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Abstract—A soil organic carbon (SOC) map of high accuracy is the basis for taking mitigation measures
against crises of food security and global climate change. Predicting SOC based on a limited number of soil
samples can reduce the cost and time for laboratory analysis. This study aimed to assess the influence of sam-
ple size on the prediction of SOC and to identify the optimal sample size of SOC prediction for cropland in
northern Jiangsu, China. A total of 1182 soil samples were randomly split into calibration and validation sets.
Ten calibration subsets of samples between 108 and 1064 were selected by using a parent material-based strat-
ified random resampling strategy. The random forest algorithm was used to develop 10 calibration models val-
idated based on the same validation sample set. These 10 models were evaluated through the explained vari-
ance (EV) and the root mean square error (RMSE). The results showed that the calibration model based on
960 soil samples had the best performance in SOC prediction. Significantly biased predictions were produced
by the calibration models based on more or less than 960 soil samples due to underrepresentation or overrep-
resentation. Relief and climate were demonstrated to be the predominant factors influencing SOC prediction
in this study area. These results may provide theoretical support for studies relevant to SOC mapping.
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INTRODUCTION

The soil organic carbon (SOC) pool is the largest
carbon pool in terrestrial ecosystems. Soil organic car-
bon in cropland plays an important role in improving
soil quality since it has a positive relationship with soil
fertility [29]. Research has shown that cropland has a
significant contribution to the overall global carbon
emissions because of anthropogenic activities, while it
has a carbon sequestration capacity of 20 Pg [25]. Thus,
cropland offers significant opportunities for carbon
sequestration to offset ongoing C losses, which will help
to slow global warming. Optimizing agricultural man-
agement to reduce carbon emissions and increase car-
bon sequestration of cropland, therefore, is positive not
only for food security [2, 23] but also for the achieve-
ment of the goal of “carbon centrality” in China.

Research corresponding to digital soil mapping of
high precision provides decision support for the devel-
opment of carbon sequestration and emission reduc-
tion measures on cropland. A high-quality soil dataset
enables high-precision digital soil mapping, which is
critical for understanding the spatiotemporal varia-
tions in SOC [18]. A high-quality soil dataset is posi-
tively related to soil sample size since more soil sam-

ples can capture more accurate SOC information [32].
Soil sample size influences the construction of predic-
tion models for digital soil organic mapping, and the
more complex the spatial distribution of SOC is, the
more soil samples are needed to determine the SOC
trend in detail. However, soil surveys and laboratory
testing of soil samples are laborious, time-consuming,
and costly. As a result, it is still challenging to make a
tradeoff between the precision of digital soil mapping
and the size of soil samples. Therefore, a suitable soil
sample size must be identified for the high-precision
and cost-effective soil organic carbon mapping of a
specific region.

Selecting representative subsets of soil datasets from
a large data pool is an effective method commonly used
for identifying the optimal soil sample size. Although a
few studies have conducted this selection by using dif-
ferent algorithms [17, 18], the influence of soil sample
size on model prediction has received less attention
[18]. Moreover, the optimal soil sample size is site-spe-
cific, varying with geographic scale and with the diver-
sity of pedologic characteristics of the study area [7, 22].
In this respect, selecting the optimal soil subset from the
existing legacy soil sample pool was run locally for the
study area of this paper to improve the accuracy of SOC
1689
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Fig. 1. The location of Subei and the spatial distributions of samples.
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prediction, as well as to explore how sample size affects
SOC prediction.

Several soil sampling designs have been developed
for soil subset selection in recent decades, including
random sampling, type-based stratified sampling, and
equal interval grid sampling [10, 34]. Simple random
sampling can ensure unbiased subset selection, and
grid sampling is conveniently performed with geo-
graphic information system (GIS) technology. How-
ever, there are apparent differences in SOC and vari-
ability among different soil types, land use patterns,
vegetation types or parent materials [10, 34]. Thus,
simple random sampling may result in a sample subset
that is unrepresentative of the SOC variability. Simi-
larly, it is difficult to determine suitable grid sizes for
grid sampling with little prior knowledge. As a result,
a parent material-based stratified resampling method
was utilized in this paper. In this sampling design,
samples were randomly resampled in proportion by
taking the parent material as the stratum, ensuring that
each selected subset covered the variability of SOC in
different parent materials.

