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Abstract

A better understanding of recent crop yield trends is necessary for improving the

yield and maintaining food security. Several possible mechanisms have been investi-

gated recently in order to explain the steady growth in maize yield over the US Corn‐
Belt, but a substantial fraction of the increasing trend remains elusive. In this study,

trends in grain filling period (GFP) were identified and their relations with maize yield

increase were further analyzed. Using satellite data from 2000 to 2015, an average

lengthening of GFP of 0.37 days per year was found over the region, which probably

results from variety renewal. Statistical analysis suggests that longer GFP accounted

for roughly one‐quarter (23%) of the yield increase trend by promoting kernel dry

matter accumulation, yet had less yield benefit in hotter counties. Both official survey

data and crop model simulations estimated a similar contribution of GFP trend to

yield. If growing degree days that determines the GFP continues to prolong at the

current rate for the next 50 years, yield reduction will be lessened with 25% and 18%

longer GFP under Representative Concentration Pathway 2.6 (RCP 2.6) and RCP 6.0,

respectively. However, this level of progress is insufficient to offset yield losses in

future climates, because drought and heat stress during the GFP will become more

prevalent and severe. This study highlights the need to devise multiple effective

adaptation strategies to withstand the upcoming challenges in food security.
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1 | INTRODUCTION

Agricultural systems in many regions may be negatively impacted by

increasing temperature especially when accounting for the nonlinear

effect of climate extremes such as heat waves and droughts (Porter

& Semenov, 2005; Rattalino Edreira & Otegui, 2013; Sánchez, Ras-

mussen, & Porter, 2014; Schlenker & Roberts, 2009), which are pre-

dicted to become increasingly frequent in a warmer climate. Higher‐
than‐optimal temperature negatively impacts maize yield through

affecting reproductive structures (Siebers et al., 2015, 2017),

decreasing the Rubisco activation (Crafts‐Brandner, 2002) and

increasing water stress (Lobell et al., 2013). Thus, to maintain or

potentially increase productivity, agricultural systems must adapt to

upcoming warmer and more extreme climates.

As the world's largest producer of maize, the United States has

seen a steady increase in maize yield since the 1950s through

improvements in agronomic practices, genetic technology and favor-

able growing conditions despite interannual yield variability related

to hot and dry summers (USDA, 2015). Several possible mechanisms

have been investigated in order to understand this increasing trend
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in yields, including: expansion of more heat‐tolerant cultivars (Drie-

donks, Rieu, & Vriezen, 2016), delayed foliar senescence or stay‐
green traits (Thomas & Ougham, 2014), new cultivars adapted to

higher sowing density (Duvick, 2005; Tollenaar & Wu, 1999), devel-

opment of pest resistant maize cultivars through genetically engi-

neering (NRC, 2010), enhanced water use efficiency under rising

atmospheric CO2 (Jin, Ainsworth, Leakey, & Lobell, 2018; Lobell &

Field, 2008), and increase in accumulated solar radiation during the

postflowering phase (Tollenaar, Fridgen, Tyagi, Stackhouse, & Kumu-

dini, 2017). A drought sensitivity analysis over the US Midwest

based on field maize yield data showed, however, higher sowing

density brought about side effect that field maize yield sensitivity to

water stress became increased (Lobell et al., 2014). In this context, it

is necessary to understand the response of maize yield in farmers’
fields to climate variation over time and thereby allowing crops more

effectively to adapt to the future climate change.

Crop phenological development is essential for agricultural man-

agement practices (Irmak, Haman, & Bastug, 2000), and reflects the

combined effect of climate exposure and plant physiological traits

(McMaster, 2005). Specifically, this study focused on GFP, a critical

kernel development stage when plant growth and grain formation is

sensitive to stress (Badu‐Apraku, Hunter, & Tollenaar, 1983; Çakir,

2004; Cheikh & Jones, 1994). In addition, because there is a tight

positive correlation between the grain filling length (GFL) and the

final crop yield (Badu‐Apraku et al., 1983; Tollenaar et al., 2017),

characterizing recent trends in GFL may also help explain yield

trends.

Satellite remote sensing observations such as the vegetation

index derived from moderate‐resolution imaging spectroradiometer

(MODIS) reflectance data provide the opportunity to characterize

the regional‐scale spatiotemporal patterns of field crop growth status

information, in particular phenological transition dates (Sakamoto et

al., 2010). We used this long‐term satellite data to generate spatially

explicit maize phenological date fields. Maize phenological

information was then integrated with a crop model to understand

the relationship between GFP trend and yield increase in the historic

period. Finally, the implication of longer maturity variety for sustain-

ing maize production under future climate scenarios was investi-

gated.

