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Abstract

Forests play a pivotal role in the global carbon cycle, yet accurately simulating forest soil
carbon dynamics remains a significant challenge for process-based models. This review
systematically compares the mechanistic foundations of traditional models (e.g., Century,
CLM5) with emerging microbial-explicit models (e.g.,, MEND), highlighting key differ-
ences in mathematical formulation (first-order kinetics vs. Michaelis-Menten kinetics),
carbon pools partitioning (measurable vs. non-measurable experimentally), and the rep-
resentation of soil carbon stabilization mechanisms (inherent recalcitrance, physical pro-
tection, and chemical protection). Despite advances in process-based models in predicting
forest soil organic carbon (SOC), improving prediction accuracy, and assessing SOC re-
sponse to climate change, current research still faces several challenges. These include dif-
ficulties in capturing depth-dependent variations in critical microbial parameters such as
microbial carbon use efficiency (CUE), limited capacity to distinguish the relative contri-
butions of aboveground and belowground litter inputs to SOC formation, and a general
lack of long-term observational data across soil profiles. To address these limitations, this
study emphasizes the importance of integrating remote sensing data and refining cross-
scale simulation approaches. Such improvements are essential for enhancing model pre-
dictive accuracy and establishing a more robust theoretical basis for forest carbon man-
agement and climate change mitigation.

Keywords: forest ecosystem; soil organic carbon; process-based model; parameters;
climate change

1. Introduction

Forest soils represent the largest organic carbon reservoir in terrestrial ecosystems [1]
and play an irreplaceable role in regulating atmospheric carbon dioxide (CO) concentra-
tions and mitigating climate change [2-5]. Meanwhile, global change significantly affects
the stock, stability, and saturation capacity of SOC in forests [6]. Climate warming and
land-use changes often lead to SOC loss, although the extent of this loss varies across
forest types and soil depths [7]. For instance, boreal and mountain forests have been iden-
tified as potential global hotspots for substantial long-term carbon loss following natural
disturbances and logging activities [8]. Furthermore, the spatial distribution of global
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forest SOC stocks differs significantly among forest types [9]. Therefore, accurately pre-
dicting the spatiotemporal dynamics of forest SOC stocks under climate change scenarios
is crucial to determining whether forests will function as a net carbon source or a carbon sink.

Process-based models are essential for simulating SOC dynamics, as they explicitly
represent key carbon pools and stabilization mechanisms [10-15]. A major strength of
these models is their ability to partition SOC into conceptually and functionally distinct
fractions, such as particulate organic carbon (POC) and mineral-associated organic carbon
(MAOC) [10-13]. These simulate the transformation of litter and other organic inputs into
SOC and track the subsequent allocation of carbon into these measurable pools [10,12,16].
Empirical studies have shown that the distribution of litter-derived carbon between POC
and MAOC varies considerably across forest ecosystems [17], directly affecting both the
magnitude and persistence of SOC stocks [9]. The representation of stabilization mecha-
nisms in process-based models has advanced significantly over time [18]. Early multi-pool
models primarily emphasized chemical recalcitrance [19-21], but the current scientific
consensus emphasizes physical and chemical protection mechanisms—a shift that is now
embedded in modern modeling frameworks [10,12,14-16,22]. Contemporary microbial-
explicit models incorporate detailed microbial-enzymatic pathways [23,24] and account
for the dual role of microorganisms in both decomposition organic matter and contrib-
uting to carbon stabilization [13,25,26]. This enables more accurately predictions of carbon
fate—whether it is stabilized in long-term storage or released as CO: through hetero-
trophic respiration (Figure 1). By integrating mechanistic representations of specific car-
bon pools and microbial processes, process-based models offer a powerful and dynamic
tool for projecting how forest SOC responds to global environmental changes [27], thereby
addressing a central challenge in contemporary carbon cycle science.
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Figure 1. Forest soil organic carbon cycle. POC: Particulate Organic Carbon; DOC: Dissolved Or-
ganic Carbon; MAOC: Mineral-Associated Organic Carbon; CO2: Carbon Dioxide.
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Despite their advanced capabilities, process-based models continue to encounter
substantial challenges in accurately predicting forest SOCstocks and dynamics [28]. A
prominent example is microbial carbon use efficiency (CUE) [16], a critical parameter in
microbial-explicit models that represents the fraction of assimilated carbon allocated to
microbial growth [24,29]. However, empirical studies report inconsistent depth-depend-
ent patterns of CUE across forest soils—showing increases, decreases, or no clear trend
with depth—as well as considerable spatial variability in its response to environmental
drivers [30,31]. This combination of importance and uncertainty complicates reliable pa-
rameterization and hinders regional-scale extrapolation. To systematically address these
and related challenges in projecting forest SOC dynamics, this review synthesizes key
controlling factors, traces the historical evolution and current state of process-based mod-
els, and evaluates their specific applications in forest ecosystems. We conclude by propos-
ing targeted strategies for future model development.

