
1. Introduction
As one of the essential states in the Earth system, soil moisture plays an important role in land-atmosphere inter-
actions (Green et al., 2019; Koster et al., 2004; Seneviratne et al., 2006, 2010). The exploration and quantification 
of land-atmosphere interactions is important for Earth system study and climate-change projections (Santanello 
et al., 2018; Seneviratne et al., 2010; Suni et al., 2015). The spatial and temporal dynamics of soil moisture (SM) 
depend on the variability of multiple hydrological processes, such as precipitation, interception, evapotranspi-
ration, runoff, and drainage (Bonan, 1996; Famiglietti & Rodell, 2013; McCabe & Wolock, 2013). Since these 
processes are complex and show large heterogeneity spatiotemporally, it is hard to quantify all of their resulting 
impacts on soil moisture. We focus here on the two largest terrestrial water fluxes that are highly related to soil 
moisture variability: precipitation (Pr), which is the primary water source of soil moisture and also one of the 
atmospheric forcing variables for land surface processes, and evapotranspiration (ET), which is a primary water 
cycling process affecting soil moisture.

Abstract The effects of precipitation (Pr) and evapotranspiration (ET) on surface soil moisture (SSM) 
play an essential role in the land-atmosphere system. Here we evaluate multimodel differences of these 
effects within the Coupled Model Intercomparison Project Phase 5 (CMIP5) compared to Soil Moisture 
Active Passive (SMAP) products and ECMWF Reanalysis v5 (ERA5) as references in a frequency domain. 
The variability of SSM, Pr, and ET within three frequency bands (1/7 ∼ 1/30 days −1, 1/30 ∼ 1/90 days −1, 
and 1/90 ∼ 1/365 days −1) after normalization is quantified using Fourier transform. We analyze the impact 
of ET and Pr on SSM variability based on a transfer function assuming that these variables form a linear 
time-invariant (LTI) system. For the total effects of ET and Pr on SSM variability, the CMIP5 estimations are 
smaller than the reference data in the two higher frequency bands and are larger than the reference data in the 
lowest frequency band. Besides, the effects on SSM by Pr and ET are found to be different across the three 
frequency bands. In each frequency band, the variability of the factor that dominates SSM (i.e., Pr or ET) 
from CMIP5 is smaller than that from the references. This study identifies the spatiotemporal distribution of 
differences between CMIP5 models and references (SMAP and ERA5) in simulating ET and Pr effects on SSM 
within three frequency bands. This study provides insightful information on how soil moisture variability is 
affected by varying precipitation and evapotranspiration at different time scales within Earth System Models.

Plain Language Summary Climate is influenced by the interactions between the land surface 
and atmosphere boundary, and soil moisture is a key component of these physical processes. Precipitation 
and evapotranspiration, as two major variables involved in these interactions, have been largely regarded as 
essential processes affecting soil moisture dynamics. However, Earth System Models have large uncertainties 
in simulating these effects. This study compares the average performance of 14 Earth System Models in 
capturing the effects of precipitation and evapotranspiration on surface soil moisture variability. We find that 
(a) soil moisture is mainly affected by precipitation at weekly to seasonal time scales and by evapotranspiration 
at seasonal to annual time scales; (b) compared to two largely used reference data, the total effects of 
precipitation and evapotranspiration on soil moisture is smaller at weekly to seasonal time scales and are larger 
at seasonal to annual time scale; and (c) spatially, models tend to simulate less variability of precipitation or 
evapotranspiration as a major control on surface soil moisture.
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Previously, the couplings between SM, Pr, and ET variability have been studied using SM temporal autocorre-
lation. Assuming that SM dynamics as being forced by a random precipitation time series (i.e., white noise) and 
damped by an exponential damping term related to evapotranspiration losses, the temporal variability of SM can 
be reasonably approximated by a first-order Markov process, which results in the SM time series exhibiting a red 
noise spectrum (Delworth & Manabe, 1988). Based on this, many studies have attempted to characterize these 
effects within a time-frequency domain. Wu et al. (2002) showed that the response of SM to Pr at long time scales 
could be identified by its phase shifting and amplitude damping. The relationship between SM and Pr spectra was 
further explored using the integral time scale to show that SM spectra decays more rapidly than a red noise due to 
Pr departing from white noise at high frequency, and the damping term of ET losses was found to be bounded by 
the maximum of ET (Katul et al., 2007). Similarly, the integral time scale was used to reveal the dynamics of SM 
memory and its correlation with Pr and ET (Ghannam et al., 2016). Based on previous studies (Katul et al., 2007), 
the SM spectrum was found that could not be explained solely by precipitation effects on longer time scales 
(Nakai et al., 2014). By performing this kind of spectral analysis on a regional scale, Pr was found to be the main 
but not the only factor affecting SM variability (Zhou et al., 2020).

Although the coupling between SM, Pr, and ET has been intensively studied, how Earth System Models (ESMs) 
perform in capturing the effects of Pr and ET on SM variability globally and at different time scales is still not 
completely understood. There are two major challenges. One is the lack of sufficient accurate in-situ soil moisture 
measurements at the global scale. Because of this, previous studies have been limited to the use of in situ soil 
moisture observations to investigate its correlations with Pr and ET in limited regions (e.g., Ford et al., 2015; 
Wu et al., 2002). Recently, advanced remote sensing technology, such as NASA's Soil Moisture Active Passive 
(SMAP) mission (Entekhabi et al., 2010), provides global retrievals of surface soil moisture (top ∼5 cm of the 
soil column) that can be used to constrain land-atmosphere interaction observations over different spatiotempo-
ral scales. SMAP soil moisture products match well with in situ SSM observations by showing high accuracy 
that meets its accuracy requirement (unbiased root-mean-square error < 0.04 m 3/m 3) (Chan et al., 2016, 2018; 
Colliander et al., 2017, 2021). In addition, SMAP surface soil moisture retrievals show higher accuracy measured 
by a global average anomaly correlation over the majority of available land pixels compared to Soil Moisture 
Ocean Salinity (SMOS) and Advanced SCATterometer (ASCAT) (Chen et  al.,  2018). With the SMAP SSM 
measurements, the analysis of the Pr and ET effects on SSM can be conducted on a near-global basis rather than 
being limited by the sparse network of soil moisture observations.

Another challenge is that, due to the complexity and the large number of processes involved in land-atmosphere 
interactions, the representation of couplings between SM, Pr, and ET highly relies on parameterizations within 
ESMs, which leads to large uncertainties in identifying the effects of Pr and ET on SM variability (Seneviratne 
et al., 2010). In addition, the effects of Pr and ET on SM are mostly identified based on correlation analysis in the 
time domain (Feng & Liu, 2015; Guo et al., 2006; Sehler et al., 2019; Wang et al., 2021). For the time-domain 
approach, although we can know about the correlation strength between Pr or ET and SM, how the effects 
of Pr and ET on SM perform across different time scales is still ambiguous. The transfer function (Haykin 
& Van Veen, 2007), as a mathematical representation of the differential equation of system dynamics, can be 
used to address this kind of problem using frequency domain analysis. Assuming a linear time-invariant (LTI) 
system (Phillips et al., 2003), the transfer function can be developed to describe the relationship between the 
signal input and response without considering its specific structure and parameters. Therefore, it can be used to 
investigate the effects of Pr and ET on SM across different time scales in the frequency domain, assuming they 
are an LTI system. Spectral analysis based on the LTI system has been applied to other hydrological research 
like the runoff-storage relationship (Riegger & Tourian, 2014) and the surface flow in the river during floods 
(Bailly-Comte et al., 2008).

The fifth phase of the Coupled Model Intercomparison Project (CMIP5; Taylor et al., 2012) integrates a set of 
model experiments to improve our knowledge of climate change and climate variability and provides an oppor-
tunity for the multimodel assessment of land-atmospheric processes and variability. Evaluation of CMIP5 has 
been an ongoing interest in the research community (Yuan et al., 2021). Although evaluations of land-atmosphere 
interactions related to soil moisture within CMIP5 have been performed earlier (e.g., Berg & Sheffield, 2018; 
Dirmeyer et al., 2013; Levine et al., 2016), few studies have characterized the temporal behavior of SM globally 
in order to illustrate the model performance. Therefore, this study takes advantage of the CMIP5 intercomparison 
project to evaluate 14 ESMs with regard to the effects of Pr and ET on SSM variability.
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We aim to address two main questions: (a) how do the effects of Pr and ET on SSM variability change across time 
scales? And (b) how do the ESMs within CMIP5 perform in capturing these effects? Specifically, these effects 
are analyzed within three frequency bands: (a) weekly to monthly time scales (1/7 ∼ 1/30 days −1), (b) monthly 
to seasonal time scales (1/30 ∼ 1/90 days −1), and (c) seasonal to annual time scales (1/90 ∼ 1/365 days −1) at the 
global scale. First, a Fourier analysis (Thomson & Emery, 2014; Wilks, 2011) is conducted to determine the vari-
ability and power spectra of SSM, Pr, and ET by decomposing their time series into the three frequency bands. 
Then, we built an LTI system and characterized the effects of Pr and ET on SSM from a multi-frequency perspec-
tive based on its transfer function. We further identified these effects by evaluating the relationships between the 
spectral slopes of the three variables. All analysis is conducted at the same spatial resolution (∼36 km 2) as  the 
SMAP product (specifically, Level 3 Radiometer Global Daily 36  km EASE-Grid Soil Moisture, Version 7) 
provided.

