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Abstract 

Soil organic carbon (SOC) plays a critical role in the global carbon cycle and serves as a 

sensitive indicator of climate change impacts, with its dynamics significantly influencing 

regional ecological security and sustainable development. This study focuses on the 

Songnen Plain in Northeast China—a key black soil agricultural region increasingly af-

fected by water erosion, primarily through surface runoff and rill formation on gently 

sloping cultivated land. We aim to investigate the spatiotemporal dynamics of SOC stocks 

across different cultivated land erosion zones under projected future climate change sce-

narios. To quantify current and future SOC stocks, we applied a boosted regression tree 

(BRT) model based on 130 topsoil samples (0–30 cm) and eight environmental variables 

representing topographic and climatic conditions. The model demonstrated strong pre-

dictive performance through 10-fold cross-validation, yielding high R2 and Lin’s concord-

ance correlation coefficient (LCCC) values, as well as low mean absolute error (MAE) and 

root mean square error (RMSE). Key drivers of SOC stock spatial variation were identified 

as mean annual temperature, elevation, and slope aspect. Using a space-for-time substi-

tution approach, we projected SOC stocks under the SSP245 and SSP585 climate scenarios 

for the 2050s and 2090s. Results indicate a decline of 177.66 Tg C (SSP245) and 186.44 Tg 

C (SSP585) by the 2050s relative to 2023 levels. By the 2090s, SOC losses under SSP245 and 

SSP585 are projected to reach 2.84% and 1.41%, respectively, highlighting divergent car-

bon dynamics under varying emission pathways. Spatially, SOC stocks were predomi-

nantly located in areas of slight (67%) and light (22%) water erosion, underscoring the 

linkage between erosion intensity and carbon distribution. This study underscores the 

importance of incorporating both climate and anthropogenic influences in SOC assess-

ments. The resulting high-resolution SOC distribution map provides a scientific basis for 

targeted ecological restoration, black soil conservation, and sustainable land management 

in the Songnen Plain, thereby supporting regional climate resilience and China’s “dual 

carbon” goals. These insights also contribute to global efforts in enhancing soil carbon 

sequestration and achieving carbon neutrality goals. 
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1. Introduction 

Soil organic carbon (SOC) is vital to global carbon cycles and ecosystem services, par-

ticularly in agricultural systems where it underpins soil health, fertility, and sustainable 

productivity [1,2]. In erosion-prone regions, SOC dynamics are complex due to interac-

tions between soil degradation and carbon fluxes [3–5]. In northeast China’s Songnen 

Plain, water-driven erosion redistributes soil carbon and reduces its stability and storage 

capacity [6,7]. Accurate assessment of SOC change in these areas is crucial for regional 

carbon accounting and climate adaptation planning [8–10]. However, existing studies of-

ten lack spatial detail and future projections, with limited integration of climate scenarios 

into SOC modeling [11,12]. Additionally, many treat erosion zones as uniform, overlook-

ing important differences among slight, moderate, and severe erosion levels, each of 

which may respond differently to climatic changes [13–15]. This limits the effectiveness of 

land management and erosion control strategies. 

Digital soil mapping (DSM) overcomes these limitations by enabling a high-resolu-

tion, spatially explicit estimation of SOC dynamics through the integration of field obser-

vations, remote sensing data, and environmental covariates [11,16,17]. Among machine 

learning approaches [18,19], the boosted regression tree (BRT) model has proven particu-

larly effective, as it iteratively combines multiple regression trees using gradient boosting 

to capture complex nonlinear relationships and interactions among variables while pre-

serving model generalizability [19]. BRT outperforms many conventional models in han-

dling multi-source datasets, resisting outliers, and delivering interpretable results via 

measures of variable importance and partial dependence plots—making it especially well-

suited for SOC prediction in conditions of limited sample availability and high spatial 

heterogeneity [12,18]. 

This study employs a BRT model combined with a space-for-time substitution 

method, enabling the projection of current soil–environment relationships into future cli-

mate scenarios. Unlike conventional methods, this framework allows for the assessment 

of spatio-temporal dynamics under distinct shared socioeconomic pathways (SSPs)—spe-

cifically SSP245 and SSP585—offering a robust basis for predicting SOC responses to mid- 

and late-century climate change [11,14,20,21]. By integrating erosion zone delineations, 

the model enhances fine-scale evaluation of SOC vulnerability and resilience across vary-

ing degrees of soil degradation. 

The Songnen Plain represents an ideal study area due to its dual role as a vital grain-

producing region and a hotspot for soil degradation [6,7]. Long-term intensive agriculture 

has substantially depleted SOC stocks and intensified erosion pressures in its black soil 

ecosystems, creating clearly defined erosion gradients that provide a natural experimental 

setting for analyzing SOC responses to geomorphic and climatic drivers [22,23]. The re-

gion’s pronounced seasonal rainfall and freeze–thaw cycles further heighten its sensitivity 

to climate change, making it a critical case for assessing how future temperature and pre-

cipitation shifts may influence soil carbon loss [6,24]. Insights gained here are thus broadly 

applicable to temperate agricultural regions facing similar challenges and directly support 

China’s dual carbon goals [25]. 

The primary innovation of this study lies in its integrated spatiotemporal assessment 

of SOC dynamics across cultivated lands under varying erosion intensities and future cli-

mate scenarios—a dimension largely absent from previous research, which has predomi-

nantly focused on static or non-erosion-specific SOC evaluations. This study aims to (1) 
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quantify the spatial distribution of SOC stocks across cultivated lands in the Songnen 

Plain under varying erosion intensities; (2) project mid-century (2050s) and late-century 

(2090s) changes in SOC stocks under the SSP245 and SSP585 climate scenarios using a 

BRT-based modeling framework; (3) identify the dominant environmental drivers—in-

cluding climate and topography—that regulate SOC dynamics within erosion zones; and 

(4) generate high-resolution spatial maps and provide evidence-based recommendations 

for soil conservation and climate-smart agricultural management. By integrating erosion 

zonation with future climate projections, this research intends to support regional carbon 

sequestration strategies and promote sustainable agriculture in northeastern China. 