2. Factors Influencing Forest SOC
2.1. Climate

The dynamics and spatial distribution of forest SOC are governed by the interactive
effects of multiple environmental factors [7]. Temperature influences SOC content primar-
ily through changes in plant productivity, litterfall rates inputs, and microbial activity, all
of which regulate the rate of SOC decomposition [6]. Precipitation also plays a crucial role
in SOC stability, as variations in precipitation alter soil moisture and aeration conditions,
thereby affecting processes that govern SOC stabilization [32]. Peplau et al. [33] conducted
a soil warming experiment in a Canadian forest to investigate its long-term impact on
SOC in both the topsoil and subsoil. Their findings revealed that temperature affected the
dynamics of both soil layers, which exhibited a uniform response to the warming treat-
ment. Furthermore, Wang et al. [8] demonstrated that carbon cycle processes in forest eco-
systems exhibit strong feedback response to climate change, with SOC responses varying
regionally and according to warming intensity. Specifically, under warming scenarios of
1 °C and 5 °C, topsoil SOC stocks in temperate forests declined by 10% and 34%, respec-
tively, while tropical and subtropical forests showed smaller reductions of 10% and 12%
under the same conditions. In a separate study, Wang et al. [34] analyzed spatiotemporal
changes and driving factors of SOC stocks in forest soils across Liaoning Province, China,
over the past 25 years using the boosted regression trees (BRT) model. The findings re-
vealed that mean annual precipitation (MAP) was the most influential factor shaping SOC
stock dynamics.

2.2. Nitrogen Deposition

Nitrogen (N) is a critical factor influencing forest soil carbon cycles [35], as it modu-
lates plant diversity, above- and belowground litter inputs, soil microbial communities,
and physicochemical properties, thereby regulating SOC decomposition [36,37]. For in-
stance, Wu et al. [38] demonstrated that SOC in Phyllostachys edulis forests responds dif-
ferently to short-term versus long-term nitrogen addition, with this variation likely influ-
enced by geographical conditions and inherent soil characteristics. Similarly, Duan et al.
[39] reported that the effects of N deposition on forest SOC are mediated by altitude, high-
lighting that the complexity of mechanisms through which N deposition influences SOC
dynamics. As a result, the response of forest SOC stocks to N deposition varies consider-
ably across regions. In a long-term nitrogen fertilization experiment conducted by Turner
et al. [40], in a nitrogen-saturated tropical rainforest in Panama, no significant changes in
SOC were observed over a 10-year-period. In contrast, Chu et al. [41] found that nitrogen
application in Phyllostachys edulis forests increased POC but decreased SOC and MAOC
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contents. Conversely, studies by Janssens et al. [42] showed that nitrogen addition en-
hances SOC accumulation in temperate forests where nitrogen availability is limited. Fur-
thermore, Fu et al. [43] observed that DOC and MBC in rural forests respond positively to
nitrogen addition.