In Section 2, we first describe the models and data used. Then, we detail our methodology for spectral analysis. 
In the first part of Section 3, we show the results to be compared with CMIP5 simulations as the reference. In the 
second part, we perform comparative analyses to evaluate the multimodel differences within CMIP5 compared to 
the reference. In the third part, we investigate uncertainties that may exist in this study. Finally, in Section 4, we 
summarize our findings and discuss the impacts of the research.

2. Methods
2.1. Overview

In this section, we first describe the data collection within CMIP5, SMAP observation data, and ERA5 reanalysis 
data. Second, we detail the methodology from the data preprocessing to the final multimodel comparison. Specif-
ically, Section 2.3 describes the preprocessing of SMAP products and CMIP5 simulations. Section 2.4 describes 
the processes to get the power spectra used for further analysis. Next, Section 2.5 defines the normalized varia-
bility of SSM, Pr, and ET and introduces the approach for investigating the effects of Pr and ET on SSM based 
on the normalized variability. Section 2.6 describes the spectral slopes of SSM, Pr, and ET time series and how 
to summarize their auto-correlation characteristics. Figure 1 summarizes the steps described in Sections 2.4, 2.5, 
and 2.6. Finally, Section 2.7 describes the comparison between CMIP5 simulations and the two reference datasets 
(i.e., SMAP and ERA5).

2.2. Data Organizing

2.2.1. CMIP5 Models

The CMIP5 project conducted a set of model experiments to improve our knowledge of climate variability from 
past to present and into the future (Taylor et al., 2012). Here we use the daily simulations of 14 ESMs from the 
historical experiment within CMIP5. The models are selected based on the availability of daily outputs required 
for the spectral analysis within the same temporal coverage from 01/01/1950 to 12/31/2005 (Table S1 in the 
Supporting Information S1). To evaluate the effects of Pr and ET (i.e., atmospheric water supply and loss) on 
SSM variability, we analyze the simulated SSM (top 10 cm), Pr, and ET (variable mrsos, pr, and hfls in the 
CMIP5 archive, respectively). We use only one ensemble member—“r1i1p1” (where r for realization, i for initial-
ization, and p for physics).

2.2.2. Reference Data

2.2.2.1. SMAP Soil Moisture Data

The NASA SMAP satellite was launched in January 2015 and has been measuring SSM (moisture in the top 
∼5 cm of the soil column) globally every 2∼3 days (Entekhabi et al., 2010). In this study, we use its Level 3 Radi-
ometer Global Daily 36 km EASE-Grid Soil Moisture, Version 7 (O'Neill et al., 2020) with the retrievals from 
both 6 a.m. descending passes and 6 p.m. ascending passes. Although its 6 p.m. retrievals show more degradation 
than its 6 a.m. retrievals due to the required vertical thermal equilibrium assumption in its algorithm, this degra-
dation has been shown to be small (Chan et al., 2018; O'Neill et al., 2018). Therefore, we use both retrievals to 
best use the observational information. The SMAP Level 3 product was developed based on geophysical param-
eters derived from its Level 1 and Level 2 products. It was spatiotemporally re-sampled to the global cylindrical 
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EASE-Grid 2.0 to make each grid cell has a nominal size of approximately 36 × 36 km 2 regardless of longitude 
and latitude (Brodzik et al., 2012).

In addition, SMAP SSM retrievals have been shown to exhibit potential errors in heavily vegetated areas, 
frozen soils, and regions with the presence of water bodies (Entekhabi et al., 2014; McColl et al., 2017; Wrona 
et al., 2017). Therefore, we masked SSM retrievals in regions identified as dense vegetation cover (vegetation 
water content >5 kg/m 2), frozen landscapes (surface temperature < 0°C), and the presence of water bodies (water 
body fraction >5% coverage of a pixel), which is similar to a previous study (McColl et al., 2017).

2.2.2.2. ERA5 Precipitation and Evapotranspiration Data

The reference Pr and ET data are collected from ERA5 (Hersbach et al., 2018), which is the fifth-generation 
reanalysis of ECMWF (European Centre for Medium-Range Weather Forecasts) as the next generation of repre-
sentative satellite-observational data. ERA5 reanalysis is achieved by data assimilation, which combines weather 
forecasts with observations in an optimal way every few hours to produce the best estimate of the state of the 
atmosphere. In this way, ERA5 combines model data and observations into a globally complete and consistent 
data set. Large efforts have been made on evaluating both precipitation (Jiao et al., 2021; Rivoire et al., 2021; 
Tarek et al., 2020) and evapotranspiration (Martens et al., 2020; Pelosi & Chirico, 2021; Pelosi et al., 2020) from 
ERA5 reanalysis against multi-source of observations on regional and global scales. Although this reanalysis data 
cannot be fully regarded as observations due to more incomprehensible errors and uncertainties associated with 
its model-dependent nature (Parker, 2016), these extensive evaluations have demonstrated that ERA5 reanalysis 

Figure 1. Overview of the data processing. The purple, green, and orange dashed boxes are steps for Sections 2.4, 2.5, and 2.6, respectively. 𝐴𝐴 𝐴𝐴 represents surface soil 
moisture, precipitation, and evapotranspiration, since the procedures to deal with their time series (i.e., 𝐴𝐴 𝐴𝐴(𝑡𝑡) ) are the same. The number “1,” “2,” and “3” (hereafter 
being referred as 𝐴𝐴 𝐴𝐴  ) represent three frequency bands in the order of weekly to monthly (7 ∼ 30 days), monthly to seasonal (30 ∼ 90 days), and seasonal to annual 
(90 ∼ 365 days) time scales. 𝐴𝐴 𝐴𝐴(𝑛𝑛) is the discrete series sampled from 𝐴𝐴 𝐴𝐴(𝑡𝑡) . 𝐴𝐴 𝐴𝐴𝑋𝑋 (𝑘𝑘) is the amplitude spectrum of 𝐴𝐴 𝐴𝐴 from 𝐴𝐴 𝐴𝐴(𝑛𝑛) using the Fast Fourier Transform (FFT). 

𝐴𝐴 𝐴𝐴𝑋𝑋 (𝑘𝑘) is the power spectrum of 𝐴𝐴 𝐴𝐴 as the square of the absolute value of its amplitude. 𝐴𝐴 𝐴𝐴𝑋𝑋 (𝑘𝑘)
′ is the filtered 𝐴𝐴 𝐴𝐴𝑋𝑋 (𝑘𝑘) to the frequency band within 7–365 days. 𝐴𝐴 𝐴𝐴𝑋𝑋 (𝑘𝑘)

′
𝑖𝑖
 

is 𝐴𝐴 𝐴𝐴𝑋𝑋 (𝑘𝑘)
′ being “separated” into three frequency bands: weekly to monthly (𝐴𝐴 𝐴𝐴 = 1 ), monthly to seasonal (𝐴𝐴 𝐴𝐴 = 2 ), and seasonal to annual (𝐴𝐴 𝐴𝐴 = 3 ). The sum of spectral 

amplitudes of 𝐴𝐴 𝐴𝐴 (𝐴𝐴 𝐴𝐴∑

𝑖𝑖
 ) and the spectral slopes of 𝐴𝐴 𝐴𝐴 (𝐴𝐴 𝐴𝐴𝑘𝑘𝑘𝑘𝑖𝑖

 ) is gotten from 𝐴𝐴 𝐴𝐴X(𝑘𝑘)
′
𝑖𝑖
 based on “sum over amplitude” and “linear regression” within the ith frequency band, 

respectively. In the green dashed box, 𝐴𝐴 𝐴𝐴𝑛𝑛𝑖𝑖
 is gotten from 𝐴𝐴 𝐴𝐴∑

𝑖𝑖
 based on normalization across the three frequency bands, and then 𝐴𝐴 𝐴𝐴SEP 𝑖𝑖 and 𝐴𝐴 𝐴𝐴EEP 𝑖𝑖 are two ratios used to 

analyze the effects of Pr and ET on SSM defined in Section 2.5. In the orange dashed box, 𝐴𝐴 𝐴𝐴𝑘𝑘𝑘𝑘𝑖𝑖
 are presented as the colors of noise defined in Section 2.6.
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data can serve as good proxies for observations in modeling and assessment of hydrological processes. In this 
study, we use “total precipitation” (units: m) and “evaporation” (units: m of water equivalent) estimates as refer-
ences of Pr and ET, respectively, to compare with CMIP5 simulations on a global scale. This ERA5 data set has 
a spatial resolution of 0.25° × 0.25° for the atmosphere at an hourly temporal resolution. We collect the ERA5 
hourly data within the same temporal coverage as SMAP, spanning 1 April 2015–31 December 2020. Then we 
convert them into UTC-day total precipitation and evapotranspiration (units: m) based on (Hersbach et al., 2018):

Pr𝑑𝑑 =

23
∑

ℎ𝑟𝑟=1

Prℎ𝑟𝑟 + Pr𝑑𝑑+1 00𝑈𝑈𝑈𝑈𝑈𝑈 (1)

ET𝑑𝑑 =

23
∑

ℎ𝑟𝑟=1

ETℎ𝑟𝑟 + ET𝑑𝑑+1 00𝑈𝑈𝑈𝑈𝑈𝑈 (2)

where 𝐴𝐴 𝐴𝐴𝐴 is hour and 𝐴𝐴 𝐴𝐴 is the day of interest (𝐴𝐴 𝐴𝐴 + 1 is the next day). In this way, we get daily precipitation and 
evapotranspiration time series (i.e., 𝐴𝐴 𝐴𝐴𝐴𝐴𝑑𝑑 and 𝐴𝐴 𝐴𝐴𝐴𝐴𝑑𝑑 ) for further analysis. We also use the same subset of ERA5 data-
sets and the same method to collect daily potential evaporation (PE) (units: m) with the same temporal coverage 
for comparison with ET.