2. Materials and Methods 

2.1. Overview of the Research Area 

The study area is located on the Songnen Plain in Northeast China, formed by alluvial 

deposits from the Songhua and Nenjiang Rivers. As a key component of the Northeast 

Plain, it spans 43° N to 48° N and 122° E to 126° E (Figure 1). The region experiences a 

temperate continental monsoon climate, with a mean annual temperature of 3–5 °C and 

annual precipitation ranging from 400 to 600 mm, predominantly during summer. The 

concurrent rainy and warm seasons create favorable conditions for agricultural produc-

tion. The plain underlies a fault basin developed since the Mesozoic Era, overlain by thick 

Quaternary unconsolidated sediments, primarily black calcareous soils and meadow 

soils. Notably, the black soil layer reaches depths of 30–100 cm, exhibiting high organic 

matter content and ranking among the most fertile soils in China [7]. This area constitutes 

one of the world’s three major black soil regions. The topography is characterized by flat, 

open alluvial plains, sloping gently from west to east, with elevations between 120 and 

300 m. A dense river network, along with numerous lakes and swamps, supports a dis-

tinctive grassland and wetland ecosystem rich in biodiversity and serving as a critical mi-

gratory corridor for birds. While regional water resources are abundant overall, their spa-

tiotemporal distribution is uneven. Agriculture is dominated by maize, soybean, and rice 

cultivation, establishing the region as a vital national commodity grain base [6]. However, 

prolonged intensive development has triggered ecological challenges, including black soil 

degradation and declining groundwater levels, necessitating science-based management 

strategies to ensure sustainable development. 
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Figure 1. Location of the study area (a,b) and sampling point map (c) overlaid on the 90-m digital 

elevation model. 

2.2. Collection of Soil Samples in the Field 

Due to the extensive spatial extent of the Songnen Plain, traditional methods based 

on dense field sampling are inefficient and often fail to accurately capture the spatial dis-

tribution patterns of SOC stocks. To enhance resource efficiency and sampling effective-

ness while ensuring robust spatial representation, this study adopted a purposive sam-

pling strategy building upon the framework of Zhu et al. [26], incorporating key method-

ological improvements. The sampling design was developed through a four-stage process 

integrating environmental stratification, spatial variability analysis, and statistical power 

assessment. First, three primary environmental drivers of SOC variation—mean annual 

temperature (MAT), mean annual precipitation (MAP), and elevation—were selected and 

harmonized within a consistent 1-km spatial resolution geographic framework. Subse-

quently, the fuzzy c-means clustering algorithm was applied to these normalized envi-

ronmental covariates, yielding 17 distinct landscape units that capture the major eco-geo-

graphical gradients across the study region. 

The final sample size (n = 130) was determined through a comprehensive spatial var-

iability analysis that integrated preliminary data with theoretical calculations. A pre-sam-

pling spatial autocorrelation assessment, based on existing SOC data, revealed significant 

spatial clustering (Global Moran’s I = 0.42, p < 0.01), justifying a stratified sampling design 

to effectively capture spatial heterogeneity. Applying the formula for stratified random 

sampling, the required sample size was derived from variance decomposition analysis, in 

which the total variance (σ2_total = 2.38) was partitioned into within-stratum (σ2_w = 1.72) 

and between-stratum (σ2_b = 0.66) components. To achieve a margin of error of ±0.5 g kg⁻¹ 

at a 95% confidence level, the minimum sample size was calculated as 118. This value was 
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increased to 130 samples—approximately 7–8 per stratum—to accommodate potential 

field accessibility limitations and to enhance representation of transitional zones between 

landscape units. 

The spatial distribution of sampling points was optimized through a weighted allo-

cation strategy that accounted for both the area proportion and the variance in SOC within 

each stratum. Larger strata exhibiting higher internal variability were assigned a propor-

tionally greater number of sampling points, while a minimum of five samples was re-

tained in smaller strata to ensure sufficient spatial coverage. The sampling design was 

validated using semivariogram analysis of simulated configurations, confirming that the 

130-point layout captured over 85% of the spatial variability in SOC distribution across 

the study region. All sample locations were accurately georeferenced with high-precision 

GPS devices (±3 m horizontal accuracy), and sampling depth was standardized at 0–30 cm 

in accordance with international soil carbon assessment protocols. This carefully designed 

framework ensures that the collected data adequately represent the spatial heterogeneity 

of SOC stocks while remaining operationally feasible under field conditions. 

This study focuses on analyzing SOC stocks in cultivated soils within the 0–30 cm 

depth layer, based on well-established scientific and practical grounds. This soil layer is 

directly influenced by tillage practices and represents the most active zone for organic 

matter inputs—such as root exudates and crop residue return—and microbial activity. It 

is also highly responsive to short-term agricultural management interventions, including 

tillage systems and fertilization regimes, with changes in carbon storage closely linked to 

soil fertility and crop productivity. Furthermore, as an internationally standardized depth 

for soil monitoring, the 0–30 cm layer enables effective data harmonization and model 

calibration across studies. In contrast, while the 30–100 cm soil layer contains a substantial 

carbon pool, its carbon turnover occurs over centuries, primarily governed by mineral 

association and physical protection mechanisms, leading to delayed and uncertain re-

sponses to surface-level management. Additionally, deep soil sampling remains costly 

and methodologically inconsistent, and the absence of dedicated environmental covari-

ates and mechanistic models for deep carbon dynamics undermines the reliability and 

scalability of large-scale assessments. Therefore, prioritizing the 0–30 cm layer allows for 

a more accurate and policy-relevant evaluation of the immediate effects of human activi-

ties and climate change, offering a practical foundation for developing agricultural carbon 

sequestration strategies. 