2 | MATERIALS AND METHODS

In this study, 8‐day Wide Dynamic Range Vegetation Index (WDRVI)

derived from MODIS reflectance data (MOD09Q1 and MYD09Q1)

from 2000 to 2015 was used to map trends in maize phenology in

Illinois, Indiana, Iowa, Nebraska across the US Midwest, which col-

lectively account for half of the total US maize production. Maize

yield keeps growing across the four states at the rate of 1.4% per

year during this period (Figure 1). To extract maize phenology, shape

model fitting (SMF) has been shown as an effective approach and

was validated at both site and state level (Sakamoto, Gitelson, &

Arkebauer, 2014; Sakamoto et al., 2010; Zeng et al., 2016). On the

other hand, threshold‐based methods can be used to extract the

starting and ending of growing season more flexibly. Thus, we devel-

oped and implemented a hybrid method combining SMF and thresh-

old‐based analysis to generate 8 million samples of maize

phenological date from MODIS WDRVI data at 250 × 250 m spatial

resolution from 2000 to 2015.

2.1 | Satellite data

In this study, the 8‐day time series of 250 m daily surface reflec-

tance MODIS data on board Earth Observing System (EOS) Terra

and Aqua satellite platforms: MOD09Q1 (2000–2015) and

MYD09Q1 (2002–2015) Collection 6, was used. Four tiles MODIS

data (h10v04, h11v04, h10v05, h11v05) covering the study area (4

states: Indiana, Illinois, Iowa, Nebraska) were downloaded from

NASA Land Processes Distributed Active Archive Center. Although

36

38

40

42

44

−100 −95 −90 −85
Longitude

La
tit

ud
e

3

2

1

0

−1

% per year

 Yield trend

2000 2005 2010 2015
60

80

100

120

140

160

180

200

220

Yield increasing rate = 1.4 ± 0.06% per year

Y
ie

ld
 (

bu
/a

cr
e)

Year

(a) (b)

F IGURE 1 (a) Trends in maize yield for each county, where the empty counties mean that county has <12 years available data. (b) Mean
maize yield increasing rate for all counties. The error bars indicate the spatial variation of maize yield for all counties
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the daily satellite observations can better capture the phenological

phase transition during maize growth, the 8‐day composite prod-

ucts in MOD09Q1 and MYD09Q1 were selected to minimize the

impact of clouds and haze. Generally, the MODIS 8‐day composite

products were systematically corrected for the effects of aerosol

light scattering (Vermote & Vermeulen, 1999). Meanwhile, the con-

strained view‐angle maximum value composite method guarantees

the quality of surface spectral reflectance data for each 8‐day per-

iod (Huete et al., 2002). Both 250 m MOD09Q1 and MYD09Q1

data consist of red (R) and near‐infrared (NIR) bands with an

actual spatial resolution of 231.7 m. Here a scaled WDRVI (Wide

Dynamic Range Vegetation Index), generated by combining Terra

and Aqua observations, is used to monitor the growing status of

maize plants (Zeng et al., 2016), because WDRVI is supposed to

have a better performance in characterizing seasonal biomass

dynamics than normalized difference vegetation index (NDVI),

which is often saturated for dense vegetation and a linear rela-

tionship was identified between WDRVI and the green leaf area

index (LAI) of both maize and soybean (Gitelson, 2004; Gitelson,

Schalles, & Hladik, 2007). The scaled WDRVI is calculated with

the following equation:

WDRVI ¼ 100 � ½ðα� 1Þ þ ðαþ 1Þ �NDVI�
½ðαþ 1Þ þ ðα� 1Þ �NDVI� (1)

NDVI ¼ ðρNIR � ρredÞ=ðρNIR þ ρredÞ (2)

Where ρred and ρNIR are the MODIS surface reflectance in the

red and NIR bands, respectively. A comparison of multiple vegetation

indexes indicates WDRVI with α = 0.1 showed a strong linear corre-

lation with corn green LAI (Guindin‐Garcia, Gitelson, Arkebauer,

Shanahan, & Weiss, 2012). Here we also set α as 0.1 for WDRVI cal-

culation. Before WDRVI calculation, the reflectance data were qual-

ity‐filtered using the band quality control flags. Only the data

passing the highest quality control test are retained.

