The role of environmental driving factors in historical and projected carbon dynamics of wetland ecosystems in Alaska

ZHOU LYU,¹ HÉLÈNE GENET,² YUHE HE,¹ QIANLAI ZHUANG,¹,¹⁰ A. DAVID McGUIRE,³ ALEC BENNETT,⁴ AMY BREEN,⁴ JOY CLEIN,² EUGÈNIE S. EUSKIRCHEN,² KRISTOFER JOHNSON,⁵ TOM KURKOWSKI,⁴ NEAL J. PASTICK,⁶,⁷ T. SCOTT RUPP,⁴ BRUCE K. WYLIE,⁸ AND ZHILIANG ZHU⁹

¹Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907 USA
²Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska 99775 USA
³U.S. Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, University of Alaska Fairbanks, Fairbanks, Alaska 99775 USA
⁴Scenarios Network for Alaska and Arctic Planning, International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska 99775 USA
⁵U.S. Department of Agriculture, Forest Service, Northern Research Station, Newtown Square, Pennsylvania 19073 USA
⁶Department of Forest Resources, University of Minnesota, St. Paul, Minnesota 55108 USA
⁷Stinger Ghaffarian Technologies Inc., contractor to the U.S. Geological Survey, Sioux Falls, South Dakota 57198 USA
⁸U.S. Geological Survey, The Earth Resources Observation Systems Center, Sioux Falls, South Dakota 57198 USA
⁹U.S. Geological Survey, Reston, Virginia 22012 USA

Abstract. Wetlands are critical terrestrial ecosystems in Alaska, covering ~177,000 km², an area greater than all the wetlands in the remainder of the United States. To assess the relative influence of changing climate, atmospheric carbon dioxide (CO₂) concentration, and fire regime on carbon balance in wetland ecosystems of Alaska, a modeling framework that incorporates a fire disturbance model and two biogeochemical models was used. Spatially explicit simulations were conducted at 1-km resolution for the historical period (1950–2009) and future projection period (2010–2099). Simulations estimated that wetland ecosystems of Alaska lost 175 Tg carbon (C) in the historical period. Ecosystem C storage in 2009 was 5,556 Tg, with 89% of the C stored in soils. The estimated loss of C as CO₂ and biogenic methane (CH₄) emissions resulted in wetlands of Alaska increasing the greenhouse gas forcing of climate warming. Simulations for the projection period were conducted for six climate change scenarios constructed from two climate models forced under three CO₂ emission scenarios. Ecosystem C storage averaged among climate scenarios increased 3.94 Tg/yr by 2099, with variability among the simulations ranging from 2.02 to 4.42 Tg/yr. These increases were driven primarily by increases in net primary production (NPP) that were greater than losses from increased decomposition and fire. The NPP increase was driven by CO₂ fertilization (~5% per 100 parts per million by volume increase) and by increases in air temperature (~1% per °C increase). Increases in air temperature were estimated to be the primary cause for a projected 47.7% mean increase in biogenic CH₄ emissions among the simulations (~15% per °C increase). Ecosystem CO₂ sequestration offset the increase in CH₄ emissions during the 21st century to decrease the greenhouse gas forcing of climate warming. However, beyond 2100, we expect that this forcing will ultimately increase as wetland ecosystems transition from being a sink to a source of atmospheric CO₂ because of (1) decreasing sensitivity of NPP to increasing atmospheric CO₂, (2) increasing availability of soil C for decomposition as permafrost thaws, and (3) continued positive sensitivity of biogenic CH₄ emissions to increases in soil temperature.

Key words: Alaska; Alaska carbon cycle; atmospheric CO₂; carbon balance; climate change; fire; global warming potential; methane; wetlands.

INTRODUCTION

Based on records that date back to the middle of the 19th century, global mean surface temperature has risen by 0.4°C (IPCC, Climate Change, 2014). In the northern hemisphere, climatic changes have been more rapid and pronounced than in regions further south (Manabe and Stouffer 1980, Forster et al. 2000, Alexeev 2003, Alexeev et al. 2005, Cai 2006, Cai and Lu 2007, Graversen and Wang 2009). Alaska has experienced warming since the beginning of the 20th century and, since the 1970s, the temperature increase has been substantial (Hartmann and Wendler 2005, Wendler and Shulski 2009, Pastick et al. 2017). In the Arctic, warming has been 1–1.5 times faster than the global mean increase, with roughly 0.6°C rise per decade over the past 30 yr (IPCC, Climate Change, 2014). While the signatories to the United Nations Framework Convention on Climate Change aim to stabilize atmospheric greenhouse gases concentration, it is believed that the warming trend will continue into the future (IPCC, Climate Change, 2014). Simulations by general circulation models (GCMs) suggest that a
2°C increase in global mean surface temperature relative to the preindustrial temperatures would result in a 3.2°–6.6°C increase in the Arctic by the middle of the 21st century (Kaplan and New 2006).

Despite its lower magnitude compared to carbon dioxide (CO₂) fluxes, methane (CH₄) dynamic is an important component of the global climate system (Fisher et al. 2014). It is the third most abundant greenhouse gas in the atmosphere, with a 100-yr global warming potential (GWP) 25 times higher than that of CO₂ (Forster et al. 2007). Increases in atmospheric CH₄ have been responsible for about 20% of the global warming caused by greenhouse gases since the preindustrial time (Dlugokencky et al. 1998). Historically, wetlands have played important roles in the global CH₂ budget as the single largest natural emitter. Approximately 10% of global CH₄ fluxes (35 Tg/yr) have been attributed to emissions from high-latitude wetlands north of 50°N (Sebacher et al. 1985, Matthews and Fung 1987, Crill et al. 1988, Fung et al. 1991, Reeburgh and Whalen 1992, Zhuang et al. 2004, McGuire et al. 2009, Thornton et al. 2016). Emissions from natural wetlands are thought to be primarily responsible for the recent rise in global CH₄ concentration (Kirschke et al. 2013), reaching 1,820 ppb by 2012, with an increase rate of 5.2 ± 0.2 ppb/yr during 2008–2012 (mean ± SD; Saunois et al. 2017).

Wetlands in northern high latitudes account for 44% of the global wetland area (OECD 1996). Wetlands in Alaska cover roughly 12% (177,069 km²) of the total land surface area (Pastick et al. 2017), which is larger than all the wetlands in the rest of the United States (Burkett and Kusler 2000). As a transitional zone between aquatic and terrestrial ecosystems, wetlands are characterized by poorly drained soils that allow rapid accumulation of carbon (C) in thick peat layers. In regions with permafrost, this peat can also become protected from decomposition as it is incorporated into permafrost (Burkett and Kusler 2000, O’Donnell et al. 2011). The amount of C stored in the top 100 cm of northern peatlands is estimated to be 472 ± 27 Pg (mean ± SD), roughly 37% of global terrestrial C (Fao and Isric 2012, Hugelius et al. 2014). High-latitude wetlands also release C in the form of CO₂ and CH₄ in response to aerobic and anaerobic decomposition, respectively (Zhuang et al. 2004, 2007, Johnston et al. 2014, Monday et al. 2014). With increased permafrost thaw driven by climate warming, the amount of unfrozen organic matter available for decomposition is expected to increase and result in an increase in soil CO₂ and CH₄ releases (Schuur et al. 2008, Koven et al. 2011, Schaefer et al. 2011).

As biogenic CH₄ emissions from anaerobic wetlands are the primary source of natural CH₄ emissions in North America (Kirschke et al. 2013), it is important to assess how these emissions will respond to environmental change during the remainder of this century in Alaska. CH₄ emissions from wetlands are controlled by many factors, including climate, atmospheric CO₂ concentration, and electron acceptor availability in the soil (Zehnder and Stumm 1988, Wang et al. 1993, Whiting and Chanton 1993). In particular, it is expected that CH₄ emissions may be very responsive to soil temperature and moisture changes resulting from climate change (Updegraff et al. 2001, Turetsky et al. 2008, Olefeldt et al. 2013, Ma et al. 2017).