2.3. Data Preprocessing

First, since the SMAP SSM retrievals are temporally discontinuous on a daily time scale, we perform a gap-filling 
to make it a daily data set. Specifically, we first use a long-term global daily soil moisture data set derived from 
AMSR-E and AMSR2 (named as NNsm; Yao & Lu, 2020) to fill part of the missing values in SMAP SSM 
retrievals. Then we fill in the remaining missing values using the moving average. Next, for those time series that 
still have gaps longer than the length of the moving window, we fill the gaps with estimates inferred from forward 
and reverse autoregressive fits to the samples by using autoregressive modeling. The choices of the parameters 
during this gap-filling process are decided by the corresponding uncertainty analysis, which will be discussed in 
detail in Section 3.3. To validate the gap-filled SMAP SSM data, we use in-situ SSM data from 16 sites within 
the International Soil Moisture Network (ISMN; Dorigo et al., 2011, 2013). We select these sites based on 11 
vegetation types and five latitude bands, which are both commonly-used ways to categorize the land surface glob-
ally (Xi et al., 2022). The statistical errors between gap-filled results and in-situ observations are close to or even 
better than that between original SMAP retrievals and in-situ observations within ISMN (Tables S2 and S3 in the 
Supporting Information S1), indicating our gap-filled SMAP data are valid for further analysis.

In addition, the CMIP5 simulations used in this study span decades. Therefore, some regions may show long-
term secular trends. To avoid such long-term trends introducing errors into the power spectrum when performing 
Fourier analysis next, we removed these trends by subtracting an optimal (least squares) fitted linear regression 
from the original data so that the time series after detrending has a mean value of zero. Thus, we can focus on the 
intra-annual fluctuations of the time series.

2.4. Obtaining Power Spectra From Time Series

In this study, we perform the variability analysis from two aspects: one is the ratio of the normalized variability, 
and another is the spectral slope that can be indicated as colors of noise. Both require further steps based on 
obtaining the power spectra of SSM, Pr, and ET. Since the steps to get the power spectra of the three variables are 
the same, here we use 𝐴𝐴 𝐴𝐴 to represent SSM, Pr, or ET. There are four steps to get the filtered power spectra of 𝐴𝐴 𝐴𝐴 .

Starting from the top-left corner of Figure 1, 𝐴𝐴 𝐴𝐴(𝑛𝑛) , as the data obtained from either CMIP5, SMAP, or ERA5, are 
the discrete series sampled from 𝐴𝐴 𝐴𝐴(𝑡𝑡) based on the sampling number (N) (i.e., the number of days). Next, we get 
the amplitude spectrum of X (𝐴𝐴 𝐴𝐴𝑋𝑋(𝑘𝑘) ) from 𝐴𝐴 𝐴𝐴(𝑛𝑛) based on the Fast Fourier Transform (FFT), a faster algorithm 
for  the Discrete Fourier Transform (DFT). Both approaches decompose the time series into orthogonal sinusoidal 
frequency components so that the variability within each component can be investigated separately. In this way, 
the oscillations of time series (𝐴𝐴 𝐴𝐴(𝑡𝑡) ) can be identified through the spectra in the frequency domain.

Then we get the power spectrum of X from its amplitude spectrum as 𝐴𝐴 𝐴𝐴𝑋𝑋(𝑘𝑘) = |𝐹𝐹𝑋𝑋(𝑘𝑘)|
2 . We only keep 𝐴𝐴 𝐴𝐴𝑋𝑋(𝑘𝑘) 

with the frequency ranging from 1/2 to 𝐴𝐴 1∕𝑁𝑁 day −1 since the spectrum is symmetrical about the Nyquist frequency 
(𝐴𝐴 𝐴𝐴𝑠𝑠∕2 , where 𝐴𝐴 𝐴𝐴𝑠𝑠 is sampling frequency). For all time-series data, we use 1 day −1 as the sampling frequency from 
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𝐴𝐴 𝐴𝐴(𝑡𝑡) to 𝐴𝐴 𝐴𝐴𝑋𝑋(𝑘𝑘) since they are all available at a daily interval. The frequency for each sample is based on its normal-
ized frequency and frequency resolution.

The last step is to restrict our investigation within a weekly to annual frequency band (i.e., 1/7 days −1 ∼ 1/365 days −1). 
There are two reasons to remove frequencies larger than 1/7 days −1: (a) the gap-filling process for SMAP retrievals 
may introduce high-frequency variability as noise; (b) the random error in the remotely sensed SSM (e.g., SMAP 
retrievals) could spuriously inflate the high-frequency portion of the SSM spectra, especially on time scales 
smaller than 3 days (Su et al., 2014). These spuriously inflated high-frequency noises are usually absent from 
CMIP5 models. The reason to remove frequencies smaller than 1/365 days −1 is that, compared to CMIP5 models 
with multi-decade records, the temporal coverage of SMAP retrievals is too short to support an inter-annual 
analysis. To achieve this restriction, we filter all time series with a low-pass filter and a high-pass filter with the 
cutoff frequency as 1/7 days −1 and 1/365 days −1, respectively. In this way, we get 𝐴𝐴 𝐴𝐴𝑋𝑋(𝑘𝑘)

′ as the filtered spectra 
with frequencies within 1/7 days −1 to 1/365 days −1 from 𝐴𝐴 𝐴𝐴𝑋𝑋(𝑘𝑘) .

2.5. Analysis of the Effects of Pr and ET on SSM Variability

Both Pr and ET affect SSM variability. Pr is the dominant water source of SSM, while ET is the major loss term 
affecting SSM loss in most climates. Thus, increasing Pr will increase SSM, and increasing ET will decrease 
SSM (without considering the saturation condition).

Here we aim to examine the effects of ET and Pr on SSM variability within the three frequency bands based on 
the transfer function of a conceptual LTI system. The related theory of the LTI system and transfer function can 
be found in Text S1 in the Supporting Information S1.

To capture the total effects of ET and Pr on the SSM variability, we use a conceptual LTI system with the excita-
tion as 𝐴𝐴 𝐴𝐴𝐴𝐴(𝐴𝐴) and 𝐴𝐴 𝐴𝐴𝐴𝐴(𝑡𝑡) together and the response as 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) (Figure 2). Since ET and Pr have different spectral 
characteristics in the frequency domain (Katul et al., 2007; Nakai et al., 2014; also from Figure 3 in Section 3.1), 
here we separate their effects on SSM as two inputs and determine the total effects as an identical transfer func-
tion. Regarding this system as a “black-box” model, we can focus on the relationship between excitation (i.e., ET 
and Pr) and response (i.e., SSM) without consideration of the internal variations of the system. In this way, the 
relationship between 𝐴𝐴 ssm(𝑡𝑡) , 𝐴𝐴 𝐴𝐴𝐴𝐴(𝐴𝐴) , and 𝐴𝐴 𝐴𝐴𝐴𝐴(𝑡𝑡) can be expressed as:

ssm(𝑡𝑡) = 𝑒𝑒𝑡𝑡(𝑡𝑡) ∗ ℎsep(𝑡𝑡) + 𝑝𝑝𝑝𝑝(𝑡𝑡) ∗ ℎsep(𝑡𝑡) (3)

Figure 2. Diagram of the conceptual linear time-invariant (LTI) system with the excitations as 𝐴𝐴 et(𝑡𝑡) and 𝐴𝐴 𝐴𝐴𝐴𝐴(𝑡𝑡) , the response 
as 𝐴𝐴 ssm(𝑡𝑡) , and the transfer function as 𝐴𝐴 𝐴sep(𝑡𝑡) in the time domain. The form in the time domain is shown in the blue box. By 
performing Fourier transform, the corresponding form of the LTI system in the frequency domain is shown in the red box, 
where 𝐴𝐴 𝐴𝐴ET(𝑘𝑘) , 𝐴𝐴 𝐴𝐴Pr (𝑘𝑘) , and 𝐴𝐴 𝐴𝐴SSM(𝑘𝑘) is the Fourier transform (amplitude spectrum) of 𝐴𝐴 et(𝑡𝑡) , 𝐴𝐴 𝐴𝐴𝐴𝐴(𝑡𝑡) , and 𝐴𝐴 ssm(𝑡𝑡) , and 𝐴𝐴 𝐴𝐴SEP(𝑘𝑘) is the 
Fourier transform of the transfer function 𝐴𝐴 𝐴sep(𝑡𝑡) . 𝐴𝐴 𝐴𝐴EEP is the fraction of ET variability to the sum of ET and Pr variability in 
the frequency domain.
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where 𝐴𝐴 𝐴sep(𝑡𝑡) is the transfer function of the LTI system shown in Figure 2. Then, Equation 3 can be expressed as 
the spectrum analysis in the frequency domain:

𝐹𝐹SSM(𝑘𝑘) = 𝐹𝐹ET(𝑘𝑘) ⋅𝐻𝐻SEP(𝑘𝑘) + 𝐹𝐹𝑃𝑃𝑃𝑃(𝑘𝑘) ⋅𝐻𝐻SEP(𝑘𝑘) (4)

where 𝐴𝐴 𝐴𝐴SEP(𝑘𝑘) is the Fourier transform of the transfer function 𝐴𝐴 𝐴sep(𝑡𝑡) . Thus, the variations of the excitation and 
response spectra of the LTI system are determined by the transfer function 𝐴𝐴 𝐴𝐴SEP(𝑘𝑘) as:

𝐻𝐻SEP(𝑘𝑘) =
𝐹𝐹SSM(𝑘𝑘)

𝐹𝐹ET(𝑘𝑘) + 𝐹𝐹𝑃𝑃𝑃𝑃(𝑘𝑘)
 (5)

where 𝐴𝐴 𝐴𝐴ET(𝑘𝑘) , 𝐴𝐴 𝐴𝐴𝑃𝑃𝑃𝑃(𝑘𝑘) , and 𝐴𝐴 𝐴𝐴SSM(𝑘𝑘) are the Fourier transform (amplitude spectrum) of 𝐴𝐴 𝐴𝐴𝐴𝐴(𝐴𝐴) , 𝐴𝐴 𝐴𝐴𝐴𝐴(𝑡𝑡) , and 𝐴𝐴 ssm(𝑡𝑡) .