2.2 | Crop location information

A cropland dynamic layer (CDL) spanning from 2000 to 2015 gener-

ated by USDA/NASS was used to be as maize mask (The time span

of NASS‐CDL for Nebraska is from 2001 to 2015). The spatial reso-

lution of the original products of NASS‐CDL varied from year to year

due to different satellite data being used. The satellite datasets used

to generate NASS‐CDL over 2000–2005 and 2010–2015 were

obtained from Landsat/TM with 30 m resolution. Those used to gen-

erate NASS‐CDL over 2006–2009 were obtained from Resourcesat‐
1/AWiFS with 56 m resolution. The CDL data were firstly projected

to MODIS sinusoidal projection and then aggregated to 231.7 m.

We only extracted the phenological information over the MODIS

pixels with the corresponding maize fraction surpassing 80% deter-

mined by CDL aggregation, which can thus suppress the mixing

effect of other vegetation types like grasses and soybean. The classi-

fication errors in the CDL data might mix noncrops signal into the

WDRVI calculation. However, previous study showed that the influ-

ence of classification errors on maize phenological extraction can be

minimized at regional scale (Sakamoto et al., 2014), especially when

a high threshold value (here it is 80%) was applied to filter mixing

pixels.

2.3 | Maize phenology and yield statistics data

USDA/NASS surveys crop progress and condition based on question-

naires and publishes percent complete (area ratio) of crop fields that

have either reached or completed a specific phenological stage, on

Agricultural Statistics Districts (ASD) or state level, in a weekly

report called the Crop Progress Report (CPR). The state level phenol-

ogy information is available in the USDA/NASS Quick Stats 2.0 data-

base. The weekly reported area ratios were interpolated using

sigmoid function. The target phenological stages (emerged, silking,

dent, and mature stages) were then determined as the date when

the interpolated area ratio reached 50% on a state level (Tollenaar et

al., 2017). The phenological dates from CPR were used as a refer-

ence to evaluate the MODIS‐based estimations.

The county‐level corn grain yield data covering the four states

(IL, IN, IA, NE) were obtained from the Quick Stats 2.0 database.

The selected data period was from 2000 to 2015. The unit system

for corn grain yield is bushel per acre (bu/ac).

2.4 | Climate data

Daily precipitation, minimum and maximum temperatures, and rela-

tive humidity data at 4 km resolution were obtained from University

of Idaho Gridded Surface Meteorological Data (Abatzoglou, 2013)

(http://metdata.northwestknowledge.net/). It is a gridded product

covering the US continent and spanning from 1979 to 2016. This

dataset is created by combining attributes of two datasets: tempo-

rally rich data from the North American Land Data Assimilation Sys-

tem Phase 2 (Mitchell, 2004) (NLDAS‐2), and spatially rich data from

the Parameter‐elevation Regressions on Independent Slopes Model

(Daly et al., 2008; PRISM). After validated using extensive network

of weather stations across the United States, this dataset is proved

to be suitable for landscape‐scale ecological model. To be consistent

with the climate data resolution, MODIS‐derived maize phenology

information is aggregated to 4 km by averaging all available maize

phenological date. Then the climate variables like mean temperature,

mean VPD and mean precipitation during the vegetative period,

grain filling period, and total growth period are estimated by inte-

grating daily climate data over the corresponding period according to

MODIS‐derived phase starting and ending date. VPD is estimated

from relative humidity and temperature data.

Here GDD, a commonly used metric as the cumulative thermal

requirement for a crop having experienced over the growing season

for maize, is calculated from daily temperature values. It is defined

as the sum of all daily average temperatures over the growing sea-

son in excess of 8°C. A base temperature of 8°C and a maximum

temperature of 35°C for maize were used (Kiniry & Bonhomme,
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1991). Specifically, GDDcrit was used to refer to the GDD require-

ment from start grain filling to maturity.

2.5 | Maize growing phase extraction

A shape model fitting (SMF; Figure 2), which represents the general

pattern of corn growth characterized by time‐series WDRVI, was

created using a similar procedure as previous study (Sakamoto et al.,

2010). The shape model was defined by averaging 10 years (2001–
2010) of 8 days WDRVI observations from the irrigated continuous

corn field at Mead, Nebraska operated by the University of Nebraska

Agricultural Research and Development Center. Then, the shape

model was geometrically scaled and fitted to 8‐day time‐series
WDRVI data using the following equation:

hðxÞ ¼ yscale� fgðxscale� ðxþ tshiftÞÞg; (3)

where the function g(x) refers to the preliminarily defined shape

model function and x refers to WDRVI acquiring date. The function

h(x) is transformed from the shape model g(x) in time‐ and VI‐axis
directions with the scaling parameters xscale, yscale, and tshift. The

scaling parameters were optimally estimated using “fminsearch”
function in Matlab R2015b to minimize the discrepancy between the

scaled shape model h(x) and the WDRVI data. Here the root mean

square error (RMSE) between the scaled shape model h(x) and the

WDRVI data is used to quantify the discrepancy. The dates of these

key phenological stages, including emerged, silking, dent, and mature

date, were determined from satellite data by optimizing the dates of

emerged, silking, dent, and mature stages, given the predefined

dates. Dent stage is about 35–42 days after silking when “milk line”

gets close to the dent end of the kernel. Maturity date is about 55–
65 days after silking and kernel dry weight reaches its maximum