Besides assessing the response of biogenic CH₄ emissions of wetlands in Alaska, it is also important to assess how the uptake and release of CO₂ will be influenced by changes in atmospheric CO₂, climate, and wildfire. Changes in air and soil temperature and in hydrology have been documented to influence the exchange of CO₂ in wetlands in Alaska (Olefeldt et al. 2017). Although wetlands do not burn as frequently as upland ecosystems due to low flammability associated with moist soils, they do burn in very hot and dry years and can lose a significant amount of C to the atmosphere from fire emissions (Turetsky et al. 2011). Northern silt and peatlands with shallow permafrost are more vulnerable to post-fire permafrost thaw and associated soil C loss than well-drained rocky uplands (Minsley et al. 2016). In recent years, extended dry periods and more frequent late-season burning, along with continued change in the permafrost and drainage conditions, have combined to increase the potential for wetlands to lose deep organic matter through burning (Kasischke and Turetsky 2006, Turetsky et al. 2011).

In this study, we assessed how C dynamics of wetland ecosystems in Alaska have changed during the historical period (1950–2009) and may change during the projection period (2010–2099) in response to changing atmospheric CO₂, climate, and fire regime. Two existing process-based terrestrial ecosystem models, which were calibrated and tested for the major vegetation types in wetlands of Alaska, and a state and transition disturbance model were applied in this study. Future projections of C stocks, CO₂ and CH₄ dynamics were simulated using six climate scenarios from two GCMs for three atmospheric CO₂ emission scenarios. Changes in C dynamics were analyzed for the four main Landscape Conservation Cooperative (LCC) regions of Alaska: (1) Arctic LCC, (2) Western Alaska LCC, (3) Northwest boreal LCC, and (4) North Pacific LCC (Fig. 1). With the goal of improving our understanding of the mechanisms responsible for the projections of C dynamics of wetlands in Alaska, we conducted an attribution analysis to quantify the effects of increases in atmospheric CO₂, changes in climate, and changes in fire regime on wetland C accumulation and CO₂ and CH₄ dynamics.

Materials and Methods

Model framework

Wetland C dynamics have been assessed using a model framework identical to the one described in Genet et al. (2017). C stocks and CO₂ fluxes were simulated using the Dynamic Organic Soil version of the Terrestrial Ecosystem Model (DOS-TEM; see Yi et al. 2009, 2010 for model structure and dynamics). DOS-TEM is a process-based biogeochemical model that estimates soil and vegetation thermal and hydrological regimes, permafrost dynamics, and carbon and nitrogen fluxes between soil, vegetation, and the atmosphere, and carbon and nitrogen pools in the soil and the vegetation (more detailed description of the model can be found in Genet et al. 2017). CH₄ fluxes were simulated using the Methane Dynamics Module of the Terrestrial Ecosystem Model (MDM-TEM; Zhuang et al. 2004). MDM-TEM is a process-based biogeochemical model that estimates the net flux of CH₄ between soils and the atmosphere based on the
rate of CH4 production and oxidation within the soil profile, and the transport of CH4 from the soil to the atmosphere (see the detailed description of MDM-TEM in MDM-TEM description). Finally, projections of the fire regime in response to climate were produced by the Alaska Frame-Based Ecosystem Code (ALFRESCO; Rupp et al. 2000, 2002, 2007, Johnstone et al. 2011, Mann et al. 2012, Gustine et al. 2014). ALFRESCO is a spatially explicit, stochastic landscape succession model designed and parameterized for Arctic and sub-Arctic regions (see Pastick et al. [2017] for a detailed description of ALFRESCO and for validation of the historical fire regime simulated by ALFRESCO). The three models were coupled asynchronously, where information on fire occurrence produced by ALFRESCO was used to drive DOS-TEM and information on vegetation net primary productivity (NPP) and leaf area index (LAI) produced by DOS-TEM was used to drive MDM-TEM (Fig. 2).

MDM-TEM description

MDM-TEM is a process-based ecosystem model that simulates biogenic CH4 fluxes (BioCH4) in terrestrial ecosystems. MDM-TEM explicitly considers the processes of CH4 production, transport, and oxidation between the soil and atmosphere on a daily time step (Zhuang et al. 2004). MDM has been designed to be coupled to the existing TEM modeling framework that includes terrestrial carbon and nitrogen dynamics, a soil thermal module for simulating permafrost dynamics, and a hydrological module that simulates movement of water within the atmosphere–vegetation–soil continuum and water table depth (Zhuang et al. 2002, 2003, 2004). Water table depth is critical for simulating wetlands C dynamics in terms of partitioning soil decomposition products between CO2 and CH4. Soil moisture dynamics are explicitly modeled in layers of moss, organic soil, and mineral soil (Zhuang et al. 2002, 2004).

MDM-TEM simulates the production and oxidation of CH4 between the soil column and the atmosphere as well as CH4 transport across the soil surface. The overall CH4 fluxes depend on the relative relationship among these three terms. Production and oxidation of CH4 are combined to represent the net emission/uptake of CH4 between the soil and the atmosphere. Net emission means that CH4 will be emitted to the atmosphere through diffusion when the rate of CH4 production (methanogenesis) exceeds that of oxidation (methanotrophy) within the soil column. In addition to diffusion between the soil column and the atmosphere, there are two other ways that CH4 can be transported to the atmosphere in wetlands. One is ebullition, in which bubbles form when CH4 concentration is high and the water table is above the moist soil, and move through the water column to be released to the atmosphere. The other way is plant-aided CH4 transport, which happens when CH4 moves through aerenchyma tissues of vascular plants from deep root systems to aboveground leaves to escape to the atmosphere.

The soil component in MDM-TEM contains two separate layers: the upper unsaturated zone and the lower saturated zone, defined by the water table depth. CH4 production occurs in the lower saturated zone where water creates an anaerobic environment and is affected by substrate availability, soil temperature, soil pH, and availability of electron acceptors. Substrate availability is represented using a function of NPP, which is provided by DOS-TEM (Fig. 2). A Q_{10} function is used to calculate the effects of soil temperature on CH4 production, with a reference temperature from previous calibration. Coefficients in this Q_{10} function are ecosystem specific, and each grid cell has a prescribed ecosystem type. The optimum soil pH is set to 7.5 for wetlands in Alaska. Finally, the effect of electron acceptor availability is implemented using a multiplier that relates to redox potential on CH4 production. The multiplier, which is determined by calibration, diminishes linearly if redox potential exceeds...
CH$_4$ oxidation is simulated in the unsaturated zone of the soil column when the soil moisture is within a prescribed ecosystem-specific range that allows methanotrophy (Zhuang et al. 2004). CH$_4$ oxidation is affected by both soil moisture and temperature. A Q_{10} function is used with ecosystem-specific reference temperatures to simulate enhanced oxidation with rising soil temperature. Soil moisture influences CH$_4$ oxidation negatively when it is not at the optimum level. Substrate availability affects CH$_4$ oxidation following a Michaelis-Menten function. Finally, increasing redox potential from -200 mV to 200 mV enhances CH$_4$ oxidation (Zhuang et al. 2002, 2004).

MDM-TEM parameterization and validation

MDM-TEM is parameterized for three typical types of wetland ecosystems in Alaska based on specific plant types and hydrological characteristics (Table 1). The land cover map used for the simulations in this study defined seven wetland cover types in Alaska, which were grouped into the three wetland types parameterized in MDM-TEM as follows: (1) lowland black spruce (*Picea mariana* (Mill.) Britton, Sterns & Poggenb.), white spruce (*Picea glauca* (Moench) Voss), deciduous forests, and maritime wetland forest were classified as boreal wetland in MDM-TEM; (2) graminoid tundra was classified as mesic wetland tundra; and (3) wet sedge tundra and maritime fen were classified as wetland tundra. CH$_4$ flux measurements and key soil and climate factors from three wetland field sites in Alaska (Toolik-D, Toolik-W, and SSA-FEN sites, respectively) were used to parameterize MDM-TEM. These sites were representative of the mesic and wetland tundra and boreal wetland present in Alaska. The model was parameterized by minimizing the differences between the observed and simulated CH$_4$ fluxes at Toolik-D, Toolik-W (Arctic LCC, Alaska), and SSA-FEN (Saskatchewan, Canada) field sites, respectively. Initial parameter values for each of the three sites were determined from literature review. The range was set for each individual parameter in the three sets of parameters based on literature review, and adjustments were made to each parameter to minimize the root mean square error (RMSE) between the daily simulated and observed CH$_4$ fluxes. The adjustment was conducted sequentially for all parameters until the minimized RMSE was 665, $1,729$, and $1,396$ mg CO$_2$-eq m$^{-2}$ d$^{-1}$, for Toolik-D, Toolik-W, and SSA-FEN sites, respectively (He et al. 2016).