The aim of this work was to (1) describe the spatial
variations in SOC content in cropland in northern
Jiangsu, China, by using a prediction model built on
random forest algorithms; (2) investigate how sample
size affects the performance of the SOC predictive
model; and (3) identify the optimal sample size and
uncover the dominant variables that have the greatest
effect on SOC content prediction in the study area.

MATERIALS AND METHODS
Study area. Northern Jiangsu, China, labeled

'Subei', is located within 116°5′–120°3′ E and 22°5′–
34°2′ N (Fig. 1). Subei is the lowest plain of Jiangsu
Province, having a monsoon climate with four distinc-
tive seasons [33]. Cropland here covers an area of
28844 km2, of which paddy fields occupy 36.68% with
an area of 10580 km2, while rainfed land occupies the
rest. The elevation of cropland ranges from 0 to 237 m
with an average value of 17.62 m. The annual rainfall
ranges from 790 to 1182 mm, gradually decreasing
from the southeast to the northwest. The annual aver-
age temperature changes between 14.45 and 16.70°C
and gradually decreases from south to north. Four soil
groups, including Cambisols, Solonchaks, Luvisols
and Leptosols, can be identified in the study area
according to the International Classification IUSS
Working Group WRB (2015) [24]. Among these four
groups, Cambisols is the dominant, accounting for
71.87% of the area. Fourteen parent materials are
found here, and Yellow River alluvial deposits and
marine sediments are dominant, occupying 37.94 and
20.12% of the area, respectively.

Calculation of soil organic carbon content. A total of
1182 soil samples in 2008, providing information on
soil organic matter in topsoil (0–20 cm), were sourced
from the Ministry of Agriculture and Rural Affairs of
Jiangsu Province in the project of Precision Fertiliza-
tion. In the laboratory, the soil samples were air dried
and passed through a 2-mm sieve at room tempera-
ture, and then soil organic matter was determined via
the K2Cr2O7 volumetric method. With this method,
excess K2Cr2O7 was used in acid medium to oxidize
the soil organic carbon, and the organic matter was
calculated according to volume of FeSO4 that was used
to titrate the remaining K2Cr2O7. Formulation of sam-
pling density and sampling layout was guided by expert
knowledge corresponding to soil types, vegetation
EURASIAN SOIL SCIENCE  Vol. 55  No. 12  2022
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Table 1. Fourteen environmental variables considered in
this study

Categories Variables included

Soil Soil group, land use

Climate Average annual precipitation, average 

annual mean temperature

Organism Normalized difference vegetation index

Relief Elevation, slope, aspect, plan curvature, 

profile curvature, topographic position 

index, topographic roughness index, 

convergence index

Parent Material Parent material
types, parent material types, etc. Therefore, these
samples covered the variability of SOC across land-
scapes here.

SOC content of topsoil at sampling points is the
product of 0.58 and organic matter (OM), and 0.58 is
the Bemmelen conversion coefficient.

(1)

Sampling and laboratory analysis of these samples
occurred in the same campaign in 2008, which guar-
anteed contemporaneity of the SOC content data.

Environmental variables. Fourteen environmental
variables (Table 1) were selected as the original model
input according to a generalization of Jenny’s five fac-
tors [20]:

(2)

where S, the soil organic carbon to predict, is a func-
tion of soils (s), climate (c), organisms (o), relief (r),
and parent materials (p).

Variables relevant to relief were computed in ArcGIS
based on a digital elevation model (DEM) at a 30 m res-
olution. This DEM was extracted from the global DEM
jointly released by METI in Japan and NASA in the
USA in 2015. A DEM of 30 m is the most commonly
used topographic data at the regional scale in this field.

Raster data of parent material and soil group,
which were used to characterize parent materials and
soils, respectively, were converted from vector soil data
at a scale of 1 : 50000 established during the Second
National Soil Survey of China. Land use data, which
was used to characterize soils in 2008, was visually

= ×SOC content 0.58 OM.

( )= , , , , ,S f s c o r p
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Table 2. Collinearity statistics of the 14 environmental variab

ELE—elevation, AP—aspect, AAP—average annual precipitation,
mean temperature, NDVI—normalized difference vegetation inde
TRI—topographic roughness index, TPI—topographic position ind

AAP AP CI LU AAMT NDVI P

Tolerance 0.61 0.90 0.68 0.95 0.66 0.93 0

VIF 1.65 1.11 1.47 1.05 1.52 1.07 2
interpreted based on Landsat TM/ETM+ at a 1000 m
resolution. Normalized difference vegetation index
(NDVI) data, which was used to characterize organ-
isms, were averaged from annual maximum MODIS-
NDVI products with a resolution of 1000 m during
2006–2008. Average annual precipitation and average
annual mean temperature data at a resolution of 1000 m,
which were used to characterize climate during 2006–
2008, were interpolated from daily observations of
meteorological stations by using ANUSPLIN software.