(Abendroth, Elmore, Boyer, & Marlay, 2011). In the original study

(Sakamoto et al., 2010), the predefined dates were empirically deter-

mined based on the ground‐based phenology observations and were

set as 150, 200, 240, and 265 day of year of the reference growing

season, respectively. These parameters are also used in this study.

Although the previous study showed SMF had a good estimation

of corn phenology at site and state level with RMSE of maize pheno-

logical stage estimation at ASD‐level ranging from 1.6 (silking date)

to 5.6 days (dent date; Zeng et al., 2016), there is an inevitable prob-

lem in this method that the linear scaling strategy with only two

parameters (xscale and tshift) is too stiff and leads to identical trends

in the four critical phenological dates. However, the US maize plants

seems to have different or even opposite temporal shifts in different

phenological dates as reported by Sacks and Kucharik (2011) like an

advance in planting and emergence date while delay in maturity date

during 1981–2005. Thus, a more flexible way to characterize the dif-

ferent trends in the four phenological dates is needed.

Among the numerous methods for deriving seasonal parameters

from the time‐series vegetation index, the threshold method, which

assumes that a specific phenology will start when the vegetation

index value exceeds a threshold, is widely used because it generally

keeps dates within a certain reasonable range and can achieve rela-

tively high accuracies. In general, threshold is usually selected based

on crop types. In this study, the WDRVI of 18 is set as threshold

based on trials when comparing the estimation with NASS reported

emergence date and maturity date for four states. We used a hybrid

method by merging the advantage of SMF in extracting the silking

and dent dates and the threshold method in extracting the growing

start (emergence) and ending (maturity) date (Figure 2). Furthermore,

SMF was restricted to only fit WDRVI curve for a specific range,

where WDRVI is above its 40% peak value, so the estimated param-

eters are mainly relevant to the silking and denting phenological

information. Before applying the threshold method, the WDRVI

curve is firstly smoothed using a robust smoothing‐spline approach

to reduce the signal noise (Keenan et al., 2014). To minimize the

impact of maize pixels contaminated by clouds, cloud shadow and

aerosol loading, a 3 × 3 windows is used to filter the data. In each

3 × 3 windows, only those with more than four maize pixels were

selected for phenology extraction, so there were multiple observa-

tional vegetation index data to constrain the optimization model,

which can thus improve the stability of parameters estimation. In

addition, the searching boundary for the scaling parameter yscale

and xscale was empirically set as [0.4, 1.8] to ensure the extracted

phenological date within a reasonable range. Finally, approximate

8 million grids containing the four critical phenological date over

16 years were retrieved. When the MODIS extracted emergence

date was aggregated to the state level and compared with the NASS

CPR, we found a systematic bias in emergence dates that MODIS

estimated emergence dates were 7.6 days later than the NASS

report date. This systematic bias might result from the selection of

WDRVI threshold. Then this systematic bias was deducted from the
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MODIS‐derived emergence date before comparison. Nevertheless,

the bias will not influence the estimation of grain filling starting and

ending date. The state level comparisons show a good agreement

for the four key phenological stages with the RMSE ranging from

1.6 (silking date) to 4.4 days (dent date; Table 1).

Finally, the GFP and grain filling GDDcrit trend was analyzed in

4 km grid cell to keep consistent with the spatial resolution of cli-

mate data. This larger grid size than the original resolution of MODIS

data (250 m) brings more phenological samples for trend analysis,

thus a stronger statistical inference can be made.

2.6 | Yield stability and GFP

Generalized additive regression model (GAM), an effective and flexi-

ble method to characterize nonlinear effects of explanatory variables,

was used here to explore the relationship between yield stability and

GFP. Coefficient of variation and standard deviation of county yield

over time were alternatively used to represent the temporal stability

of maize yield. The model was constructed based on R package

“mgcv” (Wood, 2006). The spline method was used as the smooth

term. In addition to GFP, climatic variables including multiyear mean

precipitation, mean daily temperature, and vapor pressure deficit

(VPD) during GFP over 2000–2015 were also selected as the covari-

ates. Both county level GFP and the trends in GFP were alternately

used as the explanatory variables, so the influence of the longer

GFP in space and GFP extension over time on yield stability was

explored.