To test the performance and validate parameterizations of MDM-TEM, we conducted simulations using data independent of the data we used for parameterization and calibration. A boreal forest wetland site (NSA-FEN) in Canada was used to validate the parameterization from the SSA-FEN site (Table 1). Monthly mean simulated CH$_4$ fluxes were compared to the observed net emission at the site, and the geometric mean regression between observed and simulated fluxes was significant ($P < 0.01$) with an RMSE of 0.9 (He et al. 2016). When applied across Alaska, MDM-TEM indicates methane emissions are from April to November for most grid cells in Alaska, and are able to capture some of the zero-curtain emissions for the North Slope of Alaska reported by Zona et al. (2016).

DOS-TEM parameterization and validation

Parameterization and validation of DOS-TEM were conducted using vegetation and soil carbon and nitrogen pools and fluxes; details on the DOS-TEM parameterization and validation can be found in Genet et al. (2016) and Genet et al. (2017). The sites used for DOS-TEM historical carbon pools validation are depicted in Fig. 1. DOS-TEM estimates of soil C stocks and permafrost distribution and depth were compared with recent soil carbon and permafrost data products for Alaska (Marchenko et al. 2008, Ping et al. 2008,
Table 1. Description of sites used for model parameterization and validation.

<table>
<thead>
<tr>
<th>Elevation</th>
<th>Wetland type in MDM-TEM</th>
<th>Site name</th>
<th>Location</th>
<th>Land cover</th>
<th>Source and references</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wetland type in MDM-TEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 W; 68°N 760.0</td>
<td>Tussock tundra</td>
<td>Mesic wetland</td>
<td>Toolik Field</td>
<td>Tundra at Toolik Field</td>
<td>King et al. (1996)</td>
</tr>
<tr>
<td>105°57'W, 53°57'N</td>
<td>Complex with blackbean, sedge, tundra, and shrub</td>
<td>Boreal wetland</td>
<td>Toolik Field</td>
<td>King et al. (1996)</td>
<td></td>
</tr>
<tr>
<td>98°25'W, 55°55'N</td>
<td>Fen complex, including sedge, moss, shrub, and heath</td>
<td>Boreal wetland</td>
<td>Toolik Field</td>
<td>King et al. (1996)</td>
<td></td>
</tr>
</tbody>
</table>

Note: MDM-TEM, Methane Dynamics Module of the Terrestrial Ecosystem Model.

Input data

ALFRESCO, DOS-TEM, and MDM-TEM simulations were spatially explicit. Models were run at 1-km spatial resolution using gridded forcing data from 1950 to 2099 over the state of Alaska. Annual atmospheric CO₂ concentration, spatially explicit monthly mean surface air temperature, total precipitation, net incoming shortwave radiation, and vapor pressure, along with spatially explicit data for wetland distribution (Pastick et al. 2017), land cover, and soil texture (Global Soil Data Task Group 2000) were used to drive the coupled models. In addition, estimates of spatially explicit monthly NPP and LAI from DOS-TEM were used by MDM-TEM to simulate CH₄ fluxes.

Based on the Alaska National Wetlands Inventory, a wetland distribution map was developed for this assessment to identify seasonally or year-round waterlogged ecosystems in this study (data available online). This wetland map is described in Pastick et al. (2017). Wetlands typically have poor drainage and a thick organic horizon (Burkett and Kusler 2000, O’Donnell et al. 2011). Simulation results were analyzed for the four LCCs mentioned in Introduction (Fig. 1). Arctic LCC wetlands are 84.7% graminoid tundra and 15.3% wet sedge tundra, and the Western Alaska LCC wetlands are 27.6% graminoid tundra and 72.4% wet sedge tundra. Wetlands in the Northwest Boreal LCC are 97% percent lowland forested permafrost plateau forest (46% conifer forest and 51% deciduous forest) and 3% open wetlands (i.e., bogs and fens). Wetlands in the North Pacific LCC are 86% maritime fen and 14% maritime wetland forest (dominated by Sitka spruce [Picea sitchensis (Bong.) Carrèrre] and black cottonwood [Populus trichocarpa Torr. & A. Gray ex Hook]).

Monthly climate data were linearly interpolated to a daily time step to meet the temporal resolution of MDM-TEM. Historical climate data were from the Climatic Research Unit (CRU TS 3.1; Harris et al. 2014). Future projections (2010–2099) were driven by three different fossil CO₂ emission trajectories for low, medium, and high ranges of emissions (B1, A1b, and A2, respectively) and climate projections from two GCMs. The two GCMs used were version 3.1-T47 of the Coupled Global Climate Model (CGCM3.1; McFarlane et al. 1992) developed by the Canadian Centre for Climate Modeling and Analysis and version 5 of the European Centre Hamburg Model (MPI-ECHAM5; Roeckner et al. 2004) developed by the Max Planck Institute (models available online). These climate and atmospheric CO₂ scenarios were obtained from the World Climate Research Programme’s (WCRP’s) Coupled Model

11 www.mpimet.mpg.de/en/wissenschaft/modelle/echam/
12 www.cccma.ec.gc.ca/data/cgcm3/
13 http://www.fws.gov/wetlands/Data/State-Downloads.html
Intercomparison Project phase 3 (CMIP3) multi-model data set (Meehl et al. 2007), and are aligned with the Intergovernmental Panel on Climate Change’s Special Report on Emission Scenarios (IPCC-SRES; Nakicenovic et al. 2000; data set available online). In addition, the effects of fire disturbance on C dynamics were evaluated using a gridded fire occurrence data set that combined (1) historical records from 1950 to 2009 from the Alaska Interagency Coordination Center large fire database (Kasischke et al. 2002) and (2) projected scenarios from ALFRESCO for future projections. Emission scenario A2 projected the largest increase in atmospheric CO₂ in the projection period, followed by A1b and B1 (Table 2; database available online). Climate simulations of the ECHAM5 models were warmer and wetter than those of the CGCM 3.1. Mean annual area burned was also larger under the ECHAM5 climate simulations than under CGCM 3.1 climate simulations (Table 2). More details on the atmospheric CO₂, climate and fire forcing data sets can be found in Genet et al. (2017) and Pastick et al. (2017).

Model application

Before conducting the transient simulations, a typical spin-up procedure was conducted for each spatial location, in which the model was driven by averaged modern forcings for that location, repeated continuously until dynamic equilibrium was achieved (i.e., constant pools and fluxes at that location). The resulting modeled ecosystem state for each spatial location then served as the starting point for the transient simulation during the historical and future periods. Gridded output was expressed per square meter and multiplied by grid cell area and the wetland percent cover per grid cell to yield total fluxes and storages. Regional estimates were obtained by summing up the grid cell estimates across each LCC region.

Estimates of vegetation C storage were derived from the sum of aboveground and belowground living biomass. Soil C stocks were composed of C stored in dead woody debris, moss, litter, the organic horizon, and the mineral horizon to depth of 1 m below the organic horizon. Historical changes in soil and vegetation C pools were evaluated as cumulative changes from the estimate of the respective C pool at the end of 1949. Projected changes in soil and vegetation C pools were evaluated as cumulative changes from the estimate of the respective C pool at the end of 2009.

Net ecosystem carbon balance (NECB) is the difference between total C inputs and total C outputs of the ecosystem (Chapin et al. 2006). In this study, the C exchange between terrestrial and aquatic ecosystems was not estimated. Therefore, we calculated NECB as the NPP minus the combination of C losses from heterotrophic respiration (HR), fire emissions (as CO and CO₂, i.e., Pyro(CO + CO₂)), and CH₄, i.e., PyroCH₄, and biogenic CH₄ emissions (BioCH₄).

