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A B S T R A C T   

There are large uncertainties in predicting soil organic carbon (SOC) in response of future changing climate and 
human activities. This study estimates SOC stocks under future changing land use and climate conditions in 
Northeast China using a state-of-the-art digital soil mapping technique. A total of 487 soil samples and 12 
environmental variables from 37 landscape units (derived from soil, topography, climate, and human activity 
data) combined with boosted regression trees (BRT) and random forest (RF) models are first used to map the 
topsoil (0–20 cm) SOC stocks in Northeast China in 2015. The primary environmental variables influencing the 
variability of SOC stocks are mean annual temperature, elevation, mean annual precipitation, and land use. We 
then applied the space-for-time substitution method in conjunction with the BRT model to predict the spatial 
distribution of SOC stocks under future (the 2050s and 2090s) climate and land use scenarios. SOC stocks under 
the scenarios of shared socioeconomic pathways (SSP245) and SSP585 (average and upper estimate of the in
crease in atmospheric greenhouse gases for that time) decreased by 1.5% and 4.5% in the 2050s, respectively, 
compared with 2015 (5293 Tg C). For the 2090s, the SOC stocks under the SSP245 scenario increased by 1.9%, 
and those under the SSP585 scenario decreased by 0.4%. The SOC stocks in both future periods are mainly stored 
in farmlands and forests, accounting for 90% and 92% of the total SOC stocks, respectively. Our high-resolution 
estimated SOC maps provide a scientific basis for optimizing ecological management in Northeast China.   

1. Introduction 

Soils contain the largest organic carbon reservoir in the biosphere 
and play a pivotal role in the global carbon cycle (Lal et al., 2018). Soil 
organic carbon (SOC) stocks are three times greater than those in the 
atmosphere (Riggers et al., 2021), and a slight change in soil carbon 
content can result in a significant amount of carbon release to the at
mosphere, thereby contributing to global climate change (Lal, 2004). 
The concentration of greenhouse gases, such as CO2, in the atmosphere 
has continued to rise and has now reached a level of 415 ppm (ppm) 
(Davis et al., 2010; Smith et al., 2020; Yang et al., 2022). She et al. 
(2022) estimated that fossil fuel CO2 emissions in 2020 would be 34.8 Gt 

Carbon (C), >50% higher than that in 1990, and reach 36.4 Gt C by 
2021. Therefore, a precise evaluation of SOC stocks in terrestrial systems 
would help to quantify atmosphere CO2 concentrations and their im
pacts on global climate. 

SOC dynamics are closely linked to soil microbial activity (Post and 
Kwon, 2000; Bhattacharyya et al., 2022; Cui et al., 2022). Soil microbial 
activity plays a crucial role in modulating the decomposition rate of soil 
organic matter and plant litter, thereby exerting a significant impact on 
the SOC dynamics (McBratney et al., 2003; Ngaba et al., 2022； Mengist 
et al., 2023). Climate, vegetation cover, soil, and land use management 
all affect soil microbial activities (Albaladejo et al., 2013; Adhikari et al., 
2019; Wang et al., 2022a). The rate of temperature rise has increased 
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significantly in the past half-century (Lal et al., 2018). With changes in 
the global climate and environment, terrestrial ecosystems will experi
ence unprecedented challenges (Amelung et al., 2020). Land use change 
is an important driver for SOC dynamics (Meneses et al., 2017; Jiang 
et al., 2023). Land use changes can result in significant of greenhouse 
gas emissions, and the IPCC estimates that land use change and forestry 
activities contribute to approximately 11% of global greenhouse gas 
emissions (Si et al., 2021; Zhang et al., 2022). Among these land use 
changes, 12–17% were from land cover change (Haberl et al., 2007; 
Sroufe and Watts, 2022). Changes in land use patterns significantly 
affect SOC stocks (Fernández-Romero et al., 2014; Jiang et al., 2023). 
Therefore, climate and land use change are the main environmental 
factors that affect the spatial variability of SOC stocks (Meneses et al., 
2017; Si et al., 2021; Jiang et al., 2023). 