2.3. Wildfire

Wildfire is a major driver of forest SOC dynamics [7]. Globally, approximately 1% of
forests are affected by wildfires annually [44], with these events releasing about 3.9 Pg of
carbon per year [45], equivalent to 20% of annual fossil fuel emissions [46]. As a distinct
environmental disturbance, wildfire alters both the quantity and quality of plant-derived
carbon inputs to the soil by consuming vegetation and litter carbon pools during combus-
tion, thereby influencing key processes such as SOC decomposition, transformation, and
leaching [47—49]. The magnitude and direction of wildfire impacts on SOC are influenced
by factors including fire intensity (mild, moderate, severe), fire type, duration, and post-
fire rainfall patterns. Most studies report a net decrease in SOC following wildfire events
[50]. For instance, Wang et al. [51], through a meta-analysis of over 200 studies on post-
fire SOC changes, concluded that SOC generally declines after fire. In contrast, Jiang et al.
[52] found no significant effect of wildfire on SOC in tropical dry and moist forests, and
Ran et al. [53] observed minimal changes in SOC in subtropical forests of southwestern
China across varying fire intensities. Granged et al. [54] reported that in eucalyptus forests,
low-intensity fires slightly increased SOC content, whereas moderate and high-intensity
fires led to reductions. Cheng et al. [55] found in Larix gmelinii forests of the Greater Khin-
gan Range, MBC was significantly higher in burned areas than in unburned forests during
intermediate recovery stages.

2.4. Other Factors

Vegetation and forest management practices also play a significantly role in influenc-
ing the stabilization and turnover of SOC in forests. Forest ecosystems contain diverse
vegetation, and different vegetation types directly affect both the quantity and quality of
litter inputs to the soil, thereby shaping distinct spatial patterns of SOC content and stocks
across forest types [56]. Globally, coniferous forests have the highest SOC stocks, followed
by broadleaf and mixed forests [8]. Furthermore, Li et al. [57] reported that although nat-
ural forests store more than twice as much SOC as planted forests, the latter exhibit greater
carbon storage in subsoil layers. Regional studies further support this variation: Bao et al.
[58] found that DOC concentrations in broadleaf forests were significantly higher than
those in coniferous forests in the Hengduan Mountains.

Forest management practices constitute a significant component of human influence
on SOC in forest ecosystems [59]. Although afforestation is widely considered an effective
strategy for enhancing soil carbon stocks, its actual carbon sequestration potential remains
uncertain and context-dependent. Hong et al. [60], through a global analysis of afforesta-
tion hotspots, revealed that afforestation does not consistently lead to increase SOC, rather,
the outcome largely depends on the initial SOC levels. Menichetti et al. [59] investigated
the effects of stand rotation on SOC dynamics in boreal forests using long-term observa-
tional data, finding that when carbon sequestration is a primary management objective,
conventional rotation forestry systems exhibit limited effectiveness. Moreover, Yang et al.
[61] conducted a global synthesis of harvesting impacts on forest SOC, demonstrating that
harvesting activities elevate soil respiration by 6.0%, with the most pronounced effects
occurring in coniferous forests and subtropical regions.
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3. Overview of the Process-Based Model
3.1. Historical Progression of Process-Based Models

Process-based models have undergone significant evolution over the past century,
progressing from simple empirical relationships to advanced frameworks that integrate
biogeochemical processes and their interactions with climate (Figure 2). In the 1930s, re-
searchers began focusing on how SOC decomposition responds to environmental changes
[62], a process later formalized using first-order kinetic equations [63]. During the 1980s
and 1990s, early-generation models such as Century and RothC introduced the concept of
carbon pools differentiated by decomposition rates—commonly classified as active, slow,
and passive pools—with the assumption that carbon turnover within these pools leads to
CO2 emissions [19,20]. These models primarily emphasized the intrinsic chemical recalci-
trance of SOC, while microbial processes were largely as a “black-box” mechanism sub-
sumed within the decomposition rate constant k [23].