GWP was estimated taking into consideration that CH₄ has a larger GWP than CO₂. We assumed that CH₄ GWP was 25 times larger than CO₂ GWP as estimated over a 100-yr timeframe for the 2007 IPCC Special Report on Emissions Scenarios (Forster et al. 2007). GWP values were reported in CO₂ equivalents after converting all C fluxes using molecular weights of CH₄ and CO₂. Pyrogenic CH₄ (PyroCH₄) production from wildfire was considered in addition to biogenic CH₄ emissions by applying emission factors among CO₂, CH₄, and CO on DOS-TEM simulations of fire emissions based on the partitioning estimates of French et al. (2002). The C in CO emissions was assumed to be converted to CO₂ in the atmosphere within 1 yr (Weinstock 1969) and added to the pyrogenic CO₂ emissions (Pyro (CO₂ + CO)). Based on these considerations, GWP was calculated as

\[
GWP = -44/12 \times (NPP - HR - Pyro(CO₂ + CO)) + 25 \times 16/12 \times (PyroCH₄ + BioCH₄).
\]

A positive GWP indicates a net CO₂ loss from the ecosystem promoting atmospheric warming, while a negative GWP indicates a net CO₂ gain by the ecosystem promoting atmospheric cooling.

Attribution analysis

The relative effects of changes in atmospheric CO₂, climate change and fire regime on ecosystem C balance were analyzed for the projection period 2010–2099. This analysis was based on model simulations that included combinations of time series with constant atmospheric CO₂, detrended

Table 2. Summary of the environmental drivers used by the model simulations for the historical period and the six climate scenarios.

<table>
<thead>
<tr>
<th>Period and scenario</th>
<th>MAT (°C)</th>
<th>SAP (mm)</th>
<th>Atm. CO₂ (ppm)</th>
<th>AOB (km²/yr)</th>
<th>VWC (m³/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historical</td>
<td>−3.61 (0.66)</td>
<td>926 (33)</td>
<td>341 (25)</td>
<td>2734 (1502)</td>
<td>0.643 (0.022)</td>
</tr>
<tr>
<td>2010–2099</td>
<td>−2.65 (0.99)</td>
<td>999 (70)</td>
<td>429 (85)</td>
<td>2718 (1069)</td>
<td>0.693 (0.015)</td>
</tr>
<tr>
<td>CGCM 3.1-B1</td>
<td>−2.51 (1.42)</td>
<td>978 (79)</td>
<td>429 (85)</td>
<td>3643 (1960)</td>
<td>0.683 (0.03)</td>
</tr>
<tr>
<td>ECHAM5-B1</td>
<td>−2.12 (1.55)</td>
<td>1019 (91)</td>
<td>466 (132)</td>
<td>2832 (1226)</td>
<td>0.701 (0.02)</td>
</tr>
<tr>
<td>CGCM 3.1-A1b</td>
<td>−1.85 (2.19)</td>
<td>1007 (99)</td>
<td>466 (132)</td>
<td>4069 (1784)</td>
<td>0.68 (0.025)</td>
</tr>
<tr>
<td>ECHAM5-A1b</td>
<td>−2.03 (1.77)</td>
<td>1033 (109)</td>
<td>482 (159)</td>
<td>3379 (1864)</td>
<td>0.702 (0.024)</td>
</tr>
<tr>
<td>CGCM 3.1-A2</td>
<td>−1.96 (2.15)</td>
<td>1007 (101)</td>
<td>482 (159)</td>
<td>3917 (2215)</td>
<td>0.66 (0.024)</td>
</tr>
<tr>
<td>ECHAM5-A2</td>
<td>−2.51 (1.42)</td>
<td>1019 (91)</td>
<td>466 (132)</td>
<td>2832 (1226)</td>
<td>0.701 (0.02)</td>
</tr>
</tbody>
</table>

Notes: The numbers in parenthesis indicate standard deviation computed on the annual data averaged across Alaska. MAT, mean annual temperature; SAP, sum of annual precipitation; Atm. CO₂, annual atmospheric CO₂ concentration; AOB, annual area burned; VWC, volumetric water content.

15 http://fire.ak.blm.gov/
climate, and normalized fire regime. For more detail about the forcing data used for the attribution analysis, see Genet et al. (2017).

We conducted 10 coupled model simulations over Alaska wetlands in addition to the original six projection scenarios described above and hereafter referred to as CO$_2$ + climate + fire simulations: (1) a baseline simulation with constant atmospheric CO$_2$, detrended climate and constant fire regime, hereafter baseline; (2) three simulations with increasing atmospheric CO$_2$ from the B1, A1b, and A2 emission scenarios, detrended climate, and constant fire regime, hereafter CO$_2$; and (3) six simulations with increasing atmospheric CO$_2$ and changing climate simulations from the CGCM3.1 and ECHAM5 models, hereafter CO$_2$ + climate.

We evaluated (1) the effects of rising atmospheric CO$_2$ by comparing C dynamics between the CO$_2$ and the baseline simulations; (2) the effects of changing climate by comparing CO$_2$ + climate and CO$_2$ simulations; and (3) the effects of changing fire regime by comparing the CO$_2$ + climate + fire simulations with the CO$_2$ + climate simulations.

The effect of CO$_2$ fertilization on NPP, HR, and BioCH$_4$ was evaluated by examining the relationship between the relative change in fluxes and the change in atmospheric CO$_2$ concentration. The effect of climate change on NPP, HR, and BioCH$_4$ was evaluated by examining the relationship between the relative change in the respective C fluxes and the changes in annual mean air temperature, annual sum of precipitation, annual mean net incoming radiation, and annual mean vapor pressure. The effect of fire regime was evaluated by examining the relationships between the relative change in area burned and the relative changes in NPP, HR, and BioCH$_4$ as well as between the relative change in area burned and the absolute change in fire emissions.

The relationships between changes in C fluxes and changes in environmental drivers were evaluated using ordinary least square regression. The differences between LCC regions were evaluated using analysis of variance. All analyses were performed using the SAS statistical package (SAS 9.4, SAS Institute, Cary, North Carolina, USA). The assumptions of normality and homoscedasticity were verified by examining residual plots. Effects were considered significant at $P \leq 0.05$. Averages of C stocks and fluxes are accompanied with the estimated standard deviation from annual variations (SD).

RESULTS

Historical C dynamics of wetland ecosystems in Alaska from 1950 to 2009

Across the 177,069 km2 of wetland ecosystems in Alaska, as defined by Pastick et al. (2017), total C storage was estimated to be 5.56 Pg C in 2009, with about 89% stored in the soil and the rest in the vegetation (Table 3, Fig. 3a). During

<table>
<thead>
<tr>
<th>Variables</th>
<th>Units</th>
<th>Arctic</th>
<th>Northwest boreal</th>
<th>North Pacific</th>
<th>Western Alaska</th>
<th>Statewide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetland area</td>
<td>km2</td>
<td>29,818</td>
<td>130,704</td>
<td>1,965</td>
<td>14,582</td>
<td>177,069</td>
</tr>
<tr>
<td>Vegetation C annual change</td>
<td>Tg C/yr</td>
<td>0.12</td>
<td>−1.13</td>
<td>0</td>
<td>0.03</td>
<td>−0.98</td>
</tr>
<tr>
<td>Vegetation C pool in 2009</td>
<td>Tg C</td>
<td>45.38</td>
<td>491.1</td>
<td>19.56</td>
<td>56.93</td>
<td>612.97</td>
</tr>
<tr>
<td>Soil C annual change</td>
<td>Tg C/yr</td>
<td>0.35</td>
<td>−2.36</td>
<td>0.06</td>
<td>0.02</td>
<td>−1.93</td>
</tr>
<tr>
<td>Soil C pool in 2009</td>
<td>Tg C</td>
<td>1274.78</td>
<td>2773.23</td>
<td>107.33</td>
<td>787.53</td>
<td>4,942.87</td>
</tr>
<tr>
<td>Total C annual change</td>
<td>Tg C/yr</td>
<td>0.47</td>
<td>−3.49</td>
<td>0.07</td>
<td>0.05</td>
<td>−2.91</td>
</tr>
<tr>
<td>Total C pool in 2009</td>
<td>Tg C</td>
<td>1320.16</td>
<td>3264.33</td>
<td>126.89</td>
<td>844.46</td>
<td>5,555.84</td>
</tr>
</tbody>
</table>

Note: Wetland area for LCC regions was estimated from the wetland map described in Pastick et al. (2017).

Figure 3. Spatial distribution of wetland (a, d) ecosystem carbon stocks, (b, e) net ecosystem carbon balance, and (c, f) methane emissions for Alaska for (a–c) the historical period and (d–f) the projected period (averaged across the six climate scenarios evaluated).