To date, extensive research on SOC stocks and its spatial distribution 
characteristics as well as mechanisms of SOC changes has been con
ducted (Martin et al., 2011; Yang et al., 2016; Jiang et al., 2023). 
However, the response of the SOC stocks to future climate and land use 
change remains uncertain (Lal, 2004; Byrd et al., 2015; Reyes Rojas 
et al., 2018; Adhikari et al., 2019; Wang et al., 2022b). Consequently, 
previous research endeavors have employed diverse global climate 
models and land use change scenarios to examine the impact on SOC 
stocks across various countries and regions (Yigini and Panagos, 2016; 
Reyes Rojas et al., 2018; Adhikari et al., 2019). In Wisconsin, USA, 
Adhikari et al. (2019) projected a potential increase of 20 Mg ha− 1 in 
SOC stocks by 2050 as a result of land use and climate change. Yigini and 
Panagos (2016) predicted the future SOC stock in Europe under four 
representative concentration pathways (RCPs), and found that the SOC 
stock will increase overall by 2050. Olaya-Abril et al. (2017) concluded 
that the SOC stocks in southern Spain may decrease by 35.4% under high 
emission scenarios. Although SOC stocks have been successfully pre
dicted under future climate and land use change scenarios at both global 
and regional scales, an accurate and rapid tool for predicting SOC stocks 
is still needed. Currently, the process-based models have been used to 
assess the impact of climate and land use change on SOC stocks at 
regional and global scales, such as DNDC, RothC, CENTURY, DayCent, 
and CEVSA, and BIOME1.0 (Parton, 1996; Coleman and Jenkinson, 
1996; Giltrap et al., 2010; Abdalla et al., 2020; Farina et al., 2021). The 
biggest limiting factor of these models is the need for a large amount of 
relevant and continuous data, increasing the difficulty of the parame
terization and initialization of the model (Abdalla et al., 2020). These 
models often require large amounts of soil observation data, limiting 
their application in areas with insufficient or no soil data (Baldock et al., 
2012; Abdalla et al., 2020; Smith et al., 2020). 

Alternatively, McBratney et al. (2003) proposed the scorpan equa
tion, which can be used to infer changes in SOC stocks over time. 
Moreover, by applying the scorpan equation, certain environmental 
variables can be used to predict SOC stocks. Adhikari et al. (2019) used 
this method to spatially predict topsoil SOC stocks in Wisconsin, USA, in 
2050. This method has been widely used to predict SOC stocks under 
future climate and land use scenarios in the United States, Australia, 
Spain, Brazil, Chile, and other countries (Cerri et al., 2007; Baldock 
et al., 2012; Albaladejo et al., 2013; Adhikari et al., 2019; Reyes Rojas 
et al., 2018; Wang et al., 2022b). Notably, most studies have used 
multiple linear regression, polynomial regression, or stepwise regression 
combined with the scorpan equation to predict SOC stocks at a certain 
time node in the future (Byrd et al., 2015; Adhikari et al., 2019). 
However, such methods cannot accurately represent the continuous and 
gradual in soil attribute space and geographical space (McBratney et al., 
2003; Smith et al., 2020). Accurate prediction of the true spatial dis
tribution of SOC stocks is difficult using conventional methods. Recent 
studies show that machine learning is effective mapping SOC (Baldock 
et al., 2012; Adhikari et al., 2019; Wang et al., 2022a). Taken together, 
this study attempts to use a machine learning approach combining with 
the scorpan equation to predict the change in SOC stocks under future 
climate and land use scenarios in northeast China. 

Northeast China is one of the three black soil belts worldwide and is 
essential for maintaining the nation’s food security. Black soil has high 
soil organic matter, which contributes to maintaining farmland soil 
fertility and has an important impact on global climate change. This 
study aims to apply the scorpan equation to i) map the spatial distri
bution of topsoil (0–20 cm) SOC stocks in Northeast China in 2015, ii) 
determine the main environmental factors associated with SOC stocks, 
iii) use the equation to predict the spatiotemporal variation in SOC 
stocks under future climate and land use scenarios, and iv) quantify the 
distribution characteristics of SOC stocks under different land use pat
terns in the future. 