At each site, approximately 1 kg of composite soil sample and a 100 cm3 undisturbed 

core were collected for laboratory analysis of SOC stocks and bulk density (BD), respec-

tively. All samples were processed at the Laboratory Analysis and Testing Center of Shen-

yang Agricultural University under standardized protocols: SOC was measured via the 

dry combustion method using an Elementar Vario Max C/N analyzer (Germany), while 

BD was calculated after oven-drying the undisturbed cores at 105 °C for 48 h. This ap-

proach enhances both the spatial representativeness and coverage of sampling while 

maintaining high data quality. 

2.3. Calculation of SOC Stocks 

This study aims to simulate and predict the spatial differentiation characteristics of 

SOC stocks in the eroded cultivated ecosystem of the Songnen Plain in Northeast China 

under future climate change scenarios. For a soil profile comprising k soil layers, the SOC 

density of each layer can be calculated using the model developed by Batjes [27], which 

integrates key parameters such as SOC content, BD, and gravel content. This approach is 

well suited for spatially explicit simulations of multi-layer SOC stocks, thereby facilitating 

the understanding of the vertical distribution patterns and regional dynamic response 
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mechanisms of agricultural SOC stocks in the context of climate change. The specific cal-

culation formula was as follows [27]: 

1 1

(1 )
k k

i i i

i i

SOC stocks SOC content SOC concentration BD D S
= =

= =    − 
 

(1) 

where SOC stocks (kg m−2) are calculated as the product of SOC concentration (g kg−1), 

bulk density (BDi, g cm−3), layer thickness (Di, m), and the complement of the volume frac-

tion of soil fragments larger than 2 mm (Si), summed across each defined soil layer i. This 

formulation establishes a quantitative link between observable soil characteristics and the 

resulting SOC stocks per unit area, incorporating the contributions of both fine earth and 

coarse fragments within structured soil profiles. 

2.4. Environmental Variables 

This study selected 8 key terrain and climate environmental variables within the cul-

tivated ecosystem of Northeast China to simulate and predict the spatial distribution pat-

terns of SOC stocks under the SSP245 and SSP585 scenarios for the base year (2023) and 

future periods (2050s and 2090s). Considering that the selected environmental variables 

were derived from multiple heterogeneous data sources, spatial consistency and compa-

rability were ensured by first resampling all variables to a uniform spatial resolution of 90 

m using ArcGIS 10.2 (ESRI, Redlands, CA, USA), and subsequently projecting them into 

the Krasovsky_1940_Albers coordinate system to achieve spatial alignment. The prepro-

cessed data were then imported into the R programming environment (R Development 

Core Team, 2013) [28] to develop a spatial prediction model for SOC, enabling accurate 

assessment and uncertainty analysis of regional SOC stock dynamics under various sce-

narios and time periods. 

2.4.1. Topographic Variables 

The Topographic variables used in this study were all derived from the Digital Ele-

vation Model (DEM), which served as the foundation for digital terrain analysis and ena-

bled the extraction of various terrain attribute parameters. The DEM data used in this 

study has a spatial resolution of 90 m and was obtained from the Geospatial Data Cloud 

platform of the Computer Network Information Center, Chinese Academy of Sciences 

(http://www.gscloud.cn). Based on this DEM, six key topographic variables were ex-

tracted: elevation, slope aspect (SA), slope gradient (SG), profile curvature (PC), topo-

graphic wetness index (TWI), and catchment area (CA). Among these, elevation, SA, SG, 

and PC were calculated using ArcGIS 10.2, while TWI and CA were derived using the 

System for Automated Geoscientific Analyses (SAGA) software (v. 2.1.4) [29]. Elevation 

refers to the vertical height of a location relative to a reference datum, and its spatial var-

iation is typically associated with changes in hydrothermal conditions, vegetation types, 

and soil formation processes, which significantly influence the spatial distribution and 

dynamics of soil organic matter (SOM). As a major component of SOM, SOC stocks are 

highly responsive to climate change and human activities, and even minor variations in 

SOC can have significant implications for the global carbon cycle. SA affects the intensity 

of solar radiation and the angle of wind exposure, leading to notable differences in mois-

ture and temperature conditions, light availability, and soil properties across different 

slope orientations. These variations contribute to the formation of localized microclimates, 

which in turn influence vegetation composition, biomass production, and litter input, ul-

timately resulting in spatial variability in SOC accumulation and decomposition pro-

cesses. SG is a critical factor influencing soil erosion intensity, and its variation can indi-

rectly affect the redistribution and stability of SOC by modifying erosion rates. TWI, 

which reflects the terrain’s capacity to accumulate runoff, is commonly used to identify 
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zones with high soil moisture or susceptibility to waterlogging. Higher TWI values gen-

erally indicate increased soil moisture, which may enhance the accumulation and preser-

vation of organic matter. CA refers to the upstream drainage area contributing to a specific 

convergence point and is frequently used to estimate local surface runoff generation. It 

serves as a key topographic variable for predicting spatial patterns of SOC. 