2.7 | Crop model simulations

An agricultural system modeling platform APSIM version 7.7 is

used here to simulate the benefit of GFP extension under future

climate. APSIM can simulate a number of crops under different

climatic and management conditions, and hence is used worldwide

to address a range of research questions related to cropping sys-

tems (Holzworth et al., 2014). In particular, maize is simulated by

the APSIM‐Maize module. The APSIM‐Maize module is inherited

from the CERESMaize, with some modifications on the stress rep-

resentation, biomass accumulation and phenological development

(Hammer et al., 2010). This flexible process‐based model allows us

to separately estimate the yield benefit of agronomic practices like

the cultivar shift indicated by higher thermal time requirement

during grain filling.

The MODIS data showed both the grain filling GDDcrit and GFP

increased, suggesting the GFP extension is likely to be associated

with variety change, such as the adoption of longer maturity variety.

We designed three simulations to explore the contribution of GFP

extension to recent decades yield increase. All the simulations were

forced with University of Idaho Gridded Surface Meteorological Data

from 2000 to 2015. The parameter in APSIM, phase_tt

(start_to_end_grain), defining the GDD requirement from start grain

filling to maturity was increased to drive a prolonged GFP to emu-

late the adoption of longer maturity variety over this period. Simula-

tion sim1 is the control with no increase in variety GDDcrit;

simulation sim2 sets an increase in variety GDDcrit by 0.65% per

year which characterized the observed increasing rate in all counties;

simulation sim3 sets an increase in GDDcrit by 0.82% per year which

represented the observed increasing rate in GFP prolonged counties.

The soil parameters, like soil hydraulic properties and soil organic

matter fractions were extracted from the State Soil Geographic

(STATSGO) database, as collected by the National Cooperative Soil

Survey over the course of a century. For each simulation grid, the

soil information was queried through R package “soil DB” (http://nc

ss-tech.github.io/AQP/). Management information like planting den-

sity and fertilizer application amount was taken from the USDA

NASS survey report at state level. Crop sowing date was derived

from the Crop Calendar Dataset (Sacks, Deryng, Foley, & Raman-

kutty, 2010). We used generic maize hybrids (“B_110”) provided by

APSIM version 7.7 to run the simulation.

To investigate the yield benefit of longer GFP until 2060–2070,
we constructed two simulations for climate forcing data from historic

(2000–2015) period and two future climate scenarios (RCP2.6 and

RCP6.0), respectively: one is the control simulation, where the maize

GDDcrit was set as a constant using generic cultivar parameters

(“B_110”); the other one is the GFP prolonged simulation, where

GDDcrit was increased by 0.82% per year to be consistent with the

current advance in maize cultivar based on historical MODIS image

analysis. For the historic period simulation, the climate forcing data

during 2000–2015 were recycled until 2070. For the future climate

scenarios, three climate forcing data were used to account for the

climate model uncertainty in global temperature: Institute Pierre

Simon Laplace CM5A Earth system model (IPSL‐CM5A‐LR), Geo-

physical Fluid Dynamics Laboratory Earth System Model with Gener-

alized Ocean Layer Dynamics component (GFDL‐ESG2G) and the

Hadley Centre Global Environment Model, version 2‐Earth System

(HadGEM2‐ES). As a C4 plant, maize plants loss less water in

response to future enriched atmospheric CO2, which is modeled by

enhanced transpiration efficiency in APSIM. The CO2 concentration

is set as 380 ppm for the historic simulation while increased to fol-

low the concentration trajectory defined in RCP2.6 and RCP6.0

(Meinshausen et al., 2011). The soil parameters and management

information here followed the previous simulations sim1 (sim2,

sim3). Then yield increasing rate in 2060–2070 is calculated by (yield

with prolonged GFP−yield in control simulation)/(yield in control sim-

ulation) with three climate forcing data: historic period, RCP2.6 and

RCP6.0.