SOC decomposition modeled Physicochemical protection

by first-order kinetics Microbial processes, Carbon pool

Environmental variables
influence SOC decomposition

Explicitly represent microbe
and extracellular enzyme

Few models Numerous models

2003

| S—

b 8
Organic-mineral interaction
Nonlinear Michaelis-Menten kinetics
Microbial necromass, active-dormant dynamics
CO, originates from microbial heterotrophic
respiration

SOC recalcitrance
First-order kinetics

Implicit microbial processes
CO, released from turnover
among carbon pools

Figure 2. Historical progression of process-based models.

Since the 21st century, advances in microbial ecology have enabled models to increas-
ingly incorporate explicit representations of microbial processes [23], leading to the devel-
opment of numerous novel modeling frameworks [10-16]. Concurrently, microbial nec-
romass has been integrated into these models as a major contributor to stableSOC [13],
while stabilization mechanisms—such as the chemical bonding between soil minerals and
organic matter—have been quantitatively characterized [10,11].

3.2. Traditional SOC Models

Classic soil carbon models include the Century model [19], Roth C model [20], and
Community Land Model version5 (CLM5) [21], among others. In this study, the Century
and CLM5 models are selected as representative examples of traditional soil carbon mod-
els, with their structures presented in Figure 2. These conventional soil carbon models
describe soil carbon turnover using first-order kinetic equations, as defined in Equation (1).

dX
¢ = fW) X f(T) x ke x X M

in Equation (1), X denotes the carbon pool size, t represents time, and k is the decomposi-
tion rate, assumed to be a constant. The functions f(W) and f(T) represent the moisture
and temperature response function, respectively, which are used to modulate k. Com-
monly used formulations for these functions are presented in Table 1.
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Table 1. Soil moisture and temperature response function.

Response Function !
(1_7 _ VVC)6.6481 (VVC n 0_007>3.22

1.15 0.557
o . ~(We-06)
Soil moisture response function e~ 008

0.25 + 0.75W,
5 x W, (W, < 0.2); 1(W, > 0.2)

1 1
e(308'56'(56.02‘T+46.02))

47.9

106
. . 1+ e(T+18.3)
Soil temperature response function T-10
2710
T-15
10
10
T-25
1.5710

Note: ! Compiled based on Zhou et al. [64] and Zhang et al. [65] Wc: soil water content; T: soil tem-

perature.

The Century model is a process-based biogeochemical model originally developed
by Parton et al. [19] in the 1980s, with its structure depicted in Figure 3a. Litter inputs are
partitioned into structural carbon and metabolic carbon fractions based on the lignin-to-
nitrogen (lignin/N) ratio, where a higher ratio results in a greater proportion of litter being
allocated to structural carbon. SOC is compartmentalized into three fractions—active,
slow, and passive carbon—according to their distinct decomposition rates. Active carbon
decomposes rapidly, typically within five years, and consists primarily of soil microor-
ganisms and their metabolic byproducts. Slow carbon decomposes over several decades
and includes recalcitrant residues and stabilized microbial products. Passive carbon ex-
hibits an extremely slow turnover rate, lasting up to thousands of years, and comprises
chemically and physically protected components highly resistant to decomposition. Due
to its mechanistic representation of carbon dynamics, the Century model’s SOC pool
structure has been widely adopted in contemporary soil carbon modeling studies and is
commonly referred to as the three-pool model [22].

CLMS5 as the latest land model of the Community Earth System Model [21], is de-
signed to simulate energy, water, and carbon-nitrogen fluxes exchanges at the atmos-
phere-land interface. It comprises three core components: biophysical processes, hydro-
logical cycles, and biogeochemical cycles. In the simulation litter and soil carbon dynam-
ics, CLM5 defaults to a 20 layers configuration extending to a total depth of 8.4 m, with
each layer containing 4 litter pools (coarse woody debris, metabolic litter, cellulose litter,
and lignin litter) and 3 SOC pools (active, slow, and passive carbon pools). In this study,
the original layered structure was simplified (Figure 3b). Carbon transfer process as fol-
lows: aboveground biomass is initially allocated to specific litter pools according to their
decomposition characteristics. During decomposition, part of the carbon is released via
respiration, while the remainder fraction is transferred to SOC pools or other litter pools.
Importantly, carbon movement occurs not only within individual soil layer but also across
adjacent layers through vertical transport mechanisms.
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Figure 3. Traditional SOC models. (a) Century model; (b) CLM5 model. CWD: Coarse Wood Debris.