In order to separately characterize the total effects of ET and Pr on SSM variability within the three frequency 
bands, we calculate the normalized variability of SSM, Pr, and ET (𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛 , 𝐴𝐴 𝐴𝐴𝐴𝐴𝑛𝑛 , and 𝐴𝐴 𝐴𝐴𝐴𝐴𝑛𝑛 , as 𝐴𝐴 𝐴𝐴𝑛𝑛 in Figure 1). 
We aim to use 𝐴𝐴 𝐴𝐴𝑛𝑛 to indicate the proportion of the temporal variability over different frequency bands. The 
procedures to get 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛 , 𝐴𝐴 𝐴𝐴𝐴𝐴𝑛𝑛 , and 𝐴𝐴 𝐴𝐴𝐴𝐴𝑛𝑛 from time series of SSM (𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) ), Pr (𝐴𝐴 𝐴𝐴𝐴𝐴(𝑡𝑡) ), and ET (𝐴𝐴 𝐴𝐴𝐴𝐴(𝐴𝐴) ) are shown 
in Figure 1 (see Figure S1 in the Supporting Information S1 for a detailed version). This method to process 

𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛 has been applied in a previous study (Xi et al., 2022). The processing of 𝐴𝐴 𝐴𝐴𝐴𝐴𝑛𝑛 and 𝐴𝐴 𝐴𝐴𝐴𝐴𝑛𝑛 follows a similar 

Figure 3. Surface soil moisture (𝐴𝐴 SSM𝑛𝑛 ; Figures a–c), precipitation (𝐴𝐴 Pr𝑛𝑛 ; Figures d–f), and evapotranspiration (𝐴𝐴 ET𝑛𝑛 ; Figures g–i) based on the reference data over the 
three frequency bands. 𝐴𝐴 SSM𝑛𝑛 , 𝐴𝐴 Pr𝑛𝑛 , and 𝐴𝐴 ET𝑛𝑛 are the normalized variability of SSM, Pr, and ET, respectively, defined in Section 2.5. Black parts in Figures (a–c) are 
regions where Soil Moisture Active Passive retrievals have potential errors defined in Section 2.2. Dark gray parts in Figures (a–c) are regions with 𝐴𝐴 SSM𝑛𝑛 (defined in 
Section 2.7) less than 0.1. For all subsequent results, including Figure 3, the three columns from left to right represent the weekly to monthly frequency band (𝐴𝐴 𝐴𝐴 = 1 ), 
the monthly to seasonal frequency band (𝐴𝐴 𝐴𝐴 = 2 ), and the seasonal to annual frequency band (𝐴𝐴 𝐴𝐴 = 3 ).
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procedure. We separate the filtered 𝐴𝐴 𝐴𝐴𝑋𝑋(𝑘𝑘) (𝐴𝐴 𝐴𝐴𝑋𝑋(𝑘𝑘)
′ in Figure 1, see Section 2.4) into three frequency bands: weekly 

to monthly time scales (7 ∼ 30 days), monthly to seasonal time scales (30 ∼ 90 days), and seasonal to annual time 
scales (90 ∼ 365 days). Finally, we define the normalized variability of X as the spectral power of each frequency 
band divided by the total spectral power of 𝐴𝐴 𝐴𝐴𝑋𝑋(𝑘𝑘)

′ :

𝑋𝑋𝑛𝑛𝑖𝑖
=

∑

𝑗𝑗
𝐸𝐸𝑋𝑋𝑖𝑖(𝑘𝑘𝑗𝑗)

′

∑3

𝑖𝑖=1

∑

𝑗𝑗
𝐸𝐸𝑋𝑋𝑖𝑖(𝑘𝑘𝑗𝑗)

′
 (6)

where 𝐴𝐴 𝐴𝐴𝑋𝑋𝑖𝑖(𝑘𝑘𝑗𝑗)
′ represents the spectral power of X for the jth frequency in the ith frequency band, i is the ordinal 

number representing the three frequency bands from high to low, and j is the ordinal number of each frequency 
within each frequency band. Thus, we denote 𝐴𝐴 𝐴𝐴𝑛𝑛𝑖𝑖

 as the normalized variability of X in the ith frequency band. In 
this way, 𝐴𝐴 𝐴𝐴𝑛𝑛𝑖𝑖

 , as a value between 0 and 1, indicates the proportion of the temporal variability of 𝐴𝐴 𝐴𝐴(𝑡𝑡) expressed in 
the ith frequency band.

Next, we reformulate Equation 5 based on the normalized variability:

𝐻𝐻SEP𝑛𝑛𝑖𝑖
=

SSM𝑛𝑛𝑖𝑖

ET𝑛𝑛𝑖𝑖
+ 𝑃𝑃𝑃𝑃𝑛𝑛𝑖𝑖

 (7)

where 𝐴𝐴 𝐴𝐴SEP𝑛𝑛𝑖𝑖
 is the fraction of SSM variability to the sum of ET and Pr variability (i.e., demand and supply) in 

the ith frequency band. The higher this ratio, the stronger effects on the temporal variability of SSM by ET and 
Pr. We also aim to define the dominant factor on SSM variability (i.e., either ET or Pr) within the three frequency 
bands. Therefore, we define another ratio:

𝐻𝐻EEP𝑛𝑛𝑖𝑖
=

ET𝑛𝑛𝑖𝑖

ET𝑛𝑛𝑖𝑖
+ 𝑃𝑃𝑃𝑃𝑛𝑛𝑖𝑖

 (8)

where 𝐴𝐴 𝐴𝐴EEP𝑛𝑛𝑖𝑖
 is the fraction of ET variability to the sum of ET and Pr variability in the ith frequency band. This 

ratio is greater than one-half means that ET has larger variability than Pr and thus a greater impact on the tempo-
ral variability of SSM and vice versa. In this way, we use 𝐴𝐴 𝐴𝐴SEP𝑛𝑛𝑖𝑖

 and 𝐴𝐴 𝐴𝐴EEP𝑛𝑛𝑖𝑖
 as two indicators to characterize the 

effects of ET and Pr on SSM variability in the three frequency bands. 𝐴𝐴 𝐴𝐴SEP𝑛𝑛𝑖𝑖
 measures the total effect of ET and 

Pr on SSM variability and 𝐴𝐴 𝐴𝐴EEP𝑛𝑛𝑖𝑖
 determines which water flux (i.e., Pr or ET) is dominant. A detailed procedure 

to get 𝐴𝐴 𝐴𝐴SEP𝑛𝑛𝑖𝑖
 and 𝐴𝐴 𝐴𝐴EEP𝑛𝑛𝑖𝑖

 can be found in Figure S1 in the Supporting Information S1.

2.6. Analysis of Spectral Slope of SSM, Pr, and ET

The spectral slopes of time series can explain how ET and Pr variability contribute to the spectrum of soil mois-
ture (Katul et al., 2007). A common way to characterize the spectral slope is the power-law noise, which is the 
noise distributed in the whole frequency domain and with the form that variance scales with frequency according 
to an inverse power law (Mandelbrot, 1982). Being considered power-law noise, the spectral densities of time 
series vary as proportional to 𝐴𝐴 1∕𝑓𝑓𝛽𝛽 (i.e., inverse frequency), where 𝐴𝐴 𝐴𝐴 is the inverse number of the spectral slope 
(Bourke, 1998). In this way, the spectra of SSM, Pr, and ET time series can be used to characterize different 
noises and categorize noises into different “colors” based on the spectral slopes. The basic theory of the color of 
noise can be found in Text S2 in the Supporting Information S1.