2. Materials and methods 

2.1. Study area 

Our study area is located in Northeast China (118◦-135◦ E, 48◦-55◦

N), which comprise Liaoning Province, Jilin Province, and Heilongjiang 
Province, and spans over 0.79 million km2, accounting for 8% of the 
national land area (Fig. 1). The gross domestic product (GDP) of this 
region is US$756 billion, accounting for 5% of the national GDP of China 
(2020 statistics), and is inhabited by 108 million people (7.64% of the 
total population of China) (Wang et al., 2022a). The terrain is dominated 
by plains and mountains with elevations from 0 to 2665 m, where 
Changbai Mountain, Greater Khingan Range, and Lesser Khingan 
Mountain are natural barriers. The Sanjiang Plain (the easternmost), 
Songnen Plain (the middle), and Liaohe Plain (the southernmost) are the 
main agricultural areas with deep fertile soils. According to the Chinese 
Soil Taxonomy (Cooperative Research Group on Chinese Soil Taxon
omy, 2001), the dominant soil types are Cambosols, Gleyosols, and 
Isohumosols, which account for >80% of the total area of the region, 
followed by Argosols, Primosols, Anthosols, Histosols, Andosols, and 
Halosols. The area has a temperate monsoon climate with four distinct 
seasons and is warm and rainy in summer and cold and dry in winter. 
From the southeast to the northeast of the study area, the mean annual 
precipitation (MAP) decreases from 1000 mm to <300 mm and transi
tions from humid and semi-humid areas to semi-arid areas. The mean 
annual temperature (MAT) was between − 4 and 11 ◦C. This area is 
important for timber and mineral production in China and is rich in wild 
animals and plant resources. The forest land area was approximately 
0.39 × 109 hm2, accounting for 14.7% of the total forest area of China, 
and the forest coverage rate was 39.6%, far higher than the national 
forest coverage rate of 16.55%. 

2.2. Soil samples 

Because of the large spatial span, conducting intensive field surveys 
was impractical for soil sampling in the study area. Therefore, we 
applied the representativeness soil sampling method (Zhu et al. (2008) 
to collect soil samples. First, the most important environmental factors 
affecting regional SOC stocks, such as MAT, MAP, elevation, and land 
use patterns, were selected, and these data were unified in a spatial 
coordinate system with the same spatial resolution. Second, the fuzzy c- 
means clustering method was used to cluster the selected environmental 
variables (Yang et al., 2013), and 37 clusters or landscape units were 
obtained. Third, local soil experts were employed to identify and locate 
10–15 typical sampling points in each landscape unit, considering the 
accessibility and representativeness of the area. Finally, 487 soil sam
pling locations were identified, and the spatial information of each 
location was recorded using a hand-held Global Positioning System 
(GPSMAP 669 s, GARMIN). At each sampling location, a 1 kg mixed 
topsoil (0–20 cm depth) sample and 100 cm3 undisturbed soil core were 
collected to determine SOC and bulk density (BD). SOC was measured 
using a C/N analyzer (Elemental Amerivas Ins. Vario Max, Germany) by 
using the sampling dry burning method. Undisturbed soil cores were 
placed in an oven at 105 ◦C for 48 h to measure BD. Soil samples were 
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Fig. 1. Location of soil sampling points (0–20 cm) overlaid on the 90-m digital elevation model of the study area.  
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obtained from the Laboratory Analysis and Testing Center of Shenyang 
Agricultural University. 

2.3. Calculation of SOC stocks 

This study estimated the spatial variation in SOC stocks in different 
ecosystems of Northeast China under future climate and human activ
ities. SOC stocks were calculated using Eq. 1. (Batjes, 1996): 

SOC stocks = SOCdensity ×A = SOCcontent ×BD×D×(1 − S) × 10 (1)  

where SOCdensity is the SOC density (Mg C ha− 1); A is the area of the 
smallest patch (ha). SOCcontent is the SOC content in mass basis (g kg− 1); 
BD is the bulk density (g cm− 3); D is the thickness (m), this study focused 
on the topsoil (0.2 m); S is the volume fraction of fragments >2 mm (%). 
In this study, all soils used were characterized by low rock content and 
gravel content not exceeding 2 mm. Moreover, SOC stocks at sampling 
points do not conform to the characteristics of Normal distribution 
(Table 1). Therefore, we log-transformed the SOC stock data for subse
quent analysis. 

2.4. Environmental variables 

Twelve environmental variables from four categories (soil, topog
raphy, climate, and human activities) were used to predict the spatial 
distribution of SOC stocks in 2015 and the future (the 2050s and 2090s) 
under the SSP245 and SSP585 scenarios in different ecosystems. Because 
the selected environmental variables were obtained from different 
sources and platforms, the data were harmonized by reprojecting into a 
common projection system (Krasovsky_1940_Albers) and resampling to 
a 90 m grid resolution in ArcGIS 10.2 software (ESRI, Redlands, CA, 
USA) for subsequent modeling and analysis in R software (R Develop
ment Core Team, 2013). 