2.4.2. Climatic Variables 

The climatic variables used in this study span the base year (2023) and two future 

periods (the 2050s and the 2090s). The climatic variables include gridded datasets of mean 

annual temperature (MAT) and mean annual precipitation (MAP), with a spatial resolu-

tion of 1 km. Historical MAT and MAP data for the reference period (2023) were obtained 

from the National Meteorological Information Center of the China Meteorological Ad-

ministration (http://data.cma.cn/en, 30 August 2024). Based on daily precipitation and 

temperature observations from meteorological stations across Northeast China, spatial in-

terpolation was conducted using the inverse distance weighting (IDW) method in ArcGIS 

10.2 to generate continuous surfaces covering the entire study region. Future climate pro-

jections were derived from the WorldClim dataset (https://www.worldclim.org), repre-

senting average conditions for the periods 2041–2060 (2050s) and 2081–2100 (2090s), under 

two shared socioeconomic pathways: SSP245 and SSP585. These scenarios were selected 

to assess the response of SOC stocks under varying socioeconomic development trajecto-

ries and policy interventions, thereby providing a scientific basis for regional carbon man-

agement strategies. SSP245 represents a medium-low emission scenario, projecting a ra-

diative forcing of approximately 4.5 W/m2 by 2100, assuming moderate climate mitigation 

efforts. In contrast, SSP585 represents a high-emission scenario with a radiative forcing of 

8.5 W/m2, reflecting a future of continued high greenhouse gas emissions under an energy-

intensive development model. This scenario enables the evaluation of SOC dynamics and 

its climate feedback potential in the absence of effective mitigation measures. 

2.5. Prediction Models 

In this study, a combination of the BRT model and space-for-time substitution 

method (STS) was used to simulate and predict the spatiotemporal dynamics of SOC 

stocks in the topsoil (0–30 cm) of different soil erosion areas in the Songnen Plain of North-

east China during historical periods and future scenarios. In addition, it should be em-

phasized that this study focuses on the spatiotemporal dynamics of SOC stocks in culti-

vated soils across different erosion zones of the Songnen Plain, China. Consequently, sam-

pling was restricted to cultivated land, and predictive simulations were not performed for 

other land use types such as forestland, grassland, or wetlands. As a result, areas corre-

sponding to non-cultivated land uses appear blank in the subsequent prediction maps, 

accurately reflecting the scope of this study. The specific technical roadmap was shown in 

Figure 2. 
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Figure 2. Schematic diagram of research technology roadmap. 

2.5.1. Boosted Regression Trees 

BRT is a machine learning algorithm proposed by Elith et al. [18] that effectively cap-

tures complex nonlinear relationships between dependent and independent variables. 

This model combines the characteristics of regression trees and boosting methods: regres-

sion trees handle variable relationships through recursive binary segmentation, while 

boosting methods combine multiple weak prediction models (usually shallow trees) in a 

progressive manner, gradually reducing prediction errors and forming strong predictors 

[12]. Unlike traditional minimalist models, BRT has a high degree of flexibility and can 

handle both continuous and categorical predictor variables simultaneously [19]. It is in-

sensitive to missing values and does not require prior data conversion or outlier removal. 

In addition, the model can automatically identify the interaction effects between variables 
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and is suitable for modeling data with complex ecological relationships [18]. In the actual 

fitting process, BRT optimizes key hyperparameters through cross validation, including 

learning rate (LR, controlling the contribution of each tree), tree complexity (TC, deter-

mining the branch depth and interaction complexity of the tree), bag fraction (BF, speci-

fying the proportion of self-serving sub samples in each round), and number of trees (NT). 

This study used the “dismo” and “gbm” packages in the R language [28] to establish a 

model. After parameter tuning, the optimal configuration was determined to be LR = 

0.025, TC = 8, BF = 0.75, NT = 2500. This combination significantly improves the prediction 

accuracy and robustness of the model in cross-validation, demonstrating better perfor-

mance than traditional statistical methods. 

2.5.2. Space-for-Time Substitution Method 

The formation and evolution of soil are profoundly influenced by environmental fac-

tors, including climate, biological activity, topography, and parent material. The “scor-

pan” soil landscape model introduced by McBratney et al. [16] offers a theoretical frame-

work for predicting spatiotemporal variations in soil properties, such as SOC stocks. By 

calibrating this model and applying it to future climate projections and land use scenarios, 

SOC stocks can be projected for specific time periods using the space-for-time substitution 

(STS) method. STS has been widely applied in SOC dynamic modeling across countries 

such as the United States, Australia, and Brazil [11,14,20,21]. However, its application to 

future predictions remains challenging, primarily due to the absence of actual SOC meas-

urements for validation, which limits the direct assessment of prediction uncertainty and 

accuracy [11]. This study focuses on eroded croplands in the Songnen Plain of Northeast 

China. First, based on environmental variables and field sampling data from 2023, we 

conducted a spatially explicit simulation of topsoil SOC stocks. Subsequently, assuming 

that topography and parent material remain relatively stable in the future (2050s and 

2090s), the STS model was employed to isolate and analyze the spatiotemporal impacts of 

climate change and land use dynamics on SOC stocks, aiming to reveal the trajectory of 

SOC stock evolution under different SSPs. 