Table 3. Mean annual change in vegetation, soil, and total C stocks for the historical period (1950–2009) and vegetation, soil, and total C stocks at the end of 2009 and in each landscape conservation cooperative (LCC) region and statewide.
the historical period, wetland ecosystems lost C from the vegetation and the soil at a rate of 2.91 Tg C/yr statewide (Fig. 3b). The accumulation of C in the Arctic, the Western Alaska, and the North Pacific LCCs was more than offset by the C loss from the Northwest Boreal LCC, the largest of the four LCC regions. C loss in the Northwest Boreal LCC occurred because the combination of HR, fire emissions, and CH₄ emissions was greater than NPP (Table 4).

Statewide, biogenic CH₄ emissions from wetlands were estimated to be 0.91 Tg C/yr during the historical period (Table 4, Fig. 3c). Biogenic CH₄ emissions from boreal wetlands (mean annual biogenic CH₄ emission of 0.868 Tg C/yr) were substantially greater than that from wetland tundra (0.018 Tg C/yr) and mesic wetland tundra (0.024 Tg C/yr; Fig. 4). The strong biogenic CH₄ emissions from the boreal wetlands are associated with a greater area and generally warmer soils and longer growing seasons than for other wetland types in Alaska. Our simulations indicated that biogenic CH₄ emissions increased from 1950 to 2009 in all wetland types examined, although there was large interannual variability (Fig. 4). In comparison, pyrogenic CH₄ emissions represented only 1.7% of the total CH₄ emissions. Although CH₄ emissions were only 2.5% of NPP statewide, they dominated the positive GWP calculation with respect to the contribution of C lost as CO₂ during the historical period. Wetlands contributed to atmospheric warming in three out of the four LCC regions during the historical period (Table 4), resulting in a statewide GWP of 37.16 Tg CO₂-eq/yr.

Table 4. Mean C fluxes into and out of Alaska wetland ecosystems for the historical period (1950–2009) in each LCC region and statewide.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Unit</th>
<th>Arctic</th>
<th>Northwest boreal</th>
<th>North Pacific</th>
<th>Western Alaska</th>
<th>Statewide</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPP</td>
<td>Tg C/yr</td>
<td>4.03 (0.49)</td>
<td>28.81 (1.44)</td>
<td>0.53 (0.04)</td>
<td>2.95 (0.18)</td>
<td>36.32 (2.74)</td>
</tr>
<tr>
<td>HR</td>
<td>Tg C/yr</td>
<td>−3.27 (1.22)</td>
<td>−27.13 (4.84)</td>
<td>−0.46 (0.08)</td>
<td>−2.49 (0.98)</td>
<td>−33.35 (9.37)</td>
</tr>
<tr>
<td>BioCH₄</td>
<td>Tg C/yr</td>
<td>−0.075 (0.15)</td>
<td>−0.79 (1.83)</td>
<td>−0.01</td>
<td>−0.04 (0.12)</td>
<td>−0.91 (0.78)</td>
</tr>
<tr>
<td>PyroCH₄</td>
<td>Tg C/yr</td>
<td>−0.01</td>
<td>−0.01 (0.03)</td>
<td>−0.01</td>
<td>−0.01</td>
<td>−0.02 (0.03)</td>
</tr>
<tr>
<td>Pyro(CO₂ + CO₃)</td>
<td>Tg C/yr</td>
<td>−0.22 (0.40)</td>
<td>−4.36 (7.58)</td>
<td>−0.01</td>
<td>−0.37 (0.69)</td>
<td>−4.96 (8.98)</td>
</tr>
<tr>
<td>NECB</td>
<td>Tg C/yr</td>
<td>0.47 (1.15)</td>
<td>−3.49 (10.46)</td>
<td>0.07 (0.08)</td>
<td>0.05 (1.06)</td>
<td>−2.91 (10.56)</td>
</tr>
<tr>
<td>GWP</td>
<td>Tg CO₂-eq/yr</td>
<td>0.53 (1.31)</td>
<td>36.67 (109.90)</td>
<td>0.11 (0.13)</td>
<td>−0.15 (3.22)</td>
<td>37.16 (134.85)</td>
</tr>
</tbody>
</table>

Notes: Numbers in parenthesis indicate inter-annual standard deviation. Except for global warming potential (GWP), positive numbers indicate uptake of C into wetland ecosystems and negative numbers indicates losses of C. For GWP, positive numbers indicate C source and negative numbers indicates C sink. NA indicates not applicable. NPP, net primary production; HR, heterotrophic respiration; BioCH₄, biogenic CH₄; PyroCH₄, pyrogenic CH₄; NECB, net ecosystem carbon balance.

In contrast to the historical period, wetlands in Alaska accumulated C during the projection period. By 2099, vegetation and soil C stocks increased from the end of the
historical period in all LCC regions and for all the scenarios. Total mean C storage across the six climate scenarios was $5,911 \pm 79.41$ Tg C (mean ± SD; Figs. 3d, 5a), with a mean annual increase of 3.34 ± 0.89 Tg C/yr (Figs. 3e, 5b) from 2010 to 2099 (Appendix S1). During that period, the largest relative increase in C storage occurred in the North Pacific LCC (11.4% ± 5.5%). The relative increase in C stocks was substantially less in the Arctic LCC (7.3% ± 1.9%), the Northwest Boreal LCC (6.4% ± 2.2%), and the Western Alaska LCC (4.17% ± 3.14%). Increases in NPP were more than offset increases in HR, fire emissions, and biogenic CH₄ emissions resulting in a net C sequestration statewide in all LCCs for the projection period (Fig. 5c,d; Appendix S1). Compared to the simulations for CGCM3.1 climate projections, the warmer climate projections from ECHAM5 resulted in generally greater NPP (8.11% higher, $F_{1/28} = 122.99, n = 30, P < 0.001$) and greater HR (11.38% higher, $F_{1/28} = 13.69, n = 30, P = 0.001$). Compared to the historical period, statewide biogenic CH₄ increased by 47.7% on average across the projections (Fig. 3f; Appendix S2). Similar to NPP and HR, the warmer climate projections from ECHAM5 than from CGCM3.1 resulted in greater biogenic CH₄ emissions (4.16% higher, $F = 5.26, n = 30$ and $P = 0.031$). The GWP associated with the increase in CH₄ emissions was greater than that associated with CO₂ sequestration by wetland ecosystems of Alaska, resulting in a positive GWP by 2099 of 28.37 Tg CO₂-eq/yr. Yet, compared to 2009, the positive GWP decreased by 23.71% in magnitude.

Effect of environmental drivers on ecosystem C sequestration, CH₄ emissions, and GWP

Changes in atmospheric CO₂, climate, and wildfire each substantially affected projections of C dynamics for wetlands in Alaska. Compared to the baseline simulations, the cumulative effect of increasing atmospheric CO₂, climate change, and change in fire regime resulted in a statewide increase of 70 Tg C in vegetation and 240 Tg C in soil by the end of the 21st century (i.e., 4.9% and 11.4% increase compared to the baseline, respectively). The increase in atmospheric CO₂ during the projected period increased vegetation (70 Tg C, 11.4%) and soil (270 Tg C, 5.5%) C stocks substantially (Fig. 6a,b). Changes in climate increased vegetation (16 Tg C, 2.6%) and soil (230 Tg C, 4.7%) C stocks to a lesser extent. In contrast, wildfire induced a C loss in the vegetation (-20 Tg C, -3.3%) and soil (-260 Tg C, -5.3%) C stocks.

Compared to the baseline simulation, biogenic CH₄ emissions increased 0.62 Tg C/yr (68.1%) in response to the combination of changes in atmospheric CO₂, climate, and wildfire by the end of the 21st century. Changes in climate substantially increased biogenic CH₄ emissions (0.91 Tg C/yr, 102.4%), and changes in atmospheric CO₂ had little effect (Fig. 6c). In contrast, changes in the fire regime decreased biogenic CH₄ emission by -0.32 Tg C/yr (-35.2%).

In comparison with the baseline simulation, by the end of the 21st century, the combined effects of changes in
atmospheric CO2, climate, and wildfire enhanced warming of the atmosphere by 6.91 Tg CO2-eq/yr (18.6%) as indexed by changes in GWP (Fig. 6d). Changes in wildfire substantially enhanced climate warming (20.33 Tg CO2-eq, 54.7%), while changes in atmospheric CO2 and climate promoted climate cooling by (−2.43 Tg CO2-eq/yr and −10.98 Tg CO2-eq/yr, respectively, −6.5% and −29.6%, respectively). This increase in GWP between the baseline and the simulations combining changes in atmospheric CO2, climate, and wildfire contrasted with the decrease in GWP observed between the historical and the projection periods (−8.78 Tg CO2-eq/yr, −23.6%).