2.4.1. Soil property data 
Soil texture refers to the combination of mineral particles with 

different sizes and diameters in soil, which is closely related to soil 
aeration, fertilizer and water conservation, and the difficulty of culti
vation (Galantini et al., 2004). Soil texture is an important basis for soil 
utilization, management, and improvement measures (Brady et al., 
2008). Fertile soils have particular texture, especially for the cultivated 
layer (Galantini et al., 2004). 

Soil texture data consisted of sand, silt, and clay percentages and 
were obtained from the Resource and Environment Science and Data 
Center of the Institute of Geographical Science and Resources, Chinese 
Academy of Sciences (https://www.resdc.cn/), at a 1 km × 1 km reso
lution. The gridded data were resampled to a 90 m spatial resolution for 
use in this study. The data were originally compiled based on the soil 

type map (1:1 million) and soil profile data obtained from the second 
national soil survey (1979–1985). 

2.4.2. Topographic variables 
Topographic variables were derived from a 90 m digital elevation 

model (DEM) obtained from the Geospatial Data Cloud of the Chinese 
Academy of Sciences (http://www.gscloud.cn). Six topographic vari
ables were extracted: elevation, slope aspect (SA), slope gradient (SG), 
profile curvature (PC), topographic wetness index (TWI), and catchment 
area (CA). Elevation, SA, SG, and PC were directly calculated by ArcGIS 
10.2. TWI and CA were extracted by the system for SAGA GIS software 
(Conrad et al., 2015). 

Changes in elevation, SA, and SG influence soil-landscape processes 
and affect SOC distribution in a landscape (Fernández-Romero et al., 
2014; Adhikari et al., 2014; Zhu et al., 2019). They also influence other 
environmental factors, such as water and heat flux, light interception, 
and soil (re)distribution (McBratney et al., 2003). TWI indicates the 
impact of regional topography on runoff direction and accumulation and 
helps identify rainfall runoff patterns, potential areas of increased soil 
moisture, and areas of stagnant water (Yang et al., 2016). The larger the 
value, the greater the soil moisture and the indirect effect on SOC stocks. 
CA refers to runoff area per unit contour length. CA is typically used to 
estimate rainfall in a small range and is one of the most commonly used 
variables for predicting SOC stocks (Wang et al., 2022a). 

2.4.3. Climatic variables 
Climatic variables comprised 1 km grid data from MAT and MAP for 

2015, the 2050s, and the 2090s downloaded from the National Meteo
rological Information Center of the China Meteorological Administra
tion (http://data.cma.cn/en). The daily precipitation and daily 
temperature data covering the entire northeast meteorological station in 
2015 were obtained and interpolated using the inverse distance 
weighting algorithm. The future MAT and MAP data for the 2050s 
(average of 2041–2060) and 2090s (average of 2081–2100) were 
downloaded from the WorldClim dataset (https://www.worldclim. 
org/data). We used MAP and Map data under the Shared Socioeco
nomic Pathways (SSP) 245 and SSP585 paths for each period. As an 
update of Representative Concentration Pathway (RCP) 4.5, the addi
tional radiation forcing of SSP245 will be 4.5 W/m2 by 2100, which 
represents the middle path of future greenhouse gas emissions and as
sumes that climate protection measures are being implemented. SSP585 
indicates that by 2100, the additional radiation forcing will be 8.5 W/ 
m2., representing the upper limit of the range of situations described in 
the literature (Wang et al., 2022b). 

2.4.4. Land use data 
The change in land use type is the most intuitive manifestation of 

human activities, which accelerated significantly after the industrial 
revolution (Meneses et al., 2017). Therefore, land use data were selected 

Table 1 
Descriptive statistics of soil organic carbon (SOC) stocks and environmental variables were collected from sampling points in the topsoil layer (0–20 cm).  