3.3. Microbial Models

Microbial models employ Michaelis-Menten kinetics to quantify carbon transfer
among soil carbon pools, offering a mechanistic representation of SOC decomposition me-
diated by microorganisms and extracellular enzymes (Figure 4a) [23]. These models typi-
cally partition SOC into distinct and measurable fractions—such as POC, MAOC, and
DOC (Figure 4b) [10-13,16,66]. In the following sections, we provide a systematic review
of microbial models, with particular emphasis on microbial physiological processes and
organo-mineral interactions.

) C input
C input D B CO,

(a) (b)

Figure 4. Microbial models. (a) Classic microbial model. (b) Microbial model with measurable car-
bon pools. S: Soil Organic carbon; P: Particulate Organic Carbon; D: Dissolved Organic Carbon; M:
Mineral-Associated Organic Carbon; B: Microbial Biomass carbon; E: extracellular enzyme; CO2:

Carbon Dioxide.

dX  Viay X ENZ

dt Ky +X @

in the equation, X represents the size of the carbon pool, t denotes time, ENZ refers to
enzyme concentration, Vmax is the maximum decomposition rate, and Km stands for the
half-saturation constant.

Microorganisms play a dual role in the soil carbon cycle: on the one hand, they de-
compose exogenous organic carbon, such as plant residues, through heterotrophic respi-
ration, thereby releasing CO: into the atmosphere; on the other hand, microbial necromass
constitutes a significant component of stable soil carbon pool. In recent years, advances in
microbial ecology research have led to the development of a next-generation of process-
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based models that better represent the critical role of microorganisms in the carbon cycle
by integrating microbial community traits, physiological regulation mechanisms, and nec-
romass turnover processes [10-16,22-24]. For instance, the MIMICS model differentiates
MBC into copiotrophic (MBC:) and oligotrophic (MBCx) functional groups based on life-
history strategies [14,15]. The MEND model incorporates microbial physiological dynam-
ics by partitioning MBC into active and dormant pools and simulating transitions between
these states [12]. The ORCHIDEE model accounts for three microbial functional types,
each capable of switching between active and dormant states in response to environmen-
tal constraints [67]. The MIND model innovatively introduces a dedicated microbial nec-
romass carbon pool to more accurately quantify its contribution to long-term soil carbon
stabilization [13]. Collectively, these models have substantially improved the mechanistic
representation and predictive accuracy of microbial contributions to soil carbon dynamics.

Organic-mineral interactions are a key mechanism for stabilizing exogenous organic
carbon [68]. This process primarily involves the adsorption of organic carbon onto soil
mineral surfaces, which reduces its bioavailability and thereby limits the decomposition
of SOC. Current microbial models represent this interaction through two main pathways:
one simulates the adsorption-desorption dynamics between DOC and minerals, while the
other adjusts organic carbon decomposition rates based on soil properties. The OR-
CHIDEE model establishes separate available and adsorbed carbon pools, using linear
equations to describe carbon adsorption onto desorption from mineral surfaces [67]. The
MEND model specifically identifies the fraction of organic carbon bound to DOC within
MAOC as the Q pool, modeling adsorption-desorption process based on DOC concentra-
tion and maximum adsorption capacity (Qmax) [16]. Guo et al. [11] further partitioned
MAQC into a labile fraction (MAOCLw) and a protected fraction (MAOCr), applying the
Langmuir equation to simulate their adsorption behavior. The MIMICS model incorpo-
rates a clay content-dependent correction factor to quantify the chemical protection effect
of soil minerals [14,15]. Furthermore, Liao et al.’s [22] comparative analysis of the MiFe
model versus non-Fe models demonstrated that non-Fe models fail to accurately capture
CO:z release dynamics during the later stages of lignin decomposition in incubation exper-
iments. The MiFe model emphasizes the critical regulatory role of Fe-microbe interactions
in lignin degradation, highlighting the importance of iron minerals in soil carbon cycling
processes.