The spectral slopes for SSM (𝐴𝐴 SSM𝑘𝑘𝑘𝑘𝑖𝑖 ), Pr (𝐴𝐴 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘𝑖𝑖 ), and ET (𝐴𝐴 𝐴𝐴𝐴𝐴 𝑘𝑘𝑘𝑘𝑖𝑖 ) are approximated from the 𝐴𝐴 𝐴𝐴𝑋𝑋(𝑘𝑘)
′ (gotten 

from Section 2.4) based on the linear regression, as the orange dashed box shown in Figure 1. In this study, we 
use white noise and five main colored noises (violet, blue, pink, red, and black noise) to characterize 𝐴𝐴 𝐴𝐴𝑘𝑘𝑘𝑘𝑖𝑖 in the 
ith frequency band. The corresponding spectral slope (i.e., the opposite of 𝐴𝐴 𝐴𝐴 in inverse power law 𝐴𝐴 1∕𝑓𝑓𝛽𝛽 ) of violet, 
blue, white, pink, and red noise (or Brownian noise) is 2, 1, 0 (i.e., the spectral density of white noise is flat), 
−1, and −2, respectively, and the spectral slope of black noise is smaller than −2 (see Table S4 in the Supporting 
Information S1). The smaller the spectral slope in the frequency domain, the longer the memory of the signals 
represented as different colors of noise (excluding violet and blue noise). For example, a signal with its spectrum 
shown as white noise means the contribution to its variance is equal across all frequencies, while a signal with 
its spectrum shown as red noise means low-frequency periodic components dominate the contribution to its 
variance.
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2.7. Analysis of Differences Between CMIP5 Models and Reference Data

We evaluate the multimodel differences of 𝐴𝐴 𝐴𝐴SEP𝑛𝑛 and 𝐴𝐴 𝐴𝐴EEP𝑛𝑛 within CMIP5 compared to reference data (i.e., 
SMAP and ERA5) by subtracting reference data from CMIP5 averages. In addition, we calculate the coefficient 
of variation across 14 models to examine inter-model variability.

The spatial resolution and the land cover between CMIP5 models and reference data, as well as among models 
themselves, are different. Here we re-grid all results with the same spatial resolution and land cover as SMAP so 
that they can be compared with each other. Specifically, we first project all matrices to the same spatial resolution 
as SMAP (36 km × 36 km) based on the nearest neighbor search, that is, find the closet pixel within each spatial 
resolution compared to SMAP resolution and let the value of that closet pixel as the value for the corresponding 
pixel in SMAP resolution. Then, for each re-gridded matrix, we fill those pixels without valid values (i.e., shown 
as “NaN”) but have values in SMAP data with the mean values of their nearest neighbors. We also removed the 
pixels (i.e., set to “NaN”) without a valid value in the corresponding SMAP resolution. In this way, all re-gridded 
matrices have the same land cover as the results based on SMAP data.

In addition, we test the robustness of the multimodel differences within CMIP5 compared to SMAP and ERA5 
references to avoid the cases where differences are caused by only a few models or even one model. This robust-
ness of the differences is depicted on the maps using stippling, showing the regions with a fraction of models as 
100% (i.e., all 14 models agree on the sign of average differences) and 75% (i.e., 11 of the 14 models agree on 
the sign of average differences). Finally, since the variation of soil moisture in dry regions is usually very small 
(Koster et al., 2009), we remove regions with 𝐴𝐴 SSM𝑛𝑛 less than 0.1, where 𝐴𝐴 SSM𝑛𝑛 is the spatiotemporal normalized 
mean SSM based on SMAP (Figure S3 in the Supporting Information S1). To get 𝐴𝐴 SSM𝑛𝑛 , we first use SMAP SSM 
retrievals to get the daily mean SSM (𝐴𝐴 𝑆𝑆𝑆𝑆𝑆𝑆  ) for each pixel. Then we normalize them between zero and one based 
on the min-max normalization as:

SSM𝑛𝑛 =

(

SSM − SSMmin

)

∕

(

SSMmax − SSMmin

)

 (9)

where 𝐴𝐴 SSMmin and 𝐴𝐴 SSMmax are the minimum and maximum 𝐴𝐴 SSM on the global scale.

3. Results and Discussion
3.1. Temporal Variabilities of Soil Moisture, Precipitation, and Evapotranspiration From SMAP and 
ERA5 Reference Data

The temporal variability of SSM (𝐴𝐴 SSM𝑛𝑛 ) is larger in the seasonal to annual frequency band in most regions, with 
a smaller proportion in the two higher frequency bands, indicating that SSM has large variability on time scales 
longer than the seasonal time scale (Figures 3a–3c).

The temporal variability of precipitation (𝐴𝐴 𝐴𝐴𝐴𝐴𝑛𝑛 ) shows different regional distributions over the three frequency 
bands (Figures 3d–3f). The variability is larger in the lowest frequency band for most tropical regions where the 
seasonal cycle can be large, and is larger in the highest frequency band for other regions, especially non-tropical 
regions. The reason is that, in most tropical regions, especially regions with tropical wet and dry climate, like 
Brazil, India, Northern Australia, and regions between the Sahara Desert and the equator in Africa, although 
the variation of temperature and radiation are small over a year, rainfall exhibits a strong seasonal cycle—the 
days with and without rainfall are concentrated so that the boundaries of the wet season and dry season are more 
distinct. So, precipitation in these regions shows a large seasonal variability. However, in tropical regions with 
a very wet climate, such as the Democratic Republic of the Congo and Indonesia, there is no such seasonality 
because of the more steady rainfall pattern in these regions. Regions right along the equator usually have two rainy 
seasons corresponding to both equinoxes. On the other hand, there is no obvious wet and dry season distinction 
for most non-tropical regions. The occurrence of rainfall is typically more random over a whole year and close to 
a white noise signal at high frequencies (Katul et al., 2007; Nakai et al., 2014). Therefore, precipitation variability 
in non-tropical regions is almost all high-frequency variability, except for regions with a Mediterranean climate 
and monsoonal regions where the monsoon distributes rainfall in a few months, imposing a strong seasonal cycle.

The temporal variability of ET (𝐴𝐴 ET𝑛𝑛 ) is largest in the seasonal to annual frequency band over most regions except 
for regions with a tropical wet climate (Figures 3g–3i). The reason is that ET in most regions is driven by either 
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radiation or moisture limitation with high seasonality, except in the wet tropics where the seasonality of radiation 
and moisture is small but the daily variability can be large. In this way, the results in tropical wet regions, such 
as in the Amazon rainforest, Africa's Equator, Indonesia, and the Philippines, are the opposite of other regions in 
terms of frequency distribution, showing ET variability is concentrated on time scales shorter than monthly. This 
high-frequency radiation variability is mainly due to the variability of clouds on daily to weekly time scales which 
causes a large variability of ET on these short time scales (Anber et al., 2015). Moreover, this mechanism has the 
largest influence on regions near the equator because these regions receive more radiation than other regions over 
a year and thus have larger variations between incoming solar radiation on cloudy versus non-cloudy days. There-
fore, in these regions, large ET variability is mostly located in the highest frequency band. In addition, ET in very 
dry regions (e.g., deserts) does not have a clear seasonal cycle as well due to the strong limitation of moisture.

Figure 4 shows the global distribution of 𝐴𝐴 𝐴𝐴SEP𝑛𝑛 and 𝐴𝐴 𝐴𝐴EEP𝑛𝑛 based on SMAP and ERA5 data over the three frequency 
bands (the corresponding values of 𝐴𝐴 𝐴𝐴SEP𝑛𝑛 and 𝐴𝐴 𝐴𝐴EEP𝑛𝑛 in each frequency band see Table S5 in the Supporting Infor-
mation S1). In the weekly to monthly frequency band, the total effect of ET and Pr on SSM variability is less 
than in the other two frequency bands. Compared to Pr, which is the dominant driver of SSM variability in this 
frequency band, the fluctuation of ET has limited effects on SSM as ET has less variability, in part regulated by 
soil moisture itself (Figures 4a and 4d). On time scales longer than monthly, ET and Pr together have more effects 
on SSM variability. In the monthly to seasonal frequency band where the total effect of ET and Pr on SSM reaches 
its largest magnitude, although the proportion of ET variability becomes larger, Pr is still the dominant factor of 
SSM variability (Figures 4b and 4e). In the seasonal to annual frequency band, the total variability of ET and Pr 
decreases but is still larger than that in the weekly to monthly frequency band. However, in this frequency band, 
ET becomes the dominant factor on SSM, especially in middle and high latitudes. Therefore, Pr variability alone 
in these regions is no longer able to explain the SSM dynamics, and the seasonality of ET has to be considered 
(Figures 4c and 4f). Since 𝐴𝐴 𝐴𝐴EEP𝑛𝑛 represents the proportion of ET variability to the total variability of ET and Pr, 
similar to 𝐴𝐴 𝐴𝐴𝐴𝐴𝑛𝑛 shown in Figure 3, 𝐴𝐴 𝐴𝐴EEP𝑛𝑛 patterns are different in tropical wet regions, where ET variability has 
more effects on SSM on the two higher frequency bands (Figures 4d and 4e), and Pr becomes the dominant factor 
on the lowest frequency band due to the strong seasonality of rainfall (Figure 4f).

To further identify the Pr and ET effects on SSM variability, we evaluate the relationships between their spectral 
slopes. Figure 5 shows the global distribution of 𝐴𝐴 SSM𝑘𝑘𝑘𝑘 , 𝐴𝐴 Pr𝑘𝑘𝑘𝑘 , and 𝐴𝐴 ET𝑘𝑘𝑘𝑘 expressed in terms of noise color in the 

Figure 4. 𝐴𝐴 𝐴𝐴SEP𝑛𝑛 (Figures a–c) and 𝐴𝐴 𝐴𝐴EEP𝑛𝑛 (Figures d–f) based on the reference data over the three frequency bands. 𝐴𝐴 𝐴𝐴SEP𝑛𝑛 is the ratio of Surface soil moisture (𝐴𝐴 SSM𝑛𝑛 ) 
to the sum of evapotranspiration (𝐴𝐴 ET𝑛𝑛 ) and precipitation (𝐴𝐴 Pr𝑛𝑛 ), and 𝐴𝐴 𝐴𝐴EEP𝑛𝑛 is the ratio of 𝐴𝐴 ET𝑛𝑛 to the sum of 𝐴𝐴 ET𝑛𝑛 and 𝐴𝐴 Pr𝑛𝑛 , defined in Section 2.6. The values within each 
frequency band are normalized to between zero and one across the three frequency bands. Black parts are regions where Soil Moisture Active Passive retrievals have 
potential errors. Dark gray parts are regions with 𝐴𝐴 SSM𝑛𝑛 less than 0.1.