All these data, including parent material, soil group,
land use, NDVI, average annual precipitation, and
average annual mean temperature, were resampled to
30 m to maintain consistency with relief data. Spatial
distributions and descriptive statistics of the 14 environ-
mental variables across the study area were shown in
Fig. S1.

Collinearity diagnostics. The variance inf lation
factor (VIF) was applied to detect the possible exis-
tence of collinearity between these 14 variables. The
results showed that the VIF for each variable was not
higher than the traditionally accepted threshold of 10
(Table 2) [3], indicating that there was not a trou-
bling degree of multicollinearity existing in the pre-
dictive model of SOC content. Therefore, all the
14 variables were used to construct the predictive
models in this study.

Resampling. The whole dataset (n = 1182) was ran-
domly split into a validation set (including 10% of the
total samples, n = 118) and a full calibration set
(remaining 90% of the total samples, n = 1064). And
then, the calibration set was resampled by using a par-
ent material-based stratified random resampling strat-
egy. Specifically, in each stratum (parent material), a
number of calibration samples were randomly selected
in a decreasing proportion from 100 to 10% with an
interval of 10%. As a result, ten calibration subsets in
total were obtained and the sizes of samples in each
subset and within different parent materials were
shown in Table 3.

Random forest prediction of SOC. Prediction of SOC.
The random forest algorithm, which has been widely
used in the field of digital soil mapping, was applied to
build the prediction models of SOC content. To predict
the target variable, the random forest algorithm firstly
generates a number of predictor trees and then gives the
overall expression by aggregating these trees.
les

 CI—convergence index, LU—land use, AAMT—average annual
x, PLC—plan curvature, PRC—profile curvature, SG—soil group,
ex, SL—slope, and PM—parent material.

LC PM PRC SG TPI TRI ELE SL

.39 0.69 0.21 0.74 0.15 0.29 0.53 0.32

.57 1.46 4.69 1.34 6.75 3.48 1.89 3.17
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Table 3. Statistical distributions of calibration samples within different types of parent material

The first column records the name of different parent material, and the first line records the size of different calibration subsets; WMR:
Weathering of Metamorphic Rocks, FMS: Fluvial and Marine Sediments, PAD: Pluvial-Alluvial Deposit, LS: Lacustrine Sediments,
RSWGG: Residual Slope Wash of Granite-Gneiss, YRAD: the Yellow River Alluvial Deposit, YRS: the Yellow River Sediments,
RTMBR: Residual Talus Material of Basic Rocks, ADOR: Alluvial Deposit of Other Rivers, SWDSS: Slope Wash and Diluvium of
Sandstone and Shale, SWDL: Slope Wash and Diluvium of Limestone, XL: Xiashu Loess, and SWDBR: Slope Wash and Diluvium of
Basaltic Rocks.

PM
Size

1064 960 850 747 639 535 425 319 214 108

WMR 28 25 22 20 17 14 11 8 6 3

FMS 225 203 180 158 135 113 90 68 45 23

PAD 14 13 11 10 8 7 6 4 3 1

LS 71 64 57 50 43 36 28 21 14 7

RSWGG 34 31 27 24 20 17 14 10 7 3

YRAD 336 302 269 235 202 168 134 101 67 34

YRS 90 81 72 63 54 45 36 27 18 9

RTMBR 5 5 4 4 3 3 2 2 1 1

ADOR 190 171 152 133 114 95 76 57 38 19

SWDSS 3 3 2 2 2 2 1 1 1 1

SWDL 14 13 11 10 8 7 6 4 3 1

XL 51 46 41 36 31 26 20 15 10 5

SWDBR 3 3 2 2 2 2 1 1 1 1
The method referred to GridSearchCV from the
sklearn library was used to tune the parameters of ran-
dom forest modeling. In the tuning process, ten pre-
dictive models were trained on different sizes of cali-
bration samples with parameters varying in a specified
array respectively. The best parameters of each predic-
tive model were selected according to Root Mean
Squared Errors returned from 10-fold cross-valida-
tion. As a result, ten predictive models that performed
the best on each calibration subset were obtained.
With these ten optimal models, SOC content predic-
tions were performed on the entire cropland in Subei,
resulting in ten grid datasets of SOC content.