2.6. Model Validation 

The accuracy of predicting SOC stocks in future periods (2050s and 2090s) largely 

depends on the reliability of prediction models developed for the historical period using 

2023 data. This reliance arises because the functional relationship between future SOC 

stocks and environmental variables is extrapolated from the current model. To systemat-

ically evaluate the performance of the BRT model in predicting SOC stocks in 2023, this 

study employed 10-fold cross-validation and assessed four evaluation metrics: Mean Ab-

solute Error (MAE), Root Mean Square Error (RMSE), Coefficient of Determination (R2), 

and Lin’s Concordance Correlation Coefficient (LCCC) [30]. These metrics provide a 

multi-dimensional assessment of model performance, encompassing prediction bias, er-

ror magnitude, explanatory power, and agreement between predicted and observed val-

ues. The calculation formulas are as follows: 

MAE =
1 1

1

1 n

i

a b
n =

−  (2) 

RMSE = ( )
2

1 1

1

1 n

i

a b
n =

−  (3) 
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(5) 

During the model validation process, let ai and bi denote the observed and predicted 

values of the i-th sample, respectively, while a
−

 and b
−

, represent the arithmetic means 

of the observed and predicted values. Let a  and a  denote the variances of the corre-

sponding data series, n be the total sample size, and r be the Pearson correlation coefficient 

between the predicted and observed values. 

3. Results 

3.1. Descriptive Statistics 

The descriptive statistical results of SOC stocks and related environmental variables 

in 130 topsoil samples collected in 2023 were summarized in Figure 3. Analysis showed 

that the variation range of SOC stocks was 1.32–17.46 kg m−2, with an average value of 

6.30 kg m−2. Its skewness and kurtosis coefficients were 1.16 and 1.70, respectively, indi-

cating that the variable deviated from normal distribution. Therefore, this study per-

formed a logarithmic transformation on the SOC stock data to meet the statistical require-

ments of subsequent modeling. To further evaluate the correlation between the converted 

SOC stocks and environmental variables, we calculated the Pearson correlation coefficient 

(Table 1). The results showed that SOC stocks were significantly positively correlated with 

elevation (r = 0.42) and MAT (r = 0.42), while significantly negatively correlated with MAP 

(r = −0.62). There was a strong correlation between climatic variables, especially MAP, and 

SOC stocks, indicating that climatic variables played an important role in driving the spa-

tial differentiation of SOC stocks in the Songnen Plain region of northeastern China. 

Table 1. Pearson correlation analysis between soil organic carbon (SOC) stocks and environmental 

variables based on 130 sampling sites data. 

Property SOC Stocks ELE SG SA PC CA TWI MAP 

ELE 0.42 **        

SG 0.11 0.42 **       

SA 0.06 −0.08 −0.16      

PC −0.10 0.01 −0.10 −0.20 *     

CA 0.09 −0.51 ** −0.49 ** 0.21 * −0.05    

TWI −0.04 −0.62 ** −0.80 ** 0.21 * 0.06 0.79 **   

MAP −0.62 ** 0.35 ** −0.02 −0.28 ** 0.07 −0.18 * −0.59 **  

MAT 0.42 ** −0.43 ** −0.16 −0.20 * −0.05 0.79 ** −0.04 0.51 ** 

Note: ELE, elevation; SG, slope gradient; SA, slope aspect; PC, profile curvature; CA, catchment 

area; TWI, topographic wetness index; MAP, mean annual precipitation; MAT, mean annual tem-

perature. *, p < 0.01; **, p < 0.05. 
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Figure 3. Boxplot of soil organic carbon (SOC) stocks and environmental variables at sampling sites. 

Note: ELE, elevation; SG, slope gradient; SA, slope aspect; PC, profile curvature; CA, catchment 

area; TWI, topographic wetness index; MAP, mean annual precipitation; MAT, mean annual tem-

perature. 

3.2. Model Performance and Uncertainty 

Based on the 10-fold cross-validation method, a systematic evaluation was conducted 

to assess the performance of the BRT model in predicting the spatial distribution of topsoil 

SOC stocks. The validation results demonstrated that the BRT model achieves high pre-

dictive accuracy, with R2 and LCCC of 0.52 and 0.65, respectively. The MAE and RMSE 

are 1.45 kg m−2 and 2.03 kg m−2, respectively (Table 2). These statistical metrics indicated 

that the model effectively captures 52% of the spatial variability in SOC stocks across the 

study region in 2023, demonstrating its superior predictive capability (Table 2). To further 

evaluate model stability, we performed 100 iterations and calculated an average standard 

deviation of 0.41 ± 0.09 kg m−2 (Figure 4). This low variation suggested that the BRT model 

exhibited low uncertainty and stronger robustness in predicting SOC stocks in the 

Songnen Plain region of northeastern China. Spatially, topsoil SOC stocks in those regions 

in 2023 display a clear northward-increasing gradient. High SOC stock values were pre-

dominantly found in the central and northern black soil regions and humid mountainous 

areas, likely due to greater organic matter inputs and more favorable soil moisture and 

thermal conditions. In contrast, lower SOC values were observed in southern areas char-

acterized by intensive agricultural practices and relatively arid climates, highlighting the 

combined influence of anthropogenic activities and natural environmental factors on car-

bon sequestration. 
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Table 2. Summary statistics of soil organic carbon (SOC) stock prediction performance of boosted 

regression tree (BRT) model in 2023. 

Index MAE RESE R2 LCCC 

Min. 1.40  1.98  0.43  0.61  

1stQu. 1.42  2.00  0.49  0.64  

Median 1.43  2.01  0.52  0.66  

Mean 1.45  2.03  0.52  0.65  

3rdQu. 1.47  2.07  0.54  0.67  

Max. 1.50  2.10  0.59  0.68  

 

Figure 4. Spatial distribution (a) and Standard deviation (b) maps of average soil organic carbon 

density (SOCD) based on 100 iterations of the BRT model in 2023. 