4. Advances in Process-Based Model Applications for Forest Soils
4.1. Enhanced Parameterization and Calibration

Currently, over 108 process-based model structures have been developed [18], yet
significant substantial uncertainty persists in their simulations. For instance, Terrer et al.
[69] demonstrated that when conventional soil carbon models were applied to assess the
response of SOC to elevated CO: (eCOz), the simulated trends contradicted empirical ob-
servation. Furthermore, process-based models face significant challenges in accurately
simulating global SOC stocks, with estimated uncertainties as high as 50% [27]. Todd-
Brown et al. [28] reported that simulations of global SOC stocks from 11 widely used soil
carbon models exhibited considerable variation, ranging from 510 to 3040 Pg, reflecting
large inter-model discrepancies. Notably, none of these models produced estimates that
aligned well with the Harmonized World Soil Database (HWSD).

Currently, the Bayesian Markov Chain Monte Carlo (MCMC) algorithm has become
a widely used method for data assimilation [22,29,70-72], demonstrating substantial ef-
fectiveness in reducing model uncertainties. Xu et al. [73] pioneered its application by in-
tegrating field observations from Duke Forest to optimize process-based model parame-
ters. Subsequently, Zhou et al. [74] developed an innovative two-step assimilation frame-
work: first constraining model parameters using measured data and MCMC under
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steady-state conditions, then refining soil carbon sequestration parameters under non-
steady-state conditions to improve the accuracy of regional forest SOC estimates. To im-
prove the SOC simulation accuracy in the CASA model, Zhou and Williams [75] intro-
duced a hierarchical assimilation strategy consisting of three stages—initial parameter
ranges estimation using aboveground biomass data, parameters updating through obser-
vational data, and iterative optimization for optimal model performance—thereby sub-
stantially reducing modeling uncertainties 0. Furthermore, He et al. [76] constructed a
comprehensive dataset on China’s forest soil carbon cycle by assimilating multi-source
long-term monitoring data, providing valuable benchmarks for future research. Collec-
tively, these advances have significantly improved the precision and standardization of
forest carbon cycle research.

4.2. Forest SOC Decomposition Kinetics

Soil carbon decomposition kinetics are crucial in determining accuracy of predictions
made by process-based models [77]. Traditional soil carbon models often assume constant
decomposition rates; however, the decomposition rates of different soil carbon fractions
exhibit significant spatial heterogeneity, and the dominant environmental controls vary
accordingly [78-80]. This variability introduces substantial uncertainty into current pro-
cess-based models when estimating SOC decomposition rates [78]. For instance, Xiang et
al. [77] used the 3P model as a case study, demonstrated that soil texture exerts the strong-
est influence on the decomposition rate of the active carbon pool, while MAP is the pri-
mary driver for the slow carbon pool. In contrast, soil pH emerges as the key regulator of
the passive carbon pool’s decomposition rate. Globally, the decomposition rate of the fast
carbon pool ranges from 0.01 to 0.4 d-, underscoring the importance of incorporating spa-
tially variable and pool-specific decomposition rates into forest ecosystem SOC modeling
to reduce predictive uncertainty in process-based frameworks. Wang et al. [79] reported,
in a study of forests in eastern China, that the turnover time of surface forest SOC is con-
siderably shorter than that of deeper layers, with marked differences across forest ecosys-
tems. Specifically, SOC turnover time in the forests of Changbai Mountain, Jilin reach ap-
proximately 3849 years, whereas in Dongling Mountain, Beijing, and Heishiding, Guang-
dong, they are around 400 years. Ren et al. [80] also applied the 3P model and revealed
substantial differences in intrinsic SOC turnover times across global forest ecosystems:
tropical forests exhibit the longest intrinsic turnover times across global forest ecosystems.
Tropical forests exhibit the longest intrinsic turnover times, with the fast, slow, and pas-
sive pools at 0.43 years, 9.41 years, and 601 years, respectively. Temperate forests rank
second, with corresponding values of 0.33 years, 6.19 years, and 380 years. Boreal forests
have the shortest turnover times, with the fast, slow, and passive pools at 0.32 years, 5.58
years, and 326 years, respectively. Notably, a multiplicative discrepancy exists between
the intrinsic and actual turnover times.