Variable Importance. The random forest algorithm
learns and records variable importance by looking at
how much prediction error increases when values of a
specific variable are randomly permutated in the out
of bag (OOB) data while values of all other variables
remain unchanged [30]. Therefore, a variable with
larger value of importance contributes more to SOC
prediction. To examine the impact of individual vari-
ables and Jenny’s factors on SOC prediction, the
importance of each variable was calculated and added
up by the groups referred to as Jenny’s five factors for
each calibration subset.

Model Validation. Predictive models were validated
on the same validation set of 118 samples by using the
root mean square error (RMSE) and explained vari-
ance (EV).

Root mean squared errors (RMSEs). The RMSE
is a frequently used statistic in the literature to indi-
cate the average deviation of predictions from obser-
vations [31].

(3)

where Pi is the ith predicted value, Oi is the ith observed
value, and n is the number of observed values.

Explained variance (EV). Conceptually, EV is a
percentage statistic (Eq. 4) measuring how much of
the variation in the validation data is explained by the
predictive models [16]. This metric is data- and scale-
independent; thus, it is qualified for precision com-
parison among predictive models built on different
datasets at various scales or with various variances.

(4)

where SSD refers to the sum of square departures,
SST refers to the total sum of squares, SSD/SST is
also termed relative square error (RSE), n is the
number of observations, Oi is the ith observed value,

Pi is the ith predicted value and  is the average of all

observed values.
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Fig. 2. Validation of SOC content prediction models based
on different sizes of calibration samples.
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EV ranges from 0 to 100%. A value of 100% indi-
cates that the predictive model is perfect, while 0%
indicates that the predictions are as accurate as using
the average of observed values as predictions.

RESULTS

Descriptive statistics of the observed SOC content.
The SOC content of the calibration samples ranged

from 4.41 to 23.78 g kg–1, with an average value of

10.10 g kg–1 and a standard deviation of 2.56 g kg–1.
The SOC content of the validation samples ranged

from 5.86 to 18.1 g kg–1, with an average value of

10.33 g kg–1 and a standard deviation of 2.74 g kg–1.
The variation coefficients of the SOC content for the
calibration and validation samples were 25.35 and
26.52%, respectively, indicating that the validation
samples had higher variability in SOC content. The
SOC content in both the calibration and validation
sample sets showed no distributional outliers, and thus,
both were in accordance with normal distributions.

Accuracy evaluation. Overall, EV increased while
RMSE decreased as the size of the calibration samples
grew progressively (Fig. 2), indicating that a decrease
in the size of the calibration samples would diminish
the accuracy of SOC prediction. This finding was also
reported by a few previous studies [1, 14].

Moreover, the RF predictive model built on 960 cal-
ibration samples performed the best, which was seen
from the lowest RMSE and the largest EV. Therefore,
it can be concluded that 960 was the optimal sample
size for this study. With smaller sizes of calibration
samples, RF models made less accurate predictions for
lack of SOC variability information; while with larger
size of calibration samples (1064 here), the RF model
made less accurate predictions as well for overrepresen-
tation of SOC variability in a few parent materials. In
the latter case, approximately 70.6% of the calibration
samples were clustered into only three types of parent
material (Fluvial and Marine Sediments, the Yellow
River Alluvial Deposit, and the Alluvial Deposit of
other Rivers), thereby exhibiting an imbalance in rep-
resenting different landscapes characterized by parent
materials. This kind of imbalance was deemed detri-
mental to model performance in SOC content predic-
tion, which highlighted the necessity of sample size
optimization.

Variable importance. Land use was definitely the
least important variable since it kept holding the least
values in the importance permutations (Fig. 3). Both
paddy fields and rainfed land, which were the only two
types of land use in Subei, were continuous and con-
centrated in space, showing a lower level of spatial het-
erogeneity. Therefore, land use contributed the least to
the spatial variance in SOC content.

