040915 18.5 2.858 2.796381 67.0 2.357 1.636547 9.1
RAQ10A1 20.053 20.05308 0.02 20.053 20.00217 0.3 20.053 20.05189 0.0007
RAQ10A2 0.002 0.002384 0.01 0.003 0.002572 0.2 0.002 0.002 0
RAQ10A3 24 3 1025 24 3 1025 0 27 3 1025 27 3 1025 0 23.97 3 1025 23.97 3 1025 0
KDC 0.004 0.004144 48.6 0.006 0.004813 89.8 0.003 0.000517 24.4
RHQ10 2 1.493027 36.3 2 1.805798 79.3 2 1.043601 0.1
MOISTMAX 1 1 0 1 0.912865 34.7 1 0.811295 0.008
MOISTMIN 0 0 0 0 0 0 0 0 0
MOISTOPT 0.5 0.458846 30.7 0.5 0.611604 91.5 0.5 0.653863 0.5
NUP 17.226 15.41427 23.0 7.03 7.00138 85.9 6.715 15.57495 0.003
KN2 0.004 0.004637 3.5 0.004 0.004217 34.7 0.004 0.005323 0.0003
CFALL 0.053 0.05291 0.02 0.003 0.003489 65.6 0.004 0.003429 32.8
NFALL 0.032 0.03188 0.008 0.018 0.01789 4.1 0.011 0.005 0.3
KR 0.018 0.017435 29.1 0.001 0.000741 99.5 0.002 0.003911 93.5

aThe uncertainty reduction is defined as: 12 rpost

rprior

� �
� 100%.
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well (uncertainty reduction �21%–85%), except for ALEAF at evergreen needle-leaf forest and MINLEAF at
grassland and deciduous broadleaf forest.

For plant respiration process, relevant parameters are KR and RAQ10A0. The parameter KR, representing plant
respiration rate at a reference temperature, is better constrained by AmeriFlux NEP than the parameter
RAQ10A0, which is a Q10 factor on plant respiration. Similarly, for soil respiration, relevant parameters are KDC

and RHQ10. We also find that the parameter KDC, representing soil respiration at a reference temperature, is
better constrained by observations than the Q10 factor parameter RHQ10. Among different plant function
types, we find that deciduous broadleaf forest’s plant and soil respiration processes are best constrained
(uncertainty reduction �67%–99% for the four parameters).

The discrepancy between optima and prior parameter values and uncertainty reduction provide heuristic
insights about model parameters improvement by assimilating the AmeriFlux NEP data. More importantly,
uncertainty reduction will help identify the model parameters that still need to be further refined. For exam-
ple, for plant nitrogen process, NMAX is an important controlling parameter on NEP (Figure 3). However,
using adjoint data assimilation, this parameter is not significantly improved at evergreen needle-leaf forest,
with an uncertainty reduction of 0.005%, although the optimal-prior parameter discrepancy is large (575
mg N m22 mon21). It means that, in order to further improve the NMAX at evergreen needle-leaf forest site,
extra information or more observational data are required.

3.5. Validity of the Optimized TEM
Nine AmeriFlux eddy covariance sites covering three plant functional types (grassland, deciduous broadleaf
forest, and evergreen needle-leaf forest) are involved in this study. The cross-site validation approach is
adapted to test the validity of the optimized TEM [Medvigy et al., 2009; Verbeeck et al., 2011]. Three sites are
used for calibration; the other six sites are withheld for verification. As a result, for each plant functional
type, TEM model parameters are optimized at one site and then extrapolated to two others (Table 1). To
evaluate the model performance at both calibration sites and extrapolation sites, we analyzed the model-
data departure at two different timescales including monthly and yearly.

Comparisons are conducted between prior, posterior model simulations and AmeriFlux observations. For
monthly timescale, both prior and posterior models are able to capture the seasonality of the observed NEP
(Figure 5). Generally, both models yield positive values (carbon sink) in summer and negative NEP (carbon
source) in winter, except for Vaira Ranch site, due to the Mediterranean climate. The prior model is able to
reasonably reproduce NEP during winter. However, in most cases, model underestimates NEP during
summer (Figure 5, black lines). Moreover, there is a phase shift between prior model simulations and obser-
vations (Figure 5, black lines and blue dots). For example, at Missouri Ozark site, prior model simulations
peak in April or May, while the AmeriFlux observations peak in June or July. After optimization, the posterior
model is able to better reproduce the seasonal dynamics of NEP. The magnitude of carbon flux is well simu-
lated and the phase-shift problem of the prior model is eliminated.

The improvement from the prior model simulations to the posterior model simulations is quantitatively
evaluated with linear fitting statistics between prior, posterior model simulations and observational data
(Table 4). The R2 is the Pearson correlation coefficient standing for the correlations between modeled and
observed flux (R2 varies from 1 to 21, corresponding to perfectly positively and negatively correlated,
respectively). A good model-data fitting will have both slope and R2 close to 1 and intercept close to zero.
We find that, at most sites, the fitting statistics between the posterior model simulations and observations
are much better than those between the prior model simulations and observations. For example, at
UCI_1850 evergreen needle-leaf forest site, the R2 between prior modeled and observed NEP is improved
from 0.21 to 0.80; the slope is increased from 0.9 to 0.98 and the absolute value of intercept is reduced
from 9.4 to 1.3 g C mon21 m22.