4.3. Modeling Forest SOC Responses to Environmental Variability

Process-based models are widely used to investigate the impacts of climate change
on SOC stocks. In a study by Chiti et al. [81], the Sasso Fratino Forest in Italy was selected
as a case, and the Century model was applied to simulate the effects of two future extreme
climate change scenarios on SOC dynamics in undisturbed primary forests. The results
indicated that soils in primary forests play a significant role in carbon sequestration.
Golchin et al. [82] employed the Century model to assess the combined effects of climate
change and human activities on SOC stocks across different altitudinal gradients in forest
ecosystems. They designed a scenario involving a decrease in precipitation by 2.15 mm
per decade and an increase in temperature by 0.4 °C. The findings revealed that SOC
stocks would decline by 28.36% to 36.35%, with the most pronounced losses occurring in
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high-altitude regions. Moreover, the study demonstrated that grazing activities, when
combined with climate change, could further accelerate soil carbon loss, thereby empha-
sizing the importance of implementing appropriate forest management strategies under
future climate scenarios to mitigate the risk of soil carbon depletion. Chen et al. [83] incor-
porated extracellular enzyme activity into the TECO model and developed the Data-
driven ENZYme (DENZY) model. Using this model, they found that under nitrogen dep-
osition conditions, there is a negative correlation between SOC and ligninase activity in
the Duke Forest, USA. Wang et al. [84] applied the MEND model to simulate soil carbon
cycling processes in broadleaf and pine forests under varying litter input, soil moisture,
and soil temperature conditions. Their results indicated that increased soil moisture pro-
motes SOC accumulation, while change in litter input and soil temperature also positively
contribute to SOC stocks across the entire soil profile. Hu et al. [85] integrated high-preci-
sion remote sensing data with the model to simulate SOC stock dynamics in Chinese co-
niferous forests under different fire scenarios. The findings revealed that under the
RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios, SOC stocks decreased by 10.14%, 12.06%,
12.41%, and 15.70% respectively. Manusch et al. [86] employed LPJ-GUESS model to in-
vestigate the response of forest vegetation carbon and soil carbon stocks to varying cli-
matic conditions in Switzerland. Ito et al. [87] conducted a comparative analysis of five
models, including Biome-BGC, CASA, and LPJ, to evaluate their ability to predict soil res-
piration in forest-dominated regions of Japan. The predicted annual soil respiration
ranged from 210 to 396 Tg C/year; further analysis showed that inter-model discrepancies
were pronounced summer and winter, suggesting significant differences in how models
simulate soil responses to temperature fluctuations. Additionally, Johnson et al. [88] ap-
plied the Century model and Yasso model to systematically examine the mechanisms
through which different harvesting scenarios affect SOC stocks in northern forests.

5. Challenges and Future Directions
5.1. Depth-Varying CUE in Forest Ecosystem

CUE is a pivotal regulator of SOC accumulation [89]. However, the precise relation-
ship between CUE and SOC remains debated, necessitating accurate quantification of
CUE to improve the predictive capability of carbon cycle process models [29,90]. Experi-
mental evidence shows that CUE in both surface and deep soil layers across forest ecosys-
tems in different regions exhibits distinct spatial distribution patterns. As CUE is not a
static parameter, its variability elicits sensitive responses in process-based models,
thereby directly influencing predictive accuracy. Nevertheless, intensive soil sampling for
GUE determination is impractical at global or national scales. Therefore, leveraging big
data integration techniques to accurately quantify CUE is essential. To this end, there is
an urgent need to develop an environmentally constrained response equation for CUE
that demonstrates universality across spatial dimensions and soil profiles.