 19447973, 2023, 5, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
034225, W

iley O
nline L

ibrary on [02/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

XI ET AL.

10.1029/2022WR034225

11 of 19

three frequency bands based on SMAP and ERA5 data. We also evaluate the spectral slope of potential evapora-
tion (𝐴𝐴 PE𝑘𝑘𝑘𝑘 ) from ERA5 to compare it with 𝐴𝐴 ET𝑘𝑘𝑘𝑘 .

From a previous study (Xi et al., 2022), we have found that the low-frequency periodic components dominate the 
variance of SSM, and it has more randomness on time scales shorter than monthly and more memory on time 
scales longer than seasonality. From Figures 5a–5f, we further find that there is a phase shift between SSM and 
Pr spectra in the two higher frequency bands, especially the highest one, which implicates how Pr variability 
propagates into the soil moisture system (Katul et al., 2007). In the weekly to monthly frequency band where Pr 
is the dominant factor on SSM (according to Figure 4d), regions with smaller 𝐴𝐴 Pr𝑘𝑘𝑘𝑘 lead to SSM spectra that decay 
more rapidly. In most regions where Pr is similar to a white noise process, SSM exhibits a pink noise process in 
the corresponding regions, indicating longer memory induced by soil moisture (Salvucci & Entekhabi, 1994). In 
regions where Pr exhibits a pink noise process, like eastern Africa, eastern Brazil, western India, and northern 

Figure 5. Noise color of surface soil moisture (SSM) (Figures a–c), precipitation (Pr) (Figures d–f), evapotranspiration (ET) (Figures g–i), and potential evaporation 
(PE) (Figures j–l) over the three frequency bands according to 𝐴𝐴 SSM𝑘𝑘𝑘𝑘 , 𝐴𝐴 Pr𝑘𝑘𝑘𝑘 , 𝐴𝐴 ET𝑘𝑘𝑘𝑘 , and 𝐴𝐴 PE𝑘𝑘𝑘𝑘 based on the reference data. The colors in each figure represent the 
corresponding color of noise, referring to the power spectra of SSM, Pr, ET, and PE. The colorbar shows the color referring to each noise, and the number in brackets 
is the spectral slope of power-law noise corresponding to each noise color. Green and dark gray parts in Figures (a–c) are regions where Soil Moisture Active Passive 
retrievals have potential errors and regions with 𝐴𝐴 SSM𝑛𝑛 less than 0.1, respectively.
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Australia, SSM has a red noise spectrum (Figures 5a and 5d). A similar relationship between SSM and Pr spec-
tra can also be found in the monthly to seasonal frequency band (Figures 5b and 5e), such as in southern North 
America, eastern India, and southern Somali Peninsula, but it is not as evident as that in the highest frequency 
band since the effect of Pr on SSM variability decreases in this frequency band (according to Figure 4e). In the 
seasonal to annual frequency band, ET exerts more effects on SSM variability than Pr for most regions (according 
to Figure 4f), so there are no strong correlations between Pr and SSM spectra. In previous studies, soil moisture 
was found to be similar to a red or black noise corresponding to precipitation having a white or pink noise at high 
frequency (Katul et al., 2007; Nakai et al., 2014). The 𝐴𝐴 SSM𝑘𝑘𝑘𝑘 here is a little larger (Figure 5a). The main reason 
could be the random errors from remote sensing retrievals (i.e., SMAP here). Remotely sensed SM retrievals 
usually have stochastic errors that can be mainly extracted from high-frequency noise (Su et  al., 2014). This 
random noise could increase the high-frequency components of the SSM signal and thus reduce “redness” within 
the first frequency band of the SSM spectra derived from SMAP retrievals (see Figure S6 in Supporting Infor-
mation S1). Previous studies (e.g., Delworth & Manabe, 1988; Katul et al., 2007) based on water-balance models 
tend to have fewer random errors than signals from remote sensing retrievals, thus exhibiting a soil moisture 
signal similar to red noise.

Unlike between 𝐴𝐴 SSM𝑘𝑘𝑘𝑘 and 𝐴𝐴 Pr𝑘𝑘𝑘𝑘 , there is no such relationship between 𝐴𝐴 SSM𝑘𝑘𝑘𝑘 and 𝐴𝐴 ET𝑘𝑘𝑘𝑘 , even at the highest 
frequency band where ET is dominant on SSM variability (Figures 5a–5c and 5g–5i). We find that Pr and ET 
exert strong effects on SSM variability in different ways across different time scales. In previous studies, unlike Pr 
serving as a forcing term, ET was shown to be related to the damping term of soil moisture spectra (Delworth & 
Manabe, 1988; Katul et al., 2007; Nakai et al., 2014), which modulates potential evaporation (PE). The differences 
between 𝐴𝐴 ET𝑘𝑘𝑘𝑘 and 𝐴𝐴 PE𝑘𝑘𝑘𝑘 are mainly due to the variability of soil moisture. PE is an estimate of the maximum evap-
oration rate from a surface of pure water for given meteorological conditions (Delworth & Manabe, 1988). Weather 
fluctuations introduce a white or pink noise PE. However, unlike PE, ET is closely related to soil moisture, empha-
sizing that soil moisture limits and regulates the supply of moisture to the atmosphere on longer time scales. So the 
SSM dynamics influence ET spectra—leading to a redder noise than PE spectra because SSM has a longer memory. 
This influence is especially more visible in dry regions. The reason is that, compared to SSM in dry regions, SSM 
in wet regions mostly tracks the variability of PE. So ET in wet regions will not be strongly affected by SSM 
variability and thus still shows pink noise. On longer time scales, both ET and PE show obvious seasonality, with 
low-frequency periodic components dominating the contribution to the variance of signals (Figures 5i and 5l).

To summarize, the effects of Pr and ET on SSM variability are different across time scales. In the two higher 
frequency bands (especially the weekly to monthly frequency band), Pr, acting as a forcing by averaging the large 
oscillations to limit high-frequency components, has more effect on SSM variability. In the seasonal to annual 
frequency band, ET, acting as a dissipative process that prevents SSM anomalies from persisting indefinitely, has 
more effects on SSM variability.

3.2. Comparison Between CMIP5 Simulations and SMAP and ERA5 References

Figures 6a–6c shows the average differences for 𝐴𝐴 𝐴𝐴SEP𝑛𝑛 and 𝐴𝐴 𝐴𝐴EEP𝑛𝑛 of model simulations within CMIP5 compared 
to SMAP and ERA5 data. The robustness of the multimodel differences is characterized by the consistency of 
the sign within CMIP5. As described in Section 2.7, the “+” stippling means all 14 models (100%) agree on the 
sign of average differences and the “.” stippling means 11 of the 14 models (75%) agree on the sign of average 
differences. Therefore, we only focus on the regions with stippling. For most regions, the multimodel differences 
of 𝐴𝐴 𝐴𝐴SEP𝑛𝑛 are negative in the two higher frequency bands and they are positive in the lowest frequency band, which 
means that the CMIP5 simulations of the total effect of ET and Pr on SSM variability are smaller on time scales 
shorter than seasonal and are larger on time scales longer than seasonal, compared to SMAP and ERA5 data 
(Figures 6a–6c). The average difference of 𝐴𝐴 𝐴𝐴SEP𝑛𝑛 is largest in the monthly to seasonal frequency band (−0.5898 
and −0.3797 with 100% and 75% fraction of models) and smallest in the weekly to monthly frequency band 
(−0.2816 and −0.2366 with 100% and 75% fraction of models) (Table 1). For all three frequency bands, the 
average differences of 𝐴𝐴 𝐴𝐴SEP𝑛𝑛 are larger in Northern North America and Central Asia.

From Section 3.1, we know that Pr dominates SSM variability in the two higher frequency bands, and ET dominates 
it in the seasonal to annual frequency band. From Figures 6e–6f, we find that in each frequency band, the effect of 
the corresponding dominant factor (i.e., Pr or ET) on SSM simulated within the CMIP5 models tends to be smaller 
than that from ERA5 reference. Specifically, in the two higher frequency bands where Pr is the dominant factor, 
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Figure 6. Average differences of 𝐴𝐴 𝐴𝐴SEP𝑛𝑛 (Figures a–c) and 𝐴𝐴 𝐴𝐴EEP𝑛𝑛 (Figures d–f) between Coupled Model Intercomparison Project Phase 5 (CMIP5) models and the 
reference data (Soil Moisture Active Passive (SMAP) and ECMWF Reanalysis v5 (ERA5)) in the three frequency bands. The differences are calculated by subtracting 
reference data from CMIP5 averages. Black parts are regions where Soil Moisture Active Passive retrievals have potential errors. Dark gray parts are regions with 𝐴𝐴 SSM𝑛𝑛 
less than 0.1. For each figure, “+” and “.” stippling represents the region with a fraction of models as 100% and 75% for a robustness test described in Section 2.7.