Property Unit Min. Max. Mean SD Skewness Kurtosis 

SOC stocks kg m− 2 0.77 23.75 7.18 4.55 1.20 1.37 
Elevation m 1.00 2123.00 351.83 355.87 2.01 4.84 
SG Degree 0.00 26.39 3.28 4.66 1.98 3.58 
SA Degree 0.00 358.21 179.18 98.77 − 0.04 − 1.12 
CA km2 m− 1 0.25 190.88 220.42 20.87 3.64 21.59 
TWI Index 5.78 13.24 10.46 1.72 − 0.40 − 0.94 
PC Index − 0.32 0.57 0.01 0.07 1.80 18.49 
MAT mm − 7.10 10.50 2.92 3.08 − 0.43 0.68 
MAP Celsius degree 426 1492 622 188 2.48 6.80 
Clay Percentage 7.00 36.00 24.35 6.87 − 0.23 − 0.14 
Silt Percentage 7.00 49.00 30.55 6.99 − 0.72 1.48 
Sand Percentage 22.00 85.00 45.10 12.43 0.63 1.51 

Note: SG, slope gradient; SA, slope aspect; CA, catchment area; TWI, topographic wetness index; PC, profile curvature; MAP, mean annual precipitation; MAT, mean 
annual temperature. 
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to reflect the impact of human activities on the soil. The land use data for 
2015 were downloaded from the Resource and Environmental Science 
Data Center, Chinese Academy of Sciences (https://www.resdc.cn/), 
and those for the 2050s and 2090s are generated based on Geographical 
Simulation and Optimization System (GeoSOS) software (http://www. 
geosimulation.cn). The data from the simulated global land use data 
derived from the cellular automaton model based on an artificial neural 
network (Liu et al., 2017). The cellular automaton model is a grid dy
namic model with discrete time, space, and state and local spatial 
interaction and temporal causality. It simulates the space-for-time evo
lution of complex systems (Liu et al., 2017). In addition to topographic 
variables, traffic maps were used to generate Euclidean distance maps in 
land use simulations to increase the accuracy of future land use pre
dictions under the A1B scenario (Munoz-Rojas et al., 2013). In the A1 
scenario, the world economy is assumed to continue to grow rapidly. 
Moreover, the world population will peak in the middle of the 21st 
century but will gradually decrease. The A1B scenario belongs to the A1 
scenarios, characterized by a balanced mix of energy sources and re
sources. Assuming that climate protection measures are being imple
mented, A1B represents an intermediate pathway for future greenhouse 
gas emissions and can approximate the SSP245 path of global climate 
variables. In addition, because the fitting result of Liu et al. (2017) was 
the land use data for 2050 and 2100, we approximated the land use data 
for 2100 to represent the land use situation for 2090 and used it to build 
the model. According to China’s third national land survey and land 
classification system, the land use types in this study were divided into 
farmland, forest, grassland, water, urban, and barren, and they were 
successively assigned the numbers 1, 2, 3, 4, 5, and 6 to facilitate model 
building and subsequent analysis. 

2.5. Prediction models 

In this study, boosted regression trees (BRT), random forest (RF), and 
a space-for-time substitution (STS) method were used to predict his
torical and future topsoil SOC stocks in Northeast China. The specific 
method flowchart is shown in Fig. 2. 

2.5.1. Boosted regression trees 
The BRT model, which can manage the nonlinear relationships be

tween dependent and independent variables (Yang et al., 2016), was 
first proposed by Elith et al. (2008). A BRT combines a regression tree 
and boosting methods, where a regression tree is a model that combines 
dependent variables and their predictors with recursive binary splits. 
The model combines multiple simple models and improves prediction 
ability (Martin et al., 2011). This model can be considered as a boosting 
regression model, where simple trees are sequentially fitted. It encom
passes various advantages based on the tree-based modeling approach 
(Wang et al., 2022b), including it does not require prior data conversion 
or outlier removal and can manage complex nonlinear relationships and 
interactions between predictive factors (Yang et al., 2016). The BRT 
model has a stronger prediction ability than traditional statistical 
models. The BRT model was realized by using the “dissmo” and “gbm” 
packages in R software (R Development Core Team, 2013). The model 
was fine-tuned by testing different combinations of model parameters to 
obtain the best prediction performance. The model parameters were 
learning rate, tree complexity, bag fraction, and the number of trees, and 
their fine-tuned values were set to 0.025, 12, 0.75, and 2500, 
respectively. 