TABLE 1 RMSE (days) of four phenological stages estimation over
four states

State Emergence Silking Dent Maturity

Illinois 4.0 1.9 2.8 3.4

Indiana 4.2 2.2 4.0 3.2

Iowa 2.9 4.3 3.3 3.6

Nebraska 3.1 1.6 4.4 3.0
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2.8 | Conceptual model of GFP trend analysis

GDD during GFP can be generally written as:

GDD35
8 ¼

Zmaturity

silking

DDt;DDt ¼
0; when Tmean8
Tmean � 8; when 8≤ Tmean35
27;when Tmean ≥35

8<
:

9=
;
(4)

8, 35 means the lower and upper bounds of daily mean tempera-

ture (Tmean) to calculate GDD. As most of Tmean is within this range,

it can be approximately written as:

GDD35
8 ≈GFP�ðTmean � 8Þ (5)

Then the GFP trend can be rearranged as:

dGFP
GFP�dt≈

dGDD
GDD�dt�

dðTmean � 8Þ
ðTmean � 8Þ�dt (6)

So GFP trend dGFP
GFP�dt

� �
can be approximately estimated by GDD

trend minus Tmean trend. As Tmean trend is very small (Supporting

Information Figure S4), GFP trend is mostly driven by GDD trend.

2.9 | Yield benefit analysis using statistical method

We conducted a panel analysis to quantify the statistical contribu-

tion of increasing GFP to the observed increase in maize yield. A lin-

ear model considering the fixed effects in each year and county was

used:

logðYieldi;tÞ ¼ β1 �GFPi;t þ Yeart þ Countyi þ ɛi;t (7)

where Yeart and Countyi specify independent intercept of each year

and county.

3 | RESULTS AND DISCUSSION

The verification at state level showed a good agreement between

MODIS‐derived maize phenology and the National Agricultural

Statistics Service (NASS) reported state mean phenological dates for

the four key maize growth stages of emergence (late May), silking

(Middle July), dent (late August), and maturity (late September; Fig-

ure 3). The root mean square error (RMSE) of the four phenological

dates estimated over the four states ranged from 1.6 days (silking

date in Nebraska) to 4.4 days (dent date in NebraskaTable 1). The

duration between emergence and maturity is used to represent

maize total growth period, and the duration between silking and

maturity dates is used to define the GFP. Across the four states,

GFP generally starts from around day of year (DOY) 200 and ends

by DOY 260 but varied interannually (Figure 3).

Grain filling period trend was analyzed on a 4km grid to keep

consistent with the spatial resolution of climate data (Abatzoglou,

2013). We found there were significant trends of maize phenology,

with silking dates becoming earlier in 61% of the pixels and more

pixels (84%) exhibiting a later maturity date (Supporting Information

Figure S2). This resulted in a significant extension of the GFP over

81% of the pixels during the 16‐year analysis (Supporting Informa-

tion Figure S2). This trend of GFP obtained from satellite data is sim-

ilar to NASS reports when aggregated to state level (Figure 4). This

is also in line with the study over the US Corn Belt from Sacks and

Kucharik (Sacks & Kucharik, 2011) that was conducted for the earlier

period of 1981‐2005 based on NASS state reports.

The spatial variation of the GFP trends shows increasing trends

in most Midwest areas and decreasing trends in drier areas like

western Nebraska (Figure 5a). The spatial mean of the GFP trends

across the four states is 0.37 days per year with interquartile values

ranging from 0.09 to 0.68 (Figure 5b). When aggregated to the

county level, 79% of the counties exhibit a significant increase in

GFP (Figure 5a). As the longer GFP might be a result of increased

variety thermal time accumulation, we also looked into growing

degree days (GDD). GDD is a commonly used metric to measure

thermal time accumulation of crops and the critical threshold GDDcrit

at which GFP is fulfilled is an important physiological trait of maize

cultivars. The GDDcrit calculated from satellite and climate data

shows trends that have a similar spatial structure than the GFP

trends, with a mean rate of increase of 0.65% per year (Figure 5c,d).

The small warming trend observed in the study area (Supporting

Information Figure S4) would have shortened GFP (Egli, 2004), if

GDDcrit keeps constant. Thus the observed longer GFP is likely to be

associated with variety shifts, marked by the concurrently increasing

GDDcrit. As GDDcrit reflects the thermal time requirement of a speci-

fic cultivar to achieve grain filling, the increasing GDDcrit over time

(Figure 5c) and the higher GDD requirement from emergence to

maturity in south counties with warmer temperature (Figure 6 and

Supporting Information Figure S5) suggest that farmers have

switched to use longer maturity cultivars to compensate for the neg-

ative impact of warmer temperatures which otherwise shorten the

overall growing season length and the GFP (Çakir, 2004; Dwyer, Ma,

Evenson, & Hamilton, 1994; Egli, 2004; Sacks & Kucharik, 2011).