3.3. Relative Importance of Environmental Variables 

After 100 iterations of the BRT model, the average relative importance (RI) of 8 envi-

ronmental variables was computed, with RI values normalized to sum to 100% for com-

parative purposes. The results revealed a marked difference in the influence of topo-

graphic and climatic variables on the spatial distribution of SOC stocks: topographic var-

iables accounted for 64% of the total RI, substantially exceeding that of climatic variables 

(36%) (Figure 5). Among all predictors, MAT, elevation, and SA emerged as the three most 

influential variables, collectively contributing 60% of the total RI. This indicated that ther-

mal conditions, elevation, and surface morphology were the primary drivers of spatial 

heterogeneity in SOC within the study region. Further analysis suggested that MAT reg-

ulated microbial metabolic activity and the decomposition of organic matter, thereby in-

fluencing carbon accumulation; elevation acts as an integrative proxy for the redistribu-

tion of water and heat, indirectly shaping vegetation patterns and primary productivity; 
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SG, in turn, governed the redistribution and stability of organic carbon by modulating 

surface material transport, hydrological processes, and erosion-deposition dynamics. 

These findings enhance our understanding of the mechanisms underlying the spatial dif-

ferentiation of SOC under multi-factor interactions. 

 

Figure 5. Relative importance (RI) of different environmental variables based on 100 iterations of 

the BRT model in 2023. SG, slope gradient; SA, slope aspect; PC, profile curvature; CA, catchment 

area; TWI, topographic wetness index; MAP, mean annual precipitation; MAT, mean annual tem-

perature. 

3.4. Spatial Distribution Variation in SOC Stocks Under Various Erosion Types 

Based on a modeling framework integrating the BRT model and STS, this study sim-

ulated the spatial distribution of SOC stocks in the topsoil across different soil erosion 

zones in the Songnen Plain of Northeast China in 2023, and projected its changing trends 

under multiple climate scenarios. The results indicate that the coupled BRT-STS model 

performs well in predicting SOC stocks for the 2050s and 2090s. In 2023, SOC stocks were 

predominantly located in areas experiencing slight and light and water erosion, amount-

ing to 496.18 Tg C and 159.88Tg C, respectively, accounting for 68% and 22% of the total 

SOC stocks (Table 3). Under future climate scenarios, SOC stocks are projected to undergo 

significant declines: by the 2050s, reductions of 177.66 Tg C and 186.44 Tg C were expected 

under the SSP245 and SSP585 scenarios, respectively, relative to the 2023 baseline; by the 

2090s, further decreases were projected compared to the 2050s, with additional losses of 

2.84% and 1.41% under the respective scenarios. Spatially, the distribution patterns of SOC 

stocks in the 2050s and 2090s remain relatively consistent under both SSP245 and SSP585 

(Figure 6). High-value areas were primarily concentrated in the northern regions charac-

terized by complex terrain and high vegetation cover, whereas low values prevail in the 

southern regions influenced by intensive human activities and a relatively arid climate. 

This spatial pattern underscores the combined regulatory effects of natural factors (e.g., 

climate, topography) and anthropogenic activities on SOC distribution, and suggests that, 

despite varying emission pathways, the regional natural environmental background re-

mains the dominant control on SOC spatial heterogeneity. These findings hold important 

scientific implications for understanding the response mechanisms of soil carbon pools 

under concurrent climate change and human disturbance. 
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Table 3. Summary statistics of soil organic carbon (SOC) stocks under various erosion types across 

different climate scenarios and time periods. 

Erosion Type Level Area (km2) 2023 (Tg) 
2050s (Tg) 2090s (Tg) 

SSP245 SSP585 SSP245 SSP585 

Water erosion 

Slight 62,660.00  496.18  389.09  381.92  377.12  376.77  

Light 18,618.00  159.88  116.24  115.05  113.23  112.99  

Moderate 7665.00  74.75  48.27  47.84  47.49  47.36  

Severe 155.00  1.24  0.82  0.83  0.83  0.83  

Wind erosion 

Slight 21.00  0.13  0.11  0.11  0.11  0.11  

Light 5.00  0.03  0.03  0.03  0.03  0.03  

Moderate 7.00  0.04  0.04  0.04  0.04  0.04  

Severe 2.00  0.02  0.01  0.01  0.01  0.01  

Total 89,133.00  732.27  554.61  545.83  538.86  538.14  

 

Figure 6. Spatial distribution map of soil organic carbon (SOC) stocks under SSP245 ((a) for the 

2050s, (b) for the 2090s) and SSP585 ((c) for the 2050s, (d) for the 2090s) scenarios based on a boosted 

regression tree (BRT) model and the space-for-time substitution (STS) method. 
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4. Discussion 

4.1. Controls of SOC Stocks 

This study utilized terrain and climate variables as core predictive variables to con-

duct historical retrospective analyses and future scenario simulations of topsoil SOC 

stocks in different soil erosion zones of the Songnen Plain in Northeast China. Climate 

variables played a crucial role in shaping the spatial distribution of SOC stocks at regional 

scales: they regulated SOC inputs by influencing vegetation types and primary produc-

tivity, while also controlling the decomposition and transformation of organic matter 

through their effects on soil temperature and moisture conditions. Among climatic varia-

bles, MAT and MAP exerted particularly significant influences on SOC stocks, with effects 

that vary markedly across regions. Although prior studies generally highlight a strong 

correlation between MAP and SOC [31,32], the BRT model results from this study indi-

cated that MAT contributes most substantially to the spatial variability of SOC stocks, 

with a relative importance of 28% (Figure 5), making it the dominant environmental var-

iable. This finding aligned with multiple previous studies [33,34]. For instance, Mishra et 

al. [33] identified temperature as a key control on SOC stocks in Northern Hemisphere 

permafrost regions, while Zhang et al. [32] emphasized in their analysis of spatiotemporal 

SOC dynamics in high-altitude regions of China that climate—particularly MAT—was 

the primary variable governing SOC spatial differentiation. Generally, cooler environ-

ments were more favorable for SOC accumulation. Collectively, these findings underscore 

the fundamental regulatory role of climate, especially temperature, in regional SOC stocks 

and dynamics. 