2.5.2. Random forest 
RF is a machine learning algorithm based on classification and 

regression trees proposed by Breiman (2001). It improves prediction 
accuracy without significantly increasing computational load and is 
insensitive to multivariate collinearity (Yang et al., 2016). The result 
was relatively stable despite the missing data and unbalanced data, and 
this model managed thousands of explanatory variables. It was known as 

one of the best data mining algorithms at present (Grimm et al., 2008). 
The steps are as follows: 1) randomly select n subsamples from the 
explanatory variables, 2) establish a regression tree for each sample, 3) 
train and classify multiple sample data, and 4) predict (Breiman, 2001). 
The forest is composed of multiple regression trees. To avoid the cor
relation between trees, we used the bagging method to obtain different 
training data to increase their diversity and then extracted the dataset by 
replacement method. The data in the process are completely random, 
and a dataset can be used multiple times. The RF model was imple
mented in R software with the ‘randomForest’ package with model pa
rameters mtry and the NT set to 4 and 1500, respectively. 

2.5.3. Space-for-time substitution method 
Soil formation and development are related to climate, biology, 

topography, parent material, and other environmental factors 
(McBratney et al., 2003). The scorpan equation proposed by McBratney 
et al. (2003) can be used to infer the change of soil carbon storage with 
time. By applying the scorpan equation, we can usually to predict po
tential SOC stock changes in a certain period of time in the future, which 
is called the space-for-time (STS) substitution method (Blois et al., 2013; 
Gray and Bishop, 2016; Reyes Rojas et al., 2018; Adhikari et al., 2019). 
However, it should be noted that this method is subject to certain lim
itations and assumption of the stability of environmental conditions in 
the study area (Byrd et al., 2015; Adhikari et al., 2019). The spatial 
variation of SOC stocks is the result of multiple environmental factors, 
with climate and land use changes being identified as the primary 
drivers in previous studies (Davis et al., 2010; Albaladejo et al., 2013; 
Gray and Bishop, 2016; Reyes Rojas et al., 2018; Adhikari et al., 2019). 
Therefore, this study assumes that the terrain and other environmental 
factors will remain relatively stable over a certain period in the future, 
with climate and land use changes being the primary drivers of spatial 
variation in SOC stocks (Gray and Bishop, 2016; Reyes Rojas et al., 
2018). This study employs the STS method, based on the aforemen
tioned assumptions, to investigate alterations in SOC stocks under 
different climate and land use scenarios during a specific future period. 
However, some studies indicated that SOC stocks will not change after 
deforestation while soil temperature and moisture can change substan
tially (Nave et al., 2010; Holub and Hatten, 2019). Thus, we shall be 
cautious to interpret our SOC prediction results that are based on 
changing climate and land use conditions. 

The STS method has been widely used to predict spatiotemporal 
changes in SOC stocks in the United States, Australia, and Brazil (Byrd 
et al., 2015; Smith et al., 2012; Adhikari et al., 2019; Adhikari and 
Hartemink, 2015). However, the lack of future SOC observations at 
current times and the accuracy and uncertainty of such predictions 
cannot be effectively verified (Gray and Bishop, 2016; Reyes Rojas et al., 
2018; Adhikari et al., 2019). To predict the future (in the 2050s and 
2090s) SOC stocks in the study area, we first used environmental data 
and SOC observations in 2015 to conduct a spatial simulation of the 
topsoil SOC stocks. Assuming that the terrain and parent material are 
relatively stable for a given period in the future, we used the STS 
methodology to capture potential spatiotemporal changes in SOC stocks 
due to changes in climate and land use. 

2.6. Model validation 

The accuracy of the prediction model of SOC stocks in the 2050s and 
2090s depended on the prediction accuracy of the prediction model built 
in 2015 in the historical period. The functional relationship between 
SOC stocks and future environmental variables was based on a model 
built in 2015. To evaluate the prediction performance of the BRT and RF 
models in predicting SOC stocks in 2015, a 10-fold cross-validation 
technique combining four validation indices–mean absolute error 
(MAE), root mean square error (RMSE), determination of coefficient 
(R2) and Lin’s consistency correlation coefficient (LCCC) (Lin, 1989)– 
was used to compare them. The specific calculation formula is as 
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Fig. 2. Flowchart of the methodology.  
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follows: 

MAE =
1
n

∑n

i=1
|ai − bi| (2)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(ai − bi)

2

√

(3)  

R2 =

∑n

i=1
(ai − bi)

2

∑n

i=1
(bi − bi)

2
(4)  

LCCC =
2r∂a∂b

∂2
a + ∂2

b + (a + b)2 (5)  

where ai, bi, a, b, ∂a, and ∂b represent measured value, predicted value, 
average measured value, average predicted value, the variance of the 
measured set, and the variance of the predicted set, respectively, and n 
and r represent the number of sample points and the correlation coef
ficient between the predicted value and the measured value, 
respectively. 