Table 1 
Multimodel Differences of 𝐴𝐴 𝐴𝐴SEP𝑛𝑛 Within CMIP5 and 𝐴𝐴 𝐴𝐴SEP𝑛𝑛 From Reference Data

Fraction of models 100% (14/14) 75% (11/14)

Frequency band (day −1) 1/7 ∼ 1/30 1/30 ∼ 1/90 1/90 ∼ 1/365 1/7 ∼ 1/30 1/30 ∼ 1/90 1/90 ∼ 1/365

BCC-CSM1.1 −0.2287 −0.4913 0.5263 −0.1797 −0.2514 0.4390

BNU-ESM −0.2644 −0.5324 0.4257 −0.2213 −0.3412 0.3562

CanESM2 −0.2971 −0.6219 0.4756 −0.2497 −0.3763 0.3763

CNRM-CM5 −0.2682 −0.7112 0.4033 −0.2177 −0.5247 0.3198

CSIRO-Mk3.6 −0.3105 −0.6783 0.4514 −0.2672 −0.4772 0.3891

GFDL-CM3 −0.2667 −0.5615 0.3372 −0.2253 −0.3613 0.2606

GFDL-ESM2G −0.2677 −0.5642 0.4042 −0.2256 −0.3703 0.3192

GFDL-ESM2M −0.2667 −0.5565 0.4074 −0.2244 −0.3621 0.3203

MIROC5 −0.2846 −0.4983 0.3245 −0.2406 −0.2782 0.2526

MIROC-ESM −0.2902 −0.5568 0.3558 −0.2461 −0.3409 0.2847

MIROC-ESM-CHEM −0.2905 −0.5592 0.3531 −0.2464 −0.3429 0.2825

MRI-CGCM3 −0.3216 −0.6953 0.4958 −0.2763 −0.4888 0.4324

MRI-ESM1 −0.3197 −0.6935 0.4944 −0.2747 −0.4842 0.4304

NorESM1-M −0.2659 −0.5364 0.3800 −0.2178 −0.3163 0.2995

Average (±1 SD) −0.2816 ± 0.0246 −0.5898 ± 0.0728 0.4168 ± 0.0618 −0.2366 ± 0.0252 −0.3797 ± 0.0798 0.3402 ± 0.0619

Reference 0.4273 1.0051 0.4731 0.3898 0.8563 0.5288

Note. The reference 𝐴𝐴 𝐴𝐴SEP𝑛𝑛 here is the original value without normalization across the three frequency bands.
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CMIP5 models have a larger ET influence. Thus, the effects of Pr on SSM within CMIP5 are smaller compared to 
the references (Figures 6d–6e). In the lowest frequency band where ET is the dominant factor, CMIP5 models esti-
mate smaller effects of ET on SSM compared to the references. Unlike 𝐴𝐴 𝐴𝐴SEP𝑛𝑛 , the multimodel difference of 𝐴𝐴 𝐴𝐴EEP𝑛𝑛 
is largest in the weekly to monthly frequency band (0.1471 and 0.0899 with 100% and 75% fractions of models) 
and smallest in the monthly to seasonal frequency band (0.0532 and 0.0449 with 100% and 75% fraction of models) 
(Table 2). In addition to examining multimodel differences, we also investigate the coefficient of variation (CV) 
of 𝐴𝐴 𝐴𝐴SEP𝑛𝑛 and 𝐴𝐴 𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸 𝑛𝑛 across CMIP5 models to see their statistical variances (Figure S4 in the Supporting Informa-
tion S1). For both 𝐴𝐴 𝐴𝐴SEP𝑛𝑛 and 𝐴𝐴 𝐴𝐴EEP𝑛𝑛 , the intermodel spread is larger in the weekly to monthly and monthly to seasonal 
frequency band and smaller in the seasonal to annual frequency band (also see Table S6 in the Supporting Informa-
tion S1). Therefore, for the simulated Pr and ET effects on SSM variability within CMIP5, there is a more extensive 
intermodel spread on time scales shorter than seasonal and a lower variance among models on time scales longer 
than seasonal time scale, suggesting an individual difference in representing the short-term variability and a system-
atic difference of these CMIP5 models in representing the long-term variability compared to the reference data.

The multimodel differences of 𝐴𝐴 𝐴𝐴SEP𝑛𝑛 and 𝐴𝐴 𝐴𝐴EEP𝑛𝑛 are further analyzed with 𝐴𝐴 SSM𝑛𝑛 (defined in Section 2.7) on a 
global scale. To make a trade-off between strong robustness and the size of samplings, we use the differences 
where 75% of models agree on the sign of multimodel differences. For 𝐴𝐴 𝐴𝐴SEP𝑛𝑛 (Figures 7a–7c), the multimodel 
differences are similar in the weekly to monthly frequency range and seasonal to annual frequency range—the 
smallest differences appear in the regions with 𝐴𝐴 SSM𝑛𝑛 from 0.6 to 0.85. In the monthly to seasonal frequency 
band, apart from the regions same as those in the other two frequency bands, the extremely dry regions (𝐴𝐴 SSM𝑛𝑛 
from 0 to 0.05) also show the smallest differences. In all three frequency bands, the largest differences appear in 
the extremely wet regions (𝐴𝐴 SSM𝑛𝑛 from 0.95 to 1). For 𝐴𝐴 𝐴𝐴EEP𝑛𝑛 (Figures 7d–7f), the relationships between its multi-
model differences and 𝐴𝐴 SSM𝑛𝑛 are similar across all of the three frequency bands—the differences are larger in the 
regions with 𝐴𝐴 SSM𝑛𝑛 from 0.1 to 0.7 and are smaller in both extremely dry and wet regions.

3.3. Uncertainty Analysis and Discussion

Since the SMAP SSM retrievals are non-continuous on the daily time scale, we fill in the missing values before 
performing Fourier analysis. The gap-filling process is the same as our previous study and has been carefully 

Table 2 
Multimodel Differences of 𝐴𝐴 𝐴𝐴EEP𝑛𝑛 Within CMIP5 and 𝐴𝐴 𝐴𝐴EEP𝑛𝑛 From Reference Data

Fraction of models 100% (14/14) 75% (11/14)

Frequency band (day −1) 1/7 ∼ 1/30 1/30 ∼ 1/90 1/90 ∼ 1/365 1/7 ∼ 1/30 1/30 ∼ 1/90 1/90 ∼ 1/365

BCC-CSM1.1 0.2056 0.0994 −0.1234 0.1599 0.0995 −0.0732

BNU-ESM 0.2101 0.0765 −0.1571 0.1534 0.0657 −0.1278

CanESM2 0.1305 0.1270 −0.0900 0.0843 0.1261 −0.0638

CNRM-CM5 0.1028 −0.0034 −0.0728 0.0532 −0.0127 −0.0396

CSIRO-Mk3.6 0.1017 0.0443 −0.0833 0.0509 0.0364 −0.0569

GFDL-CM3 0.1304 0.0370 −0.0915 0.0758 0.0315 −0.0657

GFDL-ESM2G 0.1846 0.0836 −0.1112 0.1273 0.0789 −0.0841

GFDL-ESM2M 0.1821 0.0807 −0.1068 0.1224 0.0758 −0.0786

MIROC5 0.0938 −0.0196 −0.0559 0.0198 −0.0437 −0.0225

MIROC-ESM 0.1396 0.0333 −0.0777 0.0719 0.0219 −0.0541

MIROC-ESM-CHEM 0.1386 0.0323 −0.0784 0.0704 0.0218 −0.0542

MRI-CGCM3 0.1411 0.0621 −0.0664 0.0851 0.0524 −0.0382

MRI-ESM1 0.1396 0.0636 −0.0658 0.0838 0.0542 −0.0370

NorESM1-M 0.1594 0.0285 −0.1062 0.0997 0.0207 −0.0840

Average (±1 SD) 0.1471 ± 0.0357 0.0532 ± 0.0381 −0.0919 ± 0.0260 0.0899 ± 0.0380 0.0449 ± 0.0425 −0.0628 ± 0.0255

Reference 0.1757 0.4330 0.8130 0.2127 0.4083 0.7709

Note. The reference 𝐴𝐴 𝐴𝐴EEP𝑛𝑛 here is the original value without normalization across the three frequency bands.
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validated using in situ soil moisture data from ISMN (Xi et al., 2022). Although the gap-filled results perform 
well compared to in situ data according to statistical error analysis, we do not have observations for missing 
values of all pixels globally. Therefore, we would like to quantify the uncertainties due to this gap-filling process. 
Among the four parameters during this process (moving average or moving median, moving window length, 
maximum length of prediction sequences, and autoregressive model order), we find that 𝐴𝐴 SSM𝑛𝑛 is more sensitive 
to the “moving window length” (see Figure S5 in the Supporting Information S1). Thus, the constraint of uncer-
tainties from this parameter is the most critical.