By synthesizing these depth-dependent mechanisms, our study advances beyond
conventional modeling approaches through an innovative framework that explicitly in-
corporating vertical CUE dynamics. This integration is critical for reducing uncertainties
in predicting whole-soil carbon stocks and their feedback to climate change, thereby
providing a robust foundation for the development of next-generation soil carbon models.

5.2. Aboveground vs. Belowground Vegetation Effects on Forest SOC Storage

Litter input is a critical factor influencing the stability of SOC [91]. For instance, Shen
et al. [92] conducted a Detritus Input and Removal Transfer (DIRT) experiment in a forest
ecosystem in Hebei, China, implementing three aboveground litter treatments (removal,
normal input, and addition) and two belowground treatments (with and without roots).
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Their findings demonstrated that increased aboveground litter input significantly en-
hanced soil CO:z emissions. Moreover, the presence of roots further significantly enhanced
CO:2 release [93].

Forest SOC primarily originates from aboveground and belowground litter inputs,
although their relative contributions to SOC accumulation differ significantly. While ear-
lier studies often emphasized aboveground litter as the dominant source of forest SOC
[94], growing evidence indicates that belowground litter inputs contribute more substan-
tially to SOC formation than aboveground sources [95]. Notably, most process-based
models currently fail to explicitly distinguish between these two input pathways [96].
Moreover, different soil carbon pools respond distinctly to each sources of organic matter.
Aboveground litter and root residues mainly contribute to POC, which is not protected
by mineral associations [95]. In contrast, MAOC is predominantly derived from DOC re-
leased via leaching of aboveground litter and from microbial turnover products, including
microbial necromass [97]. Additionally, both aboveground litter inputs and root exudates
are highly sensitive to climate change, thereby influencing SOC turnover dynamics [96].
Therefore, accurately quantifying the differential contributions of aboveground and be-
lowground litter inputs in process-based models is crucial, especially in vegetation-rich
forest ecosystems.

5.3. Acquisition of Profile Data and Long-Term Monitoring Data

Data represents one of the primary sources of uncertainty in process-based models
[98]. In forest ecosystems, large-scale soil profile sampling and long-term monitoring of
SOC respiration dynamics face significant challenges, due to complex terrain, dense veg-
etation cover, and the unique characteristics of deep soil carbon pools. Evidence shows
that deep soil carbon stocks are substantially larger than those in surface layers; however,
their response to climate change, decomposition rates, and the contribution from plant-
derived carbon inputs vary markedly [99]. Accurately quantifying the vertical distribution
and translocation of carbon inputs across soil horizons is therefore critical for improving
SOC modeling accuracy [100]. Nevertheless, in situ measurements of these processes are
difficult to obtain, and sustained long-term monitoring remains logistically and techni-
cally challenge, contributing significantly to uncertainties in model parameter calibration.

The limitations of data availability in forest ecosystems are especially pronounced in
wildfire-related research. Under global warming, increasing temperatures and prolonged
droughts have intensified the risk of forest fires, posing significant threats to regional and
even global ecosystems and leading to substantial economic losses. Although wildfires
play a crucial role in modeling SOC dynamics, their infrequent and destructive nature
results in a severe lack of empirical data for model validation.

6. Conclusions

Looking ahead, future research should prioritize three critical directions to bridge
existing knowledge gaps: (1) integrating remote sensing data with process-based models
to scale up predictions from site-level observations to regional and global forest systems;
(2) improving model structure to explicitly represent vertical carbon transport processes
and priming effects, which is essential for accurately quantifying the contribution of plant-
derived carbon to different soil layers and its interaction with native SOC; and (3) estab-
lishing mechanistically robust functional relationships between key microbial parameters
(e.g., CUE) and environmental variables to enhance the predictability of spatial variability
of SOC in forests. Applying the process-based models discussed in this study to forest
SOC dynamics will not only support model refinement and inform evidence-based forest
management, but also offer valuable perspectives for soil carbon management in related
fields, from sustainable agroforestry to agricultural soil stewardship.
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