Biogeochemical processes affected by increasing atmospheric CO2

NPP, HR, and biogenic CH4 emissions all significantly increased with increasing atmospheric CO2 (Table 5, Fig. 7). Yet, the rate of change was much lower for biogenic CH4 emissions (1.46% ± 0.09% per 100 ppm increase [mean ± SE]) than for NPP and HR (5.16% ± 0.21% and 4.66% ± 0.42% per 100 ppm increase, respectively). All relationships between C fluxes and atmospheric CO2 concentration were significantly different among LCC regions (Table 5); the slope of the relationship between change in C fluxes and change in atmospheric CO2 was significantly higher for the Arctic and the North Pacific LCCs than for the Northwest Boreal and the Western Alaska LCCs (Fig. 7).

Biogeochemical processes affected by changing climate

Because our modeling framework kept land cover static throughout the simulations, it is important to recognize that

![Figure 6](https://example.com/fig6.png)

TABLE 5. Effects of LCC region, changes in atmospheric CO2 (dCO2), and their interaction on projection period [2010–2099] relative changes in net primary productivity (dNPP), heterotrophic respiration (dHR), and biogenic methane (dBioCH4).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Effect</th>
<th>n</th>
<th>MS</th>
<th>F</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>dNPP</td>
<td>dCO2</td>
<td>1</td>
<td>519.31</td>
<td>F1/29 = 1642.72</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>LCC</td>
<td>4</td>
<td>13.69</td>
<td>F4/29 = 36.83</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>dCO2*LCC</td>
<td>3</td>
<td>4.27</td>
<td>F3/27 = 20.58</td>
<td><0.001</td>
</tr>
<tr>
<td>dHR</td>
<td>dCO2</td>
<td>1</td>
<td>537.01</td>
<td>F1/29 = 405.88</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>LCC</td>
<td>4</td>
<td>14.01</td>
<td>F4/29 = 8.81</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>dCO2*LCC</td>
<td>3</td>
<td>7.78</td>
<td>F3/27 = 7.23</td>
<td>0.004</td>
</tr>
<tr>
<td>dBioCH4</td>
<td>dCO2</td>
<td>1</td>
<td>70.16</td>
<td>F1/29 = 1113.27</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>LCC</td>
<td>4</td>
<td>0.46</td>
<td>F4/29 = 7.33</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>dCO2*LCC</td>
<td>3</td>
<td>0.46</td>
<td>F3/27 = 7.34</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Notes: MS, mean square of F test; F, Fisher value; P-value, probability.
our analysis of biogeochemical processes affected by changing climate does not include the effects of changes in wetland area in response to climate change. Among the climate variables we considered in this analysis (i.e., air temperature, precipitation, vapor pressure, net incoming shortwave radiation), including modeled soil moisture of the organic horizon (Table 2), only air temperature and soil moisture changes had a significant effect on change in C fluxes. Climate warming caused a significant increase in NPP, HR, and CH₄ emissions (Table 6, Fig. 8), but the magnitude of the increase was much larger for CH₄ emissions (15.40% ± 3.04% per °C increase) than for NPP and HR (1.01% ± 1.84% and 1.67% ± 1.79% per °C increase, respectively). The interaction between LCC and temperature change was significant for all three variables, suggesting that the slope of the relationship between change in C fluxes and climate warming was significantly different among LCC regions (Table 6). The response of NPP and HR to warming was higher for the Arctic and North Pacific LCCs than for the Northwest Boreal and the Western Alaska LCCs (Fig. 8a, c). In contrast, the response of biogenic CH₄ emissions was highest in the Northwest Boreal LCC (Fig. 8e). Soil moisture had a significantly positive effect on heterotrophic respiration and CH₄ emissions (Fig. 8d, f), 1.83% ± 0.78% and 10.93% ± 2.02% per 0.01 m³/m³ increase, respectively (Table 6). The sensitivity of HR to soil moisture was greatest in the North Pacific LCC, and least in the Northwest boreal LCC (Fig. 8d).

Biogeochemical processes affected by changing in fire regime

Compared to constant fire regime, the increase in fire frequency (and associated area burned) caused a significant decrease in NPP and HR of 11.18% ± 2.33% and 40.36% ± 24.17% per 10% increase in area burned, respectively (Table 7, Fig. 9a, b). In contrast, fire emissions increased with area burned at a rate of 68.21 ± 18.27 g C·m⁻²·yr⁻¹ with 10% increase in area burned. The relationship between

<table>
<thead>
<tr>
<th>Variable and effect</th>
<th>n</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>dNPP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dTAIR</td>
<td>1</td>
<td>1,615.41</td>
<td>12.38</td>
<td>0.001</td>
</tr>
<tr>
<td>LCC</td>
<td>4</td>
<td>290.33</td>
<td>4.09</td>
<td>0.009</td>
</tr>
<tr>
<td>dTAIR × LCC</td>
<td>3</td>
<td>250.00</td>
<td>5.76</td>
<td>0.003</td>
</tr>
<tr>
<td>dHR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dTAIR</td>
<td>1</td>
<td>1,734.32</td>
<td>11.28</td>
<td>0.002</td>
</tr>
<tr>
<td>LCC</td>
<td>4</td>
<td>229.69</td>
<td>1.94</td>
<td>ns</td>
</tr>
<tr>
<td>dTAIR × LCC</td>
<td>3</td>
<td>227.46</td>
<td>3.49</td>
<td>0.027</td>
</tr>
<tr>
<td>dBioCH₄</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dTAIR</td>
<td>1</td>
<td>16,349.57</td>
<td>27.52</td>
<td><0.001</td>
</tr>
<tr>
<td>LCC</td>
<td>4</td>
<td>430.06</td>
<td>1.24</td>
<td>ns</td>
</tr>
<tr>
<td>dTAIR × LCC</td>
<td>3</td>
<td>1,812.70</td>
<td>3.51</td>
<td>0.027</td>
</tr>
<tr>
<td>dNPP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dVWC</td>
<td>1</td>
<td>40.23</td>
<td>0.08</td>
<td>ns</td>
</tr>
<tr>
<td>LCC</td>
<td>4</td>
<td>63.32</td>
<td>1.65</td>
<td>ns</td>
</tr>
<tr>
<td>dVWC × LCC</td>
<td>3</td>
<td>272.40</td>
<td>7.09</td>
<td>0.012</td>
</tr>
<tr>
<td>dHR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dVWC</td>
<td>1</td>
<td>1,014.18</td>
<td>22.09</td>
<td>0.002</td>
</tr>
<tr>
<td>LCC</td>
<td>4</td>
<td>54.60</td>
<td>1.19</td>
<td>ns</td>
</tr>
<tr>
<td>dVWC × LCC</td>
<td>3</td>
<td>282.78</td>
<td>6.16</td>
<td>0.018</td>
</tr>
<tr>
<td>dBioCH₄</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dVWC</td>
<td>1</td>
<td>10,010.09</td>
<td>13.05</td>
<td>0.007</td>
</tr>
<tr>
<td>LCC</td>
<td>4</td>
<td>11,296.65</td>
<td>2.46</td>
<td>ns</td>
</tr>
<tr>
<td>dVWC × LCC</td>
<td>3</td>
<td>9457.65</td>
<td>2.74</td>
<td>ns</td>
</tr>
</tbody>
</table>

Notes: MS, mean square of F test; F, Fisher value; P, probability; ns, not significant. Change in precipitation, relative humidity, and net radiation had no significant effect on the three variables.
fire emissions and area burned was significantly different among LCC regions (Fig. 9d); the slope of the relationship was lowest in the Northwest Boreal LCC. Although biogenic CH4 emissions were not significantly affected by increasing area burned (Table 7), large increases in area burned (i.e., >4%) were associated with a decrease of biogenic CH4 (Fig. 9d) that was approximately offset by increases in pyrogenic CH4 (Fig. 9d).