Topographic variables are key variables influencing soil formation and development, 

as well as the sequestration and dynamics of organic carbon through their regulation of 

temperature, soil moisture, and evapotranspiration. Terrain governs the decomposition 

and transformation of SOC by spatially redistributing hydrothermal conditions and reg-

ulating vegetation growth, thereby altering litter inputs and the activity levels of soil fauna 

and microorganisms. Among various terrain attributes, altitude exerts the most pro-

nounced influence (Figure 4), indirectly shaping the accumulation and spatial distribution 

of organic carbon by modulating temperature and precipitation regimes. For instance, 

Blackburn et al. [19] reported in a study conducted in North Carolina, USA, that SOC 

stocks increase significantly with elevation, exhibiting a consistent pattern across different 

soil depths. SG and SA also substantially influence SOC stocks. Geremew et al. [35] ob-

served that in the Anji River Basin in northwestern Ethiopia—an area characterized by 

intensive agriculture—SOC content (1.77 Mg ha−1) in gently sloping areas (1–15%) was 

significantly higher than in steep slopes (>30%). TWI is commonly used to represent land-

scape-scale variations in soil moisture, with higher TWI values generally indicating more 

favorable moisture conditions that slow down the decomposition and mineralization of 

organic matter. However, in this study, TWI exhibited the lowest relative importance (RI 

= 5.8%), which may be attributed to two main factors: first, water flow tends to diverge 

during its movement from uphill to downhill positions, limiting TWI’s ability to accu-

rately reflect actual convergence patterns in lower topographic areas [36]; second, various 

ecological engineering projects can modify surface topography and underlying surface 

characteristics, thereby influencing the transport and redistribution of water, sediment, 

and associated organic matter [37], which may weaken the correlation between TWI and 

soil organic matter distribution. 

4.2. Response of SOC Stocks in Different Erosion Zones Under Future Climate Change 

As a core component of the black soil region in Northeast China, the Songnen Plain 

is primarily affected by water erosion in its cultivated areas [38]. In 2023, slight and light 
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water erosion accounted for 91% of the total eroded area, with corresponding SOC stocks 

representing approximately 91% of the region’s total SOC stocks (Table 3). The prevalence 

of water erosion in croplands results from the interplay between natural geographical 

conditions and anthropogenic activities. Although the terrain is predominantly flat, wide-

spread gentle slopes (1–3°) facilitate surface runoff due to concentrated summer rainfall—

over 70% of annual precipitation occurs between June and September—along with fre-

quent heavy rain events [6]. While black soils naturally possess a favorable granular struc-

ture, decades of intensive agricultural practices have led to substantial declines in soil or-

ganic matter—locally exceeding 50% loss—and structural degradation, thereby reducing 

resistance to erosion. Seasonal freeze–thaw cycles further intensify topsoil detachment 

during spring thaw [7]. Concurrently, agricultural practices such as slope farming, con-

tinuous monoculture, and reduced vegetation cover have diminished surface protection 

and root-mediated soil stabilization. Inadequate drainage infrastructure and underdevel-

oped protective forest networks have further compromised regional soil and water con-

servation capacity [22]. 

However, predictions indicate that by the 2050s, under both the SSP245 and SSP585 

climate scenarios, SOC stocks in the region may decrease by 177.66 Tg C and 186.44 Tg C, 

respectively, with the most pronounced changes occurring in surface soils. As one of the 

world’s key black soil regions, the response mechanism of SOC here is highly complex: 

increased precipitation can enhance leaching and translocation of organic carbon from the 

topsoil [39,40]; rising temperatures and altered precipitation patterns jointly accelerate mi-

crobial decomposition [41,42]; furthermore, climate change may intensify soil erosion, 

leading to physical displacement and loss of soil carbon [38]. Consequently, future SOC 

sequestration in the Songnen Plain will depend not only on improved agricultural man-

agement practices but also on addressing the profound impacts of coupled carbon–water 

cycle dynamics under changing climatic conditions. 

In the 2090s, under the SSP245 and SSP585 climate scenarios, SOC stocks in the study 

area are projected to continue declining, with reductions of 2.84% and 1.41%, respectively. 

To achieve sustainable socio-economic development, it is imperative to integrate scientific 

SOC management with adaptive strategies for climate change mitigation. In recent years, 

China has prioritized black soil conservation by establishing the strategic principle of 

“protecting black soil as diligently as giant pandas” and implementing a series of sup-

portive policies—such as large-scale straw return programs and the promotion of conser-

vation tillage practices [36,43,44]. The government allocates substantial fiscal resources 

annually through subsidy mechanisms to incentivize farmers to adopt carbon sequestra-

tion-oriented agricultural practices, while also funding multi-billion-yuan research initia-

tives aimed at enhancing the long-term productivity and sustainability of the black soil 

region in Northeast China [45]. The findings of this study further validate these efforts. 