The posterior model is improved to different extents for various plant functional types. Specifically, the pos-
terior model works better at the deciduous broadleaf forest sites than at the grassland and evergreen
needle-leaf forest sites (Table 4). This might be due to that the model algorithm (equations (1–5)) better rep-
resents the carbon processes for deciduous forest than for grassland. For example, TEM assumes that the
leaves gradually fall off from plants and enter soils. However, the plant litterfall process may not be used
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appropriately to characterize the transportation of plant carbon into soil at grassland sites. Thus, in addition
to using data assimilation technique to improve model parameters, revising model algorithms is also neces-
sary to further improve model predictability [Medlyn et al., 2005].

On annual timescale, the simulated carbon flux has also been significantly improved with adjoint-TEM data

assimilation. In Table 5, the biases of the prior model dif 15 prior2Observation
jObservationj � 100%

� �
are larger than those of

the posterior model dif 25
posterior2Observation
jObservationj � 100%

� �
. An exception is that, at Vaira Ranch site observed

annual NEP is less deviated from the prior model ðdif 1521:09%Þ than from the posterior model
ðdif 25267:50%Þ. That is because, at Vaira Ranch site, the prior TEM overestimates NEP from June to

Table 4. Model-Data Fitting Statistics (Corresponding to Figure 5) Including Slope, Interception of the Linear Regression and R2a

NEP Prior NEP Posterior

ID Site Name R2 Slope Intercept R2 Slope Intercept

1 Fort Peck 0.16 0.75 24.47 0.45 0.40 23.61
2 Vaira Ranch 0.00 0.08 4.35 0.48 0.60 21.29
3 Fermi Prairie 0.13 1.64 17.07 0.80 0.75 7.59
4 Bartlett Experimental Forest 0.16 1.28 25.59 0.83 0.90 20.09
5 UMBS 0.20 1.04 12.47 0.82 1.04 9.24
6 Missouri Ozark 0.00 0.07 36.20 0.61 0.80 14.57
7 UCI_1850 0.21 0.90 9.40 0.80 0.98 1.30
8 Wind River Crane 0.10 0.69 26.98 0.39 0.42 21.94
9 Niwot Ridge 0.34 0.88 2.20 0.70 0.91 1.68

aPrior and posterior stand for model performances before and after adjoint-TEM parameter optimization, respectively.

Figure 5. TEM simulated NEP by applying both prior parameters (prior-TEM) and optimized parameters (posterior-TEM) are compared with AmeriFlux NEP observations. The optimal
parameters are obtained at Fort Peck, Bartlett Experimental Forest and UCI_1850 and then are extrapolated to Vaira Ranch, Fermi Prairie, UMBS, Missouri Ozark, Wind River Crane Niwot
Ridge sites. The units are g C mon21 m22.
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November and underestimates NEP from December to May (a phase shift of 4–6 months; Figure 5). The
overestimation offsets the underestimation. Therefore, the prior model yields a relatively good estimation
of annually aggregated NEP. Vaira Ranch grassland site is dry in summer and autumn; grass only survives
during wet and warm winter and gradually becomes inactive after May [Gretchen et al., 2007]. The defi-
ciency of the prior TEM to reproduce the observed seasonal variation of NEP suggests that the ecological
responses of grass to extreme drought and hot climate condition may not be well represented in TEM.
Overall through model data assimilation, the posterior model performance at grassland sites is improved to
some extent. However, more efforts are required to further improve the model algorithm and structure for
grassland ecosystems.

4. Conclusions

We develop an adjoint version of TEM and a data assimilation framework to optimize model parameters.
The adjoint-TEM is used to analyze the model sensitivity to parameters and rank the importance of parame-
ters. We find that CMAX is the most important parameter in controlling net ecosystem production (NEP) for
various ecosystems. The result generally agrees with the previous study using an ensemble approach [Tang
and Zhuang, 2009]. The importance of parameters varies depending on plant functional types. We also find
that the seasonality of the model sensitivity to CMAX is significantly large. Typically, the sensitivity of NEP
with respect to CMAX is much higher during growing season than during nongrowing season. This implies
that other factors, such as soil respiration parameters KDC and MOISTMAX, may play a more important role
than maximum photosynthesis rate (CMAX) in determining NEP during nongrowing season.

By assimilating AmeriFlux NEP data into TEM, the uncertainties of model parameters are significantly
reduced and the model predictability at different timescales is improved. The model NEP simulation is
improved to different degrees for various plant functional types. This suggests that, beyond parameter opti-
mization only using NEP data, the improvement to model algorithm and structure as well as ecosystem flux
data is needed. For instance, appropriate representation of litterfall process for various ecosystems will be
important to improving model predictability. This study provides an effective model-data assimilation
method for TEM, which would improve our future quantification of terrestrial ecosystem carbon fluxes at
both site and regional levels. Our demonstration to implement an adjoint approach for ecosystem biogeo-
chemistry modeling should also benefit the whole model-data assimilation research community.
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