Average annual precipitation was the most import-
ant variable in that it captured the largest values in the
importance permutations. Rainfed land, which occu-
EURASIAN SOIL SCIENCE  Vol. 55  No. 12  2022
pied approximately 64% of this study area, was largely
dependent on precipitation in terms of crop produc-
tion. Consequentially, SOC content, which is posi-
tively relevant to crop production, tended to be more
sensitive to the changes in precipitation. This finding
is consistent with studies conducted by Mahmoudza-
deh et al. [19] and Davy and Koen [5], which have
highlighted the importance of precipitation to SOC
prediction.

The importance of individual variables was added
up by five groups referred to relief, climate, organisms,
soils, and parent materials, respectively (Fig. 4).
Clearly, importance decreased in the sequence of
relief, climate, organisms, soils, and parent materials
in all predictions, indicating that the size of calibration
samples has little effect on the relative importance of
Jenny’s five factors. The importance of the relief factor
exhibited the highest with values exceeding 0.44,
implying that the relief factor played the dominant role
in the SOC prediction of this area. This finding has
been confirmed by many previous studies. For exam-
ple, Sherpa et al. [23] and Mahmoudzadeh et al. [19]
reported that relief contributed the most to the spatial
variability of SOC, and Minasny et al. [21] found that
relief was the most important factor influencing SOC
distribution through a systematic review of SOC-map-
ping study around the globe.

The climate factor contributed the second most to
the spatial variability of SOC content in Subei. Of the
two variables in the climate group, average annual
precipitation during 2006–2008 played a more
important role in SOC prediction than did the aver-
age annual mean temperature. This conclusion had
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Fig. 3. Variable importance for SOC predictions based on different sizes of calibration samples.
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theoretical support because it had been demonstrated

that a twofold increase in the rate of organism

decomposition would be triggered by a 10°C increase

in temperature [13] or by only a 1 mm increase in
annual precipitation [4]. Across the study area, the

average annual mean temperature during 2006–2008

ranged from 14.6 to 16.7°C with a standard deviation

of 3.2°C; the average annual precipitation during the
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Fig. 4. Importance of the Jenny’s five factors for SOC pre-
dictions based on different sizes of calibration samples.
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same period changed between 791 and 1182 mm with
a standard deviation of 727 mm. Accordingly, the
spatial variance in the rate of soil organic matter
decomposition caused by average annual precipita-
tion was much more significant than that caused by
average annual mean temperature. Consequently,
average annual precipitation was recorded to be more
important than average annual mean temperature in
this study.

Spatial and statistical characteristics of predicted
SOC content. Ten raster datasets of SOC content pre-

diction, ranging from 6.68 to 19.2 g kg–1, were classi-
fied into five classes by using the natural break classi-
fication technique and rendered in a gray-blue to
brown gradient, as shown in Fig. 5. Descriptive statis-
tics of these ten raster datasets are shown in Table 4.

SOC content prediction based on 960 calibration
samples was used as the baseline due to its highest
accuracy. The SOC content in this prediction ranged

from 7.60 to 18.93 g kg–1 with an average value of

10.56 g kg–1, which was smaller than the study of
Zhang et al. [33] and comparable to the study of Liao
et al. [15]. In Zhang’s study, the average topsoil pre-

dicted SOC content in Subei ranged from 13.66 g kg–1

in 1999 to 13.13 g kg–1 in 2007. In Liao’s study, the aver-
age topsoil predicted SOC content in Jiangsu Province

increased from 9.45 g kg–1 in 1982 to 10.9 g kg–1 in
2004. In the soil type of Cambisols, which is the dom-
inant in this area, the minimum, maximum and aver-
age values of the predicted SOC was 7.60, 18.93, and

10.44 g kg–1, respectively.

In geographic space, very high values (>13.33 g kg–1

in this study) in the baseline prediction were primarily
distributed in the southern part of Suqian, as well as in
the middle and southeastern parts of Huai’an. All
these regions have elevations below 7 m and, therefore,
are the lowest areas in Subei. In contrast, very low

values (<9.06 g kg–1 in this study) were mainly dis-
EURASIAN SOIL SCIENCE  Vol. 55  No. 12  2022

Table 4. Descriptive statistics of SOC content predictions ba

Calibration

sample size

MIN MAX

g kg–

108 7.69 13.77

214 7.01 15.38

319 7.00 19.20

425 6.68 14.18

535 7.32 16.92

639 7.66 14.45

747 7.41 18.71

850 6.74 18.92

960 7.60 18.93

1064 7.64 19.08
tributed in southwestern, northwestern, and north-
eastern Xuzhou and western Lianyungang. These
regions, generally having elevations above 30 m, were
the highest places in Subei and accounted for only
15.4% of the whole study area. In conclusion, the spa-
tial distribution of the predicted SOC content in Subei
generally followed the topographic trend, which fur-
ther confirmed the predominant role of relief in SOC
content prediction.