To test the effects by the “moving window length”, we set it as 3, 5, 7, and 9 days, respectively, and fix the 
other three parameters to calculate 𝐴𝐴 SSM𝑛𝑛 from SMAP. We find that the change of 𝐴𝐴 SSM𝑛𝑛 due to this parameter is 
more evident in the first and the third frequency band (see Table 3). As the “moving window length” increases, 

𝐴𝐴 SSM𝑛𝑛 in the first frequency band will decrease since the moving window here performs like a low-pass filter 
that will decrease the components of higher frequencies. Correspondingly, 𝐴𝐴 SSM𝑛𝑛 in the third frequency bands 
will increase. However, even though setting the “moving window length” as 9, the multimodel mean of 𝐴𝐴 SSM𝑛𝑛 
within CMIP5 is still smaller than 𝐴𝐴 SSM𝑛𝑛 from SMAP in the first two frequency bands and larger than that in the 
third frequency band. This indicates that the choice of the parameter during the gap-filling process will not affect 
the relative size between 𝐴𝐴 SSM𝑛𝑛 from SMAP and CMIP5. In addition, during the gap-filling process of SMAP 
retrievals, we first use a long term global daily soil moisture data set named NNsm (see Section 2.3) to fill in 
the missing values. Since SSM data filled with NNsm are still discontinuous at the daily time scale, we set the 
“moving window length” as 3, 5, 7, and 9 again for that NNsm-filled data set. We find that filled by NNsm, the 
uncertainties of 𝐴𝐴 SSM𝑛𝑛 from SMAP due to the choice of the gap-filled parameter are constrained across the three 
frequency bands, especially in the first frequency band where the relative change is the largest among different 

Figure 7. Comparison of average differences of 𝐴𝐴 𝐴𝐴SEP𝑛𝑛 (Figures a–c) and 𝐴𝐴 𝐴𝐴EEP𝑛𝑛 (Figures d–f) between Coupled Model Intercomparison Project Phase 5 (CMIP5) 
models and reference data (Soil Moisture Active Passive (SMAP) and ECMWF Reanalysis v5 (ERA5)) with 𝐴𝐴 SSM𝑛𝑛 in the three frequency bands. The red shading 
represents 𝐴𝐴 +∕− one standard deviation. 𝐴𝐴 SSM𝑛𝑛 is first separated into 20 bins of equal size (i.e., 0.05 for each bin), then the mean and standard deviation of 𝐴𝐴 𝐴𝐴SEP𝑛𝑛 and 

𝐴𝐴 𝐴𝐴EEP𝑛𝑛 differences located in each bin (corresponding to the range of 𝐴𝐴 SSM𝑛𝑛 ) were separately calculated for each frequency band. Differences in this figure are the values 
with a 75% model of fraction for a robustness test. All values in the regions where SMAP retrievals have potential errors and 𝐴𝐴 SSM𝑛𝑛 less than 0.1 are removed.
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choices (see Table 3). Moreover, from Table 3, we also find that filled by NNsm, 𝐴𝐴 SSM𝑛𝑛 increase in the first 
frequency band and decrease in the third frequency band. This means that 𝐴𝐴 SSM𝑛𝑛 from SMAP tends to be larger in 
the first frequency band and smaller in the third frequency band by adding more observation-based data, which 
is the same trend as decreasing the “moving window length.” Therefore, we set the “moving window length” as 
3 during the gap-filling process.

Apart from this technical issue, the linear and time-invariant assumption of the interactions among SSM, Pr, 
and ET could be another source of uncertainties. In this study, we assumed an LTI system for SSM, Pr, and 
ET and then performed the Fourier analysis. However, the relationships among them may not be linear and 
time-invariant. For example, in regions with plenty of vegetation, precipitation is first intercepted by the canopy, 
and then throughfall is further partitioned into surface runoff and infiltration water, which directly affects SSM 
instead of precipitation. A previous study has also shown that there is a higher linear relationship between soil 
moisture and precipitation in less-vegetated regions (Sehler et al., 2019). Snow is another factor related to this 
issue. When the precipitation is snow, it will not interact with SSM immediately. Instead, there is a snow accu-
mulation and melting process, which could take days, weeks, and even months. Thus, the relationship between 
SSM and Pr may not be time-invariant in high-latitude regions. In addition, in regions where soil moisture is 
quite limited, the ET is also quite limited and thus has almost no effects on soil moisture. Basically, uncertain-
ties from the LTI assumption could be mainly from regions with high vegetation, low temperature, and low soil 
moisture. As we described in Sections 2.2 and 2.7, we performed masks to remove values in dense vegetation 
cover regions, frozen landscapes, and areas with little soil moisture. Therefore, we removed those regions where 
the LTI assumption could induce high uncertainties when analyzing the relationships between SSM, Pr, and ET 
(i.e., 𝐴𝐴 𝐴𝐴SEP𝑛𝑛 and 𝐴𝐴 𝐴𝐴EEP𝑛𝑛 ). In this way, although the LTI assumption made in this study is still not completely true, 
the uncertainties in our results from this aspect have been largely constrained.

Finally, remotely sensed soil moisture (e.g., SMAP SSM retrievals) is known to exhibit spurious spectral char-
acteristics due to random retrieval errors (Su et  al.,  2014). These spurious features would have a significant 
impact on the high-frequency portion of the SMAP SSM spectra. We have discussed the consequence of reduced 
“redness” in the first frequency band derived from SMAP SSM signals made by this issue in Section 3.1. Here we 
also would like to discuss how the effects of Pr and ET on SSM will be influenced by this issue. Since the compu-
tation of 𝐴𝐴 𝐴𝐴EEP𝑛𝑛 does not involve SSM, we only consider the impacts on 𝐴𝐴 𝐴𝐴SEP𝑛𝑛 . Since the basic scientific require-
ment of SMAP is to provide SSM estimates with an error of no greater than 0.04 cm 3/cm 3 globally (Chan, 2016), 
we perform a test to compare 𝐴𝐴 𝐴𝐴SEP𝑛𝑛 between using original SMAP retrievals and new SMAP retrievals by adding 

Table 3 
Normalized Variability of SSM (𝐴𝐴 SSM𝑛𝑛 ) From Two Observation-Based Data Sets With Different Moving Window Lengths 
and CMIP5 Model Average in Three Frequency Bands

Data sets
Moving window 

length (#)

Normalized variability of SSM (𝐴𝐴 SSM𝑛𝑛 ) in three frequency bands

1/7 ∼ 1/30 days −1 
(weekly to monthly)

1/30 ∼ 1/90 days −1 
(monthly to seasonal)

1/90 ∼ 1/365 days −1 
(seasonal to annual)

SMAP 3 0.2698 0.2125 0.5177

5 0.2523 0.2162 0.5315

7 0.2367 0.2190 0.5444

9 0.2102 0.2228 0.5670

(Relative change) 22.09% 4.85% 9.52%

SMAP and NNsm 3 0.2833 0.2050 0.5117

5 0.2710 0.2090 0.5201

7 0.2564 0.2126 0.5310

9 0.2418 0.2151 0.5431

(Relative change) 14.65% 4.92% 6.13%

CMIP5 model average 0.1224 0.1445 0.7330

Note. The regions where SMAP retrievals have potential errors and 𝐴𝐴 SSM𝑛𝑛 less than 0.1 are removed. The “relative change” is 
the relative change from the shortest to the longest moving window length for the two observation-based data sets.
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this random error. Specifically, for SMAP SSM in each pixel, we add a value randomly obtained from a normal 
distribution whose mean is the original SMAP retrieval and the standard deviation is 0.04 as the random error for 
that SSM retrieval. Then we perform the same process to get 𝐴𝐴 𝐴𝐴SEP𝑛𝑛 using the new SMAP retrievals with random 
errors. We found that, by adding random errors, 𝐴𝐴 𝐴𝐴SEP𝑛𝑛   increases in  the first frequency band and decreases in 
the second and third frequency bands (see Figure S7 and Table S7 in the Supporting Information S1). However, 
adding random errors does not change the size relationship between CMIP5 models and reference data: CMIP5 
simulations of the total effect of ET and Pr on SSM variability are smaller on the weekly to seasonal frequency 
band and are larger on the seasonal to annual frequency band, compared to SMAP and ERA5 data.

4. Conclusions
This study uses satellite-based reference data (SMAP and ERA5) to evaluate 14 ESMs within CMIP5 in simu-
lating the effects of Pr and ET on SSM variability across three frequency bands. We find that compared to the 
reference data, the total effects of Pr and ET on SSM simulated within CMIP5 are smaller in the high-frequency 
bands (weekly to monthly and monthly to seasonal) and larger in the low-frequency band (seasonal to annual). 
Additionally, based on the findings that Pr dominates weekly to seasonal SSM variability and ET dominates 
seasonal to annual SSM variability, these CMIP5 models tend to estimate smaller effects on SSM by Pr or ET as 
the dominant factor in each frequency band compared to the reference data. Across the three frequency bands, 
the differences between CMIP5 models and the reference data are smaller in regions with strong land-atmosphere 
interactions between the three variables. For the metrics investigated here, there are individual multimodel differ-
ences in representing short-term variability and systematic multimodel differences in long-term variability.

This study also identifies systematic metrics that can be used to assess model performance and help refine process 
representation across time scales. Our results highlight that the precipitation and evapotranspiration effects 
on soil moisture differ from lower to higher frequency bands, and the CMIP5 models have differences with 
satellite-based reference in representing these effects. One limitation is that the analysis of this study can not 
explicitly show the accuracy of modeled Pr and ET compared to observations. Thus, we cannot tell whether Pr 
or ET is more accurately simulated within the ESMs. The uncertainties can be from both Pr and ET simulations, 
impacting their simulated effects on SSM. Quantifying the contribution of uncertainties from each contributor in 
future work shall improve the model performance in simulating soil moisture.

Data Availability Statement
The codes and data for analysis in this study are available via doi: https://doi.org/10.4231/whj3-kn14 in Purdue 
University Research Repository.
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