Evidence from agronomical research shows that extended GFP

contributes a higher yield by providing more time to translocate pho-

tosynthates to kernels (Crosbie & Mock, 1981; Wang, Kang, & Mor-

eno, 1999). With Equation 7, the estimated yield benefit β1 (% per

day) defining the sensitivity of yield to GFP is 0.86 ± 0.03% (±stan-

dard error, SE), indicating that one additional day of GFP increased

maize yield on average by 0.86%. According to this empirical rela-

tionship and the estimated total yield trend (1.4% per year), the

lengthening of GFP observed in the MODIS data is inferred to have

contributed to 23 ± 0.7% (±SE) of the maize yield trend for all of the

studied counties (Figure 7a). This contribution was computed as:

Contribution ¼ β1 �GFP increasing trend/Yield increasing trend (8)

Equation 8 was also applied to the NASS reported maize pheno-

logical data at state level. In this application, the fixed effect term

Countyi for each county was replaced with the state fixed effect

Statei, and the estimated value of β1 was slightly higher

(1.08 ± 0.18% per days) compared to the above estimation (Fig-

ure 7a). Given the mean GFP trend (0.43 ± 0.12 days per year),
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which is also based on NASS report, this empirical estimation solely

based on NASS report suggests GFP prolongation contributed

31 ± 4.8% of the maize yield trend, which is slightly higher than the

above estimation based on satellite data analysis.

A previous study suggested the solar brightening during GFP is

responsible for about 27% of the observed increase in US maize

yield from 1984 to 2013 (Tollenaar et al., 2017). However, we did

not find a significant increase in solar radiation across the four corn

states considered during the study period when using the same solar

radiation dataset integrated over the grain filling period (Supporting

Information Figure S6).

When counties were grouped based on whether their GFP has

increased or not, counties where GFP increased showed on average

higher increasing rates of GDDcrit (0.82% per year) and grain yield

(1.5% per year) compared to the mean of all the counties (Figure 7b).

According to the estimated β1, the mean increase in GFP for those

counties is estimated to have contributed to 27 ± 0.8% (±SE) of the

yield trend. Alternatively, counties with decreasing GFP trend,
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perhaps resulting from the effects of climatic warming overwhelming

those of cultivars, showed a smaller yield trend of 1.0% per year

(Figure 7b). Alternatively, when Equation 8 was applied to counties

grouped by warmer and cooler growing season mean temperature

separately, a significant (p < 0.01) lower yield benefit (β1) was found

in warmer counties (Figure 7b). This result implies that the yield ben-

efit of GFP extension might be weakened in future warmer climate.

This analysis also explained why the yield benefit in GFP prolonged

counties was higher than the one estimated in GFP shortened coun-

ties (Figure 7b), since these counties generally have a warmer back-

ground climate (Supporting Information Figure S8).

To account for possible omitted variables in the above analysis,

for instance, if an unobserved factor such as pest resistance affects

both GFP and yield on a year‐to‐year basis, we also conducted a

regression comparing linear yield trends with GFP trends over the

study period as follows:

yield trendi ¼ β1 � GFP trendi þ ɛi (9)

where i is the county indices. In this model, the effect of year‐to‐
year variation in each county is minimized, thus the significant slope

(0.82% per day) primarily quantifies the contribution of GFP trend to

yield trend (Figure 7c), which was close to the one of the panel

analysis (0.86% per day). The intercept term in this regression (1.1%

per years) indicates the yield trend with no GFP extension and is

27% lower than the trends of GFP extended counties (1.5% per

year), which is also consistent with the above estimation.

To further guard against the impact of potential confounding fac-

tors which might be not fully separated in the statistical models, the

process‐based crop model APSIM was then applied to simulate the

contribution of GFP extension to yield trend. In this analysis, the

variety GDDcrit parameter of the model was increased to simulate

the observed variety shift caused GFP extension. Three simulations

were conducted: sim1 has no increase in GDDcrit; sim2 assumes an

increase GDDcrit of 0.65% per year from the observed mean GDDcrit

trend in all counties; sim3 sets a larger increase in GDDcrit of 0.82%

per year consistent with observed mean GDDcrit trend over a subset

of counties showing significant GFP increase. Compared to the

results of sim1, the modeled increasing trends of GFP in sim2 and

sim3 were close to the observed GFP trend (Figure 8). The yield

increase in sim2 and sim3 attributable to GDDcrit presents a positive

trend of 0.24% and 0.34% per year, respectively (Figure 9), which

thus produces a close estimation of the contribution of GFP exten-

sion to yield trend (Table 2). The results from sim1 also confirm that

the GFP extension was caused by shift in varieties because the GFP
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is shortened by climatic warming where there is no increase in vari-

ety GDDcrit (Figure 8).