In addition, the variation coefficients of these ten
predictions based on different sizes of calibration sam-
ples were lower than 11%, indicating a lower level of
SOC content variability in this study area. This was
reasonable since relief, a factor that contributed more
than 40% of the variation in the spatial heterogeneity
of the predicted SOC content, was extremely f lat with
a lower level of variability.
sed on different sizes of calibration samples

Mean STD
Variation coefficient, %

1

10.22 0.97 8.86

10.38 0.92 10.31

10.38 1.07 9.00

10.44 0.94 8.53

10.67 0.91 6.56

10.52 0.69 8.49

10.60 0.90 8.83

10.53 0.93 8.05

10.56 0.85 8.02

10.60 0.85 8.86
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Fig. 5. Spatial distributions of SOC content predictions based on different sizes of calibration samples.
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Analysis of difference. Predicted values of SOC
content in the ten gridded datasets were extracted at
1182 soil samples, resulting in point data with ten fields
recording predicted SOC content based on different
sizes of calibration samples.

Since these ten groups of predictive values did not
follow the normal distribution, nonparametric statisti-
cal tests [7] were used to judge the existence of signifi-
cant differences among these groups. For multiple
comparison, Friedman test was applied and the result,
p = 0.000 < 0.01, indicated that SOC content predic-
Table 5. Results of Wilcoxon signed rank test

*** Represent the significance levels of 1%.

Z DF p

108/960 11.605 1181 0.000***

214/960 8.208 1181 0.000***

319/960 6.95 1181 0.000***

425/960 5.202 1181 0.000***

535/960 7.702 1181 0.000***

639/960 0.417 1181 0.676

747/960 3.02 1181 0.002***

850/960 0.166 1181 0.868

1064/960 4.493 1181 0.000***
tions based on different sizes of calibration samples
were significantly different at the significance level of
1%. For pairwise comparison, Wilcoxon signed rank
test was performed by making the prediction based on
960 calibration samples as the control group (Table 5).
The results showed that the prediction based on
960 calibration samples was significantly different from
the predictions based on 108, 214, 319, 425, 535, 747,
and 1064 calibration samples. In addition, the baseline
prediction was not significantly different from the pre-
dictions based on 639 and 850 calibration samples.

DISCUSSION

This study highlights two potential issues corre-
sponding to large-scale SOC prediction. One of the
issues is associated with the effect of sample size on
SOC prediction. Here, the results have shown sample
size does affect representations of samples as well as
relationships between covariates and SOC prediction.
Predictions based on more or less than 960 calibration
samples were less accurate than baseline prediction,
due to overrepresentation of the predictive model or
unsatisfactory coverage of SOC spatial variance. Addi-
tionally, the importance permutation and importance
of individual variables differed across calibration sub-
sets, indicating that relationships between covariates
and SOC prediction varied with sample size. Accord-
EURASIAN SOIL SCIENCE  Vol. 55  No. 12  2022
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ingly, both inadequate and oversized samples may lead
to biased SOC prediction and misinterpretation of
SOC variation, which will mislead the land manage-
ment strategies corresponding to carbon emission
reduction and carbon sequestration.

Another issue this study dealt with is the optimiza-

tion of sample size. The number of 960 (33/1000 km2)
was identified as the optimal size of calibration sam-
ples here. However, the optimal sample size is site-
specific, and it varies with resampling strategy, predic-
tive model, or even with environmental variables that
participate in modeling. Therefore, we suggest the
number of 960 simply as a reference for studies corre-
sponding to SOC prediction in Subei, and one should
undertake the optimization procedure to obtain the
optimal size for his own study. In addition, the optimal
sample size, which accounts for over 80% of the total
calibration set, does not save much cost here.
Improvement in accuracy of SOC prediction and reli-
ability of relationships between covariates and SOC,
however, has highlighted the importance and necessity
of sample optimization. Therefore, to accurately inform
management strategies related to SOC accounting and
sequestration, studies relevant to SOC prediction, espe-
cially at large scales with plenty of samples, should start
with the optimization of sample size.