DISCUSSION

Although wetland ecosystems cover only 12% of the terrestrial land surface in Alaska, they play an important role in the C dynamics of the state because they can emit substantial amounts of CH4 to the atmosphere. This study focused on estimating the historical and future C dynamics of wetland ecosystems in Alaska using a modeling framework that coupled three models, ALFRESCO, DOS-TEM, and MDM-TEM. It is important to note that the modeling framework used in this assessment kept land cover static throughout the simulations. Future studies may therefore benefit by incorporating land surface and subsurface dynamics into a similar modeling framework. Below, we first discuss changes in C dynamics of wetland ecosystems in Alaska during the historical and the projection periods of the simulations. We then discuss the relative importance of factors driving the dynamics of C in these simulations.

Historical C dynamics in Alaska wetlands

Alaska wetlands were estimated to store 5.56 Pg C in 2009, almost 90% of which was in the soil. Soil C pools of Alaska wetlands were estimated for the organic horizons and the top 1 m of mineral soil. The estimated soil organic C density was 27.9 kg C/m², which is within the range of C density estimated from 1-m soil samples collected across wetlands in Alaska from the International Soil Carbon Database between 25.6 and 44.2 kg C/m² (Johnson et al. 2011). The estimated soil organic C density is also close to densities observed in the Alaska Beaufort Sea coast of 21.2 ± 3.8 kg C/m², collected from soil samples at depth between 55 and 260 cm (Ping et al. 2011, Hugelius et al. 2014), and 25.8 ± 18.8 kg C/m² observed near Yukon River in central Alaska (Tarnocai et al. 2009, Hugelius et al. 2014).
The regional differences between the Arctic and boreal regions were also consistent with previous studies. Estimates of soil C density were 46.2 kg C/m² for the Arctic and Western Alaska LCCs, and 21.2 kg C/m² for the Northwest Boreal LCC. The lower C density in boreal compared to tundra regions was also reported in the circumpolar synthesis from Bradshaw and Warkentin (2015) where C density estimated down to 1 m was 36.9 and 16.0 kg C/m² for tundra and boreal peatlands, respectively. The greatest uncertainties in the wetland C stocks estimates of this study are associated with (1) the depth of soil column and (2) the definition of wetland area. Our model simulations include the organic soil horizons and the top 1 m of the mineral soil horizon. It is important to recognize that soil organic C density in the northern permafrost region increases from 30 to 100 kg C/m² for estimates that consider soil depths of 1 and 3 m, respectively (Schuur et al. 2015).

While three out of the four LCC regions accumulated C during the historical period, our analysis indicated that the loss from the Northwest Boreal LCC was great enough to result in a statewide loss of 2.91 Tg C/yr. The loss of C from the Northwest Boreal LCC was mainly driven by the combination of HR and fire disturbance. The weak accumulation of C in the tundra and maritime forest regions of the state was primarily driven by the fact that increases in NPP were slightly larger than increases in HR. We estimated that historical annual NPP from Alaska wetlands was about 205 g C m⁻² yr⁻¹ (ranging from 135 g C m⁻² yr⁻¹ in the Arctic LCC to 269 g C m⁻² yr⁻¹ in the North Pacific LCC), which is generally consistent with average annual NPP estimated in northern peatlands. For example, the Arctic LCC NPP estimate is consistent with observation-based estimates of NPP in arctic wet sedge tundra in Alaska of 75–160 g C m⁻² yr⁻¹ based on GPP estimates of Euskirchen et al. (2016a) from 2008 through 2015, assuming that NPP is 50% of GPP. This estimate was also similar to the estimates of 69 g C m⁻² yr⁻¹ and 158 g C m⁻² yr⁻¹ estimated by Shaver and Chapin (1991) for aboveground vegetation of wet sedge tundra and moist tussock tundra, respectively.

CH₄ emissions of Alaska wetlands were primarily derived from biogenic sources, with statewide mean biogenic CH₄ emissions of 0.91 Tg C/yr and mean pyrogenic CH₄ emissions of 0.02 Tg C/yr during the historical period. The

![Fig. 9](image-url)
historical estimates of biogenic CH$_4$ emissions in the Arctic LCC (2.5 g C m$^{-2}$ yr$^{-1}$) were close to 2012/2014 flux tower estimates from Barrow, Alaska (3.1 g C m$^{-2}$ yr$^{-1}$; Karion et al. 2016). Similarly, the historical estimates of biogenic CH$_4$ emissions in the Northwest Boreal LCC (6.0 g C m$^{-2}$ yr$^{-1}$) were close to estimates from Whalen and Reeburgh (1988, 1992) collected at a tussock tundra sites in Interior Alaska (1.5 to 18.9 g C m$^{-2}$ yr$^{-1}$ from 1987 to 1990). Statewide, biogenic CH$_4$ emissions from wetlands (5.8 g C m$^{-2}$ yr$^{-1}$, excluding the North Pacific LCC) were comparable to previous model estimates from McGuire et al. (2012; 8.9 g C m$^{-2}$ yr$^{-1}$) for the Bering Strait and Chukchi Sea regions.

Statewide historical GWP during the historical period was estimated to be 37.16 Tg CO$_2$-eq/yr. It was driven by the large GWP estimated in the Northwest Boreal LCC that was the result of CO$_2$ loss from HR and fire emissions and substantial pyrogenic and biogenic CH$_4$ emissions. Biogenic CH$_4$ emissions of this region were substantially higher compared to those of the colder tundra wetland regions (the Arctic and Western Alaska LCCs) because of greater wetland area as well as warmer soils and longer growing seasons. The large fire emissions resulted from the active fire regime at play in the region. From 1950 to 2009, the annual area burned in the Northwest Boreal LCC was 3,262 km2, which is more than 85% of the statewide area burned (Zhu and McGuire 2016).

The net C sequestration observed in the Arctic and the North Pacific LCCs (NECB of 0.54 Tg C yr$^{-1}$) was more than offset by the higher GWP of biogenic CH$_4$ emissions, resulting in a positive GWP of 0.64 Tg CO$_2$-eq/yr. The Western Alaska LCC was the only region for which a negative GWP was calculated. Wetlands in this region are dominated by wet sedge tundra, which is more productive than tussock tundra (Euskirchen et al. 2016a). As a result, biogenic CH$_4$ emissions were not enough to offset the net C sequestration, resulting in a GWP of -0.15 Tg CO$_2$-eq/yr.

Future C dynamics in Alaska wetlands

Our analysis indicated that wetlands in Alaska will gain C by the end of this century, with increases of 4.2–8.1% among the scenarios we considered, compared to the end of the historical period. This C sequestration was primarily driven by the stronger increase of NPP over HR, fire emissions, and CH$_4$ emissions. The increase of NPP was driven by the increase in atmospheric CO$_2$ (i.e., CO$_2$ fertilization effect) and the increase in air temperature, although the rate of response was modest (5.2% ± 0.21% per 100 ppmv [mean ± SE] increase and 1.0% ± 1.84% per $^\circ$C increase at statewide level, respectively) in comparison with data-based and model-based estimates. For example, based on FACE experiments in temperate forests, Norby et al. (2005) estimated that NPP increases 13% per 100 ppmv increase of atmospheric CO$_2$. Piao et al. (2013) calculated that NPP increased 16% per 100 ppmv increase of atmospheric CO$_2$ based on multi-model simulations. The temperature sensitivity of NPP has been reported to increase 1–2% per $^\circ$C increase in warming experiments conducted at a Minnesota wetland site (Piao et al. 2013: Fig. 4). It has been suggested that overestimation of the effects of elevated CO$_2$ on ecosystem production by models may be due to lack of nitrogen limitation by models (Hungate et al. 2003, McGuire et al. 2016). The simulations in this study considered the effects of N limitation on C assimilation.