Climate change is also expected to exacerbate the variability of

crop yields (Ray, Gerber, Macdonald, & West, 2015; Wheeler & von

Braun, 2013). Therefore, we analyzed the influence of a prolonged

GFP on yield stability, another important dimension of food security

(Campbell et al., 2016). We used the coefficient of variation (CV) of

yield in each county during 2000–2015 as an index of stability. A

generalized additive regression model (GAM), suitable to account for

nonlinear effects of explanatory variables, was employed to relate

yield CV with GFP. We found that a longer GFP (Figure 10a) and an

increase of GFP over time (Figure 10b) correspond to lower CV of

yield when accounting for the climatic covariates, suggesting that

longer GFP in both space and time is associated with more stable

yields. The reason might be that the selection of longer GFP culti-

vars is associated with increasing stress tolerance and thereby

reduces the negative impact of warming on yield stability (Tollenaar

& Lee, 2002).

Finally, the APSIM model was used to investigate the future ben-

efit of maize production across the US Midwest with three ensem-

bles of future climate forcing data to account for the climate model

uncertainty in global temperature. The simulations for the next

50 years suggest that if farmers are able to switch to longer maturity

variety (at the GDDcrit current rate of 0.82% per year), the maize

GFP in 2060–2070 will be lengthened by 25% and 18% under the

RCP 2.6 and RCP 6.0 (Figure 11a), respectively. This means an

approximate 15 days extension of GFP under the RCP 2.6, so the

future maturity date still falls in a reasonable period for harvesting in

these simulations. Simulations indicate that a continuation of the

GFP prolongation rate would continue to benefit yields (Figure 11b),

albeit by a smaller amount in future climate conditions compared to

the historic period (Figure 11c). Specifically, the predicted 10.8% and
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13.6% yield loss under RCP 2.6 and RCP 6.0 could be partially offset

by longer GFP, with a benefit of 7.2% and 5.6% under RCP 2.6 and

RCP 6.0, respectively. The reduced benefit of GFP results in part

from the increasing water and heat stress under a future warmer cli-

mate (Supporting Information Figure S9), which could decrease yield

significantly during maize grain formation (Siebers et al., 2017).

Overall, we found there was a significant GFP extension and con-

current increasing GDDcrit during the last 16 years across the US Mid-

west Corn Belt, which is likely to reflect changes in the traits of maize

cultivars. The GFP prolongation shows the potential to increase the

maize yield and also to stabilize the yield variability but its yield benefit

might diminish under future warmer climate. Although the GFP

information extracted here is mainly based on satellite observed

canopy chlorophyll content but not on ground identified kernel color

development, this method estimated a similar GFP trend and contribu-

tion of GFP prolongation to yield increase across the US Midwest

when compared with the state level statistical data and more
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TABLE 2 Contribution of grain filling length extension to the
maize yield increasing trend estimated using APSIM (± indicates the
SE)

GFP prolonged
counties

All
counties

GDDcrit increasing rate (% per

year)

0.82 0.65

Simulated yield increase rate (%

per year)

0.34 0.24

Observed yield trend (% per year) 1.5 ± 0.07 1.4 ± 0.08

Contribution 23 ± 1.6% 17 ± 1.1%
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importantly it provided more detailed spatial information. Our study

suggests that the historic satellite data can be utilized to map field

crop phenological traits at large scales with fine spatial resolution to

understand how farm management influence yield trend and the cli-

matic response of crop growth at specific stage. When the observed

GFP prolongation rate is applied up to 2070, the negative impact of

climatic warming is partially offset by lengthening the GFP, but the

grain yield still decreased even in the mild emission climate scenario,

highlighting multiple adaptation strategies are necessary for future

agricultural management in the region.
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F IGURE 11 The benefit of prolonged grain filling period for maize yield in future climate. Boxplot of grain filling length (a) and maize yield
(b) simulated with the APSIM model running up to 2060–2070 assuming constant (yellow) or linearly increasing GDDcrit at the same rate than
during the past 16 years (blue) in comparison with the historic period 2000–2015. (c) Comparison of maize yield benefit with GDDcrit increase
at the rate of 0.82% per year in historic and future climate conditions. Here yield increasing rate up to 2060–2070 is calculated by (yield with
prolonged GDDcrit‐yield with constant GDDcrit)/(yield with constant GDDcrit) using three climate forcing data: 2000–2015, RCP2.6, RCP6.0 (see
Section 2). The lines in the middle of box represent median projection, boxes show the interquartile range, and whiskers indicate the 5th–95th
percentile of projections
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