Under the SSP245 and SSP585 scenarios, the implementation of soil conservation such as 

crop residue return and conservation tillage in the study area is projected to reduce SOC 

loss to 15.75 Tg C and 7.69 Tg C (Table 3), respectively, by the 2090s, significantly mitigat-

ing declines in SOC. Concurrently, rural labor outflows during urbanization have led to 

partial farmland abandonment, which may facilitate natural SOC accumulation to a cer-

tain extent [46]. In the context of global environmental change, accurately projecting the 

impacts of climate change on regional carbon cycling holds significant scientific value for 

achieving national “dual carbon” goals, strengthening ecological security, mitigating cli-

mate risks, and advancing green, high-quality development. Furthermore, such projec-

tions provide a critical theoretical foundation for the formulation of evidence-based eco-

logical policies. 
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4.3. Uncertainties in the Present Study 

Based on a high R2, LCCC, and low MAE and RMSE, this study selected the BRT 

model as the optimal model for simulating the spatial distribution of SOC stocks across 

multiple scenarios. Although the model demonstrates low uncertainty (standard devia-

tion: 0.41 ± 0.09 kg m−2), several sources of uncertainty remain in the prediction process. 

Firstly, in 2023, soil samples were collected and analyzed by multiple research teams 

under a unified operational protocol. Nevertheless, systematic uncertainties arising from 

instrument calibration discrepancies, variations in laboratory conditions, and potential 

human errors may still affect the accuracy of the modeling data. 

Secondly, environmental variable data are derived from multi-platform, multi-reso-

lution remote sensing products and reanalysis datasets, which differ in their original spa-

tial resolution, observation accuracy, and coordinate systems. Although spatial registra-

tion and resampling were conducted in ArcGIS 10.2, these preprocessing steps may intro-

duce localized information loss or smoothing effects, potentially compromising the accu-

racy of the observed relationships between environmental variables and SOC. 

Thirdly, although this study included the TWI as a representative microtopographic 

variable, the omission of other key microtopographic factors—such as profile and planar 

curvature, flow accumulation, and solar radiation index—may contribute to predictive 

uncertainty. In flat and eroded landscapes, these variables play a critical role in regulating 

fine-scale hydrological processes, sediment redistribution, and soil moisture variability, 

all of which directly affect SOC accumulation and stabilization. Although TWI was incor-

porated into the model, its low relative importance suggests that either its theoretical basis 

inadequately captures local soil moisture dynamics or that unmeasured microtopographic 

interactions exert a stronger influence on SOC distribution in such environments. The lack 

of a comprehensive microtopographic characterization may therefore result in an under-

estimation of SOC spatial heterogeneity, particularly in areas where minor surface varia-

tions significantly influence carbon storage potential. Future studies should incorporate 

high-resolution digital elevation models and additional terrain attributes to more accu-

rately represent the multifaceted influence of microtopography on SOC patterns. 

Fourthly, the climate data for the historical and future periods are derived from dif-

ferent sources. Specifically, the future climate scenarios are based on downscaled model 

outputs, which entail greater uncertainty in simulating the frequency and intensity of ex-

treme climate events—such as droughts, rainstorms, and heatwaves—and lack full spatial 

consistency across climate variables, thereby compromising the reliability of SOC dy-

namic predictions. 

Fifthly, the model training relies on historical soil–environment relationships and 

does not account for potential significant changes in future soil properties, land use pat-

terns, agricultural management practices, or ecosystem structure. This inherent assump-

tion of static conditions under dynamic realities may amplify prediction errors and con-

strain the model’s capacity for long-term extrapolation. 

Sixthly, this study focuses exclusively on SOC stocks in the surface soil layer (0–30 

cm) and does not extend to deeper soil layers (e.g., 30–100 cm), which possess greater 

carbon sequestration potential in the black soil region of the Songnen Plain. Given the 

considerable depth of the black soil profile and the substantial organic carbon stocks in 

the subsurface layers, excluding these strata may result in an underestimation of total soil 

carbon stocks and introduce systematic bias into the assessment of carbon cycling dynam-

ics. 

Despite the aforementioned uncertainties, predicting SOC stocks under various fu-

ture socio-economic development pathways can still provide a critical scientific founda-

tion for black soil conservation and sustainable use. This is particularly important for de-
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veloping differentiated farmland management policies, establishing ecological compen-

sation mechanisms, and designing regional carbon neutrality strategies, thereby offering 

robust decision-making support for soil resource management in the context of climate 

change. 

5. Conclusions 

This study employed the BRT model and STS method to simulate and predict inter-

annual and decadal dynamics of SOC stocks in the topsoil (0–30 cm) of the Songnen Plain 

in Northeast China under two climate scenarios (SSP245 and SSP585) for the 2050s and 

2090s. The results revealed significant spatial heterogeneity in SOC stocks across the re-

gion in 2023. The model identified MAT, elevation, and SA as the three dominant envi-

ronmental drivers, collectively accounting for approximately 60% of the observed spatial 

variability. Projections indicated that while the overall source–sink spatial patterns of SOC 

remained broadly similar under both scenarios, the SSP245 scenario exhibited lower car-

bon losses and greater carbon sequestration potential, whereas the SSP585 scenario accel-

erated organic matter decomposition, leading to more pronounced SOC depletion in 

source areas and reduced accumulation in sink regions. Specifically, compared to the his-

torical baseline period, SOC stocks under the SSP245 and SSP585 scenarios are projected 

to decrease by 177.66 Tg C and 186.44 Tg C, respectively, by the 2050s. By the 2090s, SOC 

stocks are expected to decline further by an additional 2.84% and 1.41% under these re-

spective scenarios. Spatially, SOC changes were predominantly concentrated in areas ex-

periencing slight and light water erosion, which accounted for 67% and 22% of total SOC 

stocks, respectively, underscoring the strong linkage between erosion intensity and car-

bon cycling processes. These findings provide a scientific basis for regional land managers 

and policymakers to enhance soil carbon sequestration through optimized agricultural 

practices and targeted ecological restoration strategies under future climate change, 

thereby improving the climate resilience and sustainability of black soil ecosystems. 
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