Our analysis indicated that the response of NPP to increases in CO$_2$ became less sensitive as the atmospheric CO$_2$ level increased (Fig. 7a). The response of NPP to increasing air temperature was in part associated with longer growing seasons due to later onset of snowfall and earlier spring snowmelt consistent with previous studies (Sharratt 1992, Keeling et al. 1996, Randerson et al. 1999, Starr et al. 2000, Euskirchen et al. 2006, 2016b, Dery and Brown 2007, Piao et al. 2007, Brown et al. 2010). Several remote sensing records and modeling studies have also documented the positive effect of warmer temperatures and elevated atmospheric CO$_2$ on ecosystem NPP through enhanced plant growth from prolonged growing season and increased nutrient input (Koch and Mooney 1996, Schulze et al. 1999, Shaver et al. 2000), which supports our analysis. These seasonal changes were more influential in the Arctic and the North Pacific LCC than the other LCCs in Alaska. The high sensitivity of NPP to warming in the Arctic LCC was likely associated with the fact that the Arctic LCC is the coldest LCC, where temperature is an important limiting factor for plant growth. The high sensitivity of NPP to warming in the North Pacific LCC was likely driven by the increasing length in the growing season, as the region shows the largest change in snow melt and snow return dynamics in response to warming (Genet et al. 2017: Fig. 8). The increase in HR was also caused by both increasing atmospheric CO$_2$ and rising air temperature, consistent with previous studies (Norby et al. 2001, Kimball et al. 2004, Pendell et al. 2004). Rising air temperature directly increased soil temperature, which can enhance rates of microbial decomposition. In addition, rising air temperature together with increasing CO$_2$ levels promoted higher vegetation productivity and litterfall, which increased the absolute and relative quantities of active C pools to increase HR. Increases in HR occurred in response to increase in atmospheric CO$_2$, and followed a downward curvilinear relationship (Fig. 7b), indicating that the effects of CO$_2$ fertilization on HR will ultimately saturate. While both NPP and HR increased in response to increase in CO$_2$ and temperature, studies have suggested that the overall effect may depend on soil moisture dynamics, thawing of the permafrost, and C:N ratio (Pendall et al. 2004, Sitch et al. 2007). The simulations in this study show an overall increase in soil moisture in response to projected climate change. This increase in soil moisture caused an increase in HR, as a likely consequence of the positive effect of soil moisture on permafrost thaw and the exposure of previously frozen soil C (the change in active layer depth was significantly and positively correlated to change in soil moisture; $n = 35$, $F = 24.12$, $P < 0.01$). The increase in soil moisture in the projected period indicates that the responses of NPP and HR to atmospheric CO$_2$ were likely not limited by drought stress in our simulations. The increase in fire disturbance significantly decreased NPP due to substantial vegetation mortality following fire. Fire can also result in reduced HR and biogenic CH$_4$ emissions due to partially or entirely combusted C rich organic layers and associated microbial communities. The net effect of fire regime on the
C balance in our study was a decrease in NECB and C release to the atmosphere from both the vegetation and the soil C pools.

Biogenic CH₄ emissions are the major sources of CH₄ from Alaska wetlands to the atmosphere. Our simulations projected an average 47.7% increase in CH₄ emissions during the projection period among the climate scenarios we considered. The long-term response of CH₄ emissions to climate change in our simulations is comparable to the 7–35% projected increases under RCP 4.5 and RCP8.5 scenarios in the northern permafrost region during 2010–2100 by other models (Koven et al. 2015), yet significantly less than the twofold increase simulated by Zhuang et al. (2006). However, the positive effect of warming on CH₄ emissions might be overestimated. Discrepancies between long-term and short-term CH₄ emissions sensitivity have been suggested by the analysis of long-term CH₄ concentration measurements in Barrow, Alaska (Sweeney et al. 2016). These data indicate that (1) the short-term sensitivity of CH₄ emissions to air temperature may not play out over longer time periods and (2), at larger spatial scales, other environmental drivers are controlling longer term and spatial dynamics of CH₄.

Increasing atmospheric CO₂ resulted in a minor increase in CH₄ emissions (1.5% ± 0.09% per 100 ppmv increase at statewide level) through the increased litterfall associated with the increase in vegetation productivity. The increase in litterfall resulted in an increase in decomposable C available for methanogenesis (Hutchin et al. 1995, Saarnio and Silvola 1999, Saarnio et al. 2003). In contrast, increasing air temperature had a large effect on CH₄ emissions (15.4% ± 3.0% per °C increase at statewide level), primarily due to the additional direct effect of warming soil temperature on accelerated anaerobic decomposition. The positive response of CH₄ emissions to increasing air temperature is supported by recent studies suggesting that terrestrial high-latitude CH₄ emissions are more impacted by changes in temperature than by increased availability of organic matter (Updegraff et al. 2001, Turetsky et al. 2008, Olefeldt et al. 2013, Ma et al. 2017).

In general, increases in wildfire frequency caused decreases in biogenic CH₄ emissions because of decreases in NPP and the combution of the soil organic horizons. Vegetation can influence soil C dynamics by the exudation of C compounds into the rhizosphere that fuel methanogenesis (Schimel 1995, King and Reeburgh 2002, Chanton et al. 2008). This process is represented in MDM-TEM, in which monthly NPP is used as an indicator of the temporal and spatial variability of root exudates available for methanogenesis (Zhuang et al. 2004). However, the negative effect of wildfire was more than offset by the positive effect of increasing air temperature and, to a minor extent, increases in atmospheric CO₂.

Changes in fire regime had negative effects on GWP in this study. Our attribution analysis revealed that this slight decrease in biogenic CH₄ emissions in response to fire was not enough to compensate for the decrease in C sequestration and the increase in pyrogenic CH₄ emissions. However, CH₄ emissions in our analysis were not directly affected by the availability of newly thawed soil C exposed by the permafrost thaw. Field observations have shown that CH₄ emissions increase in boreal peatlands following thaw (Johnston et al. 2014). This response of CH₄ emissions could reverse the negative effects of changing fire regime on GWP, as the release of 2.3% of permafrost C emissions as CH₄ could increase warming potential by 35%–48% over the remainder of this century (Schuur et al. 2015, see also Froliking et al. 2011). Furthermore, our analysis suggests that the decreasing sensitivity of NPP to atmospheric CO₂, the linear increase in biogenic CH₄ emissions to air temperature, in addition to the increase in pyrogenic CH₄ emissions and C loss from wildfires may lead to an overall increase in GWP beyond 2100 (see also McGuire et al. 2018).

The transitions of wetlands in Alaska from being a source of atmospheric CO₂ in the historical period to a sink during the remainder of the 21st century in our analysis, and the possibility of becoming a C source beyond 2100, emphasizes the changing influence of multiple driving factors in shaping the C dynamics of wetlands in Alaska. The inferred transition of C dynamics of wetlands in Alaska to becoming a source of C to the atmosphere beyond 2100 we believe will be driven by a decreasing sensitivity of NPP to increasing CO₂, an increasing availability of soil C for decomposition as permafrost thaws, and a linear sensitivity of biogenic CH₄ emissions to increasing soil temperature.

CONCLUSION

This study, which assessed C dynamics in wetlands in Alaska during the historical period from 1950 to the end of 2009 and the rest of 21st century, indicates that wetlands will play an important role in response of the regional C dynamics to changing climate, atmospheric CO₂, and fire regime. Our analysis suggests that wetland ecosystems of Alaska lost C during 1950–2009, but that they will sequester C during the remainder of this century. The analysis also indicates that even though the ecosystem CO₂ sequestration more than offset C loss from HR and fire emissions, GWP will remain positive because of substantial CH₄ emissions from wetlands. Although our analysis indicates that GWP will weaken somewhat during the 21st century, beyond 2100, we expect that GWP will ultimately increase as wetland ecosystems transition from being a sink to a source of atmospheric CO₂ because of the decreasing sensitivity of NPP to increasing CO₂, the increasing availability of soil C for decomposition as permafrost thaws, and the linear sensitivity of biogenic CH₄ emissions to increase in soil temperature.

Acknowledgments

This research was funded by the U.S. Geological Survey (USGS) Land Change Science Program. Additional support was provided by the Alaska Climate Science Center through Grant/Cooperative Agreement G10AC00588 from the U.S. Geological Survey and by the Bonanza Creek Long-Term Ecological Research Program funded by the National Science Foundation and the U.S. Forest Service. The research was also partially supported by DOE project DE-SC0008092 and NSF project IIS-1027955 to Q. Zhuang. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modeling, which is responsible for CMIP, and we thank all the climate modeling groups for producing and making available their model output. We also thank the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison for providing coordinating support and leading development of
software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Literature Cited

Global Soil Data Task Group. 2000. Global gridded surfaces of selected soil characteristics (IGBP-DIS). ORNL Distributed Active Archive Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

SUPPORTING INFORMATION

Additional supporting information may be found online at: http://onlinelibrary.wiley.com/doi/10.1002/eap.1755/full

DATA AVAILABILITY

Data available from the Scenario Network for Alaska Planning data portal: https://doi.org/10.5066/f7td9w8z