The stratified random resampling method has
been proven efficient in avoiding sample clustering
and obtaining more even coverage within domains
and in environmental variables [1]. Various environ-
mental variables could be used for stratification, such
as DEM [11], land use [28], parent material (lithol-
ogy) [26], and soil class [12]. The parent material-
based stratified resampling strategy used in this study
ensured that the resulting calibration subsets were rep-
resentative of the variability in SOC content across
different parent materials. This resampling strategy,
however, is limited in use at small scales where parent
material is homogeneous or at places with few types of
parent material. Besides, at places where samples are
distributed evenly or randomly, grid or random resam-
pling is suggested to guarantee the representation of
the variability in observed SOC.

Relief and climate are the predominant factors
influencing SOC prediction in Subei. Relief plays a
crucial role in soil formation as they control the redis-
tribution of water, solar radiation, sediments, and sol-
utes, which in turn affects soil development and the
spatial distribution of soil properties. Many previous
studies have highlighted its importance in SOC predic-
tion. For example, Mahmoudzadeh et al. [19] found
that 71% of SOC variability was described by terrain
attributes, and Taghizadeh-Mehrjardi et al. [27] found
that topography had the potential to explain large parts
of the variation in SOC. In this study, the association
between the relief and SOC is largely due to the effect
of topographic variability on rainfall and temperature.
Globally, areas with higher rainfall and low tempera-
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ture are conducive to SOC, since soils in these areas
have higher biomass and lower decomposition. In
conclusion, climate is the predominant control at
large scales, which is further highlighted by the largest
value of importance of average annual precipitation
and temperature here.

The RMSE here was more accurate than a few pre-
vious studies. For example, Zhang et al. [34] obtained

an RMSE between 5.10 and 6.12 g kg–1 in a study on
SOC content prediction for Yujiang County in south-
eastern China, and Guo et al. [8] obtained an RMSE

between 58.76 and 65.19 g kg–1 in a study across cen-
tral Jutland in Denmark. EV values, however, were not
high in this study, indicating a poor performance of
these predictive models. This may be attributed to
(1) the intrinsic large spatial variability of SOC with
the interplay of a series of variables [9] and (2) the exis-
tence of other variables affecting SOC content vari-
ability that were not investigated in this study, such as
crop growth conditions and agricultural management.
Further research, therefore, shall be undertaken to
explore whether parameters that characterize crop
growth or agricultural management could improve the
performance of SOC predictive models.

Inconsistency in data resolutions may be another
error source for the poor performance of predictive
models. Resolutions of relief, climate, organisms, soils
and parent materials data were different mainly due to
(1) the availability of data and (2) disparate spatial
autocorrelations and variability of these factors across
a given landscape. As 30 m resembled more closely the
inherent spatial variability of soil properties [6], all the
data of other factors were resampled to the resolution
of 30 m, which may introduce imponderable errors
that can be propagated to the predictive model. There-
fore, collecting more detail data on climate, organ-
isms, soils and parent materials shall be an effective
way to improve the performance of the SOC predictive
model in future studies.

The average annual mean temperature and precip-
itation over the 3 years prior to the date of sampling for
all 1182 soil sites were calculated to characterize the
climate. These time-aggregated variables were spa-
tially and temporally explicit and thus enhanced
Jenny’s modeling framework since they accounted for
the three-year impacts of climate. A 3-year period,
however, may be another weakness that brings about
errors of SOC prediction, since as proposed by Grun-
wald et al. in 2011 [6], 30 years is an accepted time
scale to characterize the short-term climate. There-
fore, climate variables over a 30-year period are sug-
gested for future studies to improve the accuracy of
SOC prediction.

CONCLUSIONS

Ten RF models were built on different sizes of cal-
ibration samples to predict the SOC content in Subei,
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aiming to explore the impact of the calibration sample
size on SOC content prediction. The number 960

(33/1000 km2) was identified as the optimal calibra-
tion sample size in this study, and less or more than
this size would lead to significant differences in pre-
dicted SOC content due to underrepresentation or
overrepresentation of the predictive model, respec-
tively. The results highlighted the necessity of sample
size optimization before SOC prediction, which may
provide theoretical support for studies relevant to SOC
mapping. Moreover, this study can provide useful
information and technical support for selecting the
optimal sample size for SOC prediction, which can
avoid pursuing unnecessarily high density of samples.
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