3. Results 

3.1. Descriptive statistics 

The descriptive statistics for topsoil (0–20 cm) SOC stocks and 
environmental variables at the 487 topsoil sampling points in 2015 are 
presented in Table 1. The range of topsoil SOC stocks was from 0.77 to 
23.75 kg m-2, with an average value of 7.18 kg m− 2. The skewness and 
kurtosis coefficients of SOC stocks were 1.2 kg m− 2 and 1.37 kg m− 2. In 
addition, Pearson correlation coefficients between log-transformed SOC 
stocks (0–20 cm) and environmental variables were calculated 
(Table 2). The results showed that SOC stocks were significantly and 
positively correlated with elevation (r = 0.20), SG (r = 0.13), LD (r =
0.18), MAP (r = 0.24), and silt (r = 0.14) but negatively correlated with 
TWI (r = − 0.17) and MAT (r = − 0.43). Climatic variables were signif
icantly correlated with SOC stocks, and the correlation coefficient of 
MAT was − 0.43, suggesting that climatic variables played an important 
role in the spatial variation in regional SOC stocks. 

3.2. Model performance and uncertainty 

The summary statistics of 10-fold cross-validation showed that the 
BRT model had higher systematic R2 and LCCC (0.59 and 0.73) and 
lower MAE and RMSE (1.99 kg m− 2 and 2.95 kg m− 2) than the RF model 
(Table 3). Therefore, the BRT model was confirmed to be the best for 

predicting topsoil (0–20 cm) SOC stocks in 2015. The BRT model 
explained approximately 59% of the spatial variability of the SOC stocks 
in the region (Table 3). In addition, we ran the BRT model 100 times and 
calculated the average of 100 iterations to represent the final predicted 
SOC and standard deviation (SD) as an index of prediction uncertainty 
(Fig. 3), and the average SD was 0.38 kg m− 2. The lower SD indicated 
that the BRT model had lower uncertainty and higher performance than 
RF model in predicting topsoil SOC stocks in Northeast China. 

3.3. Relative importance of environmental factors 

The BRT model was iterated 100 times, the average relative impor
tance (RI) of 12 environmental variables was calculated, and the RI was 
scaled to 100%. The results showed that topographic variables (48% RI) 
played an important role in the spatial simulation of SOC stocks, fol
lowed by climatic variables (37%), land use data (9%), and soil property 
data (6%) (Fig. 4). Among the 12 environmental variables, MAT, 
Elevation, MAP, LD, and SG were key environmental variables, ac
counting for approximately 75% of the RI. 

3.4. Spatial distribution of SOC stocks 

The predicted topsoil (0–20 cm) SOC stocks ranged from 1.25 to 
20.96 kg m− 2, with an average value of 6.72 ± 2.81 kg m− 2. The pre
dicted maps showed that topsoil SOC stocks were higher in the north
eastern area than in the southwestern area of Northeast China. In 2015, 
SOC stocks were mainly stored in forests and farmland, with 2734 Tg C 
and 1626 Tg C, accounting for 52% and 31% of the total SOC stocks in 
the region, respectively (Table 5). In the 2050s, the SOC stocks under the 
SSP245 and SSP585 scenarios decreased by 80 Tg C and 237 Tg C, 
respectively, compared with 2015. In the 2090s, the SOC stocks under 
SSP245 and SSP585 increased by 184 Tg C and 217 Tg C, respectively, 
compared with the 2050s, and compared with 2015, increased by 104 
Tg C (SSP245) and 19 Tg C (SSP585), respectively. SOC stocks under the 

Table 2 
Pearson correlation coefficients between log-transformed soil organic carbon (SOC) stocks and environmental variables based on 487 sampling point data in the topsoil 
layer (0–20 cm).  

Property SOC stocks Elevation SG SA CA TWI PC LD MAP MAT Clay Silt 

Elevation 0.20**            
SG 0.13** 0.47**           
SA − 0.05 0.08 0.10*          
CA 0.11* − 0.21** − 0.36** − 0.30         
TWI − 0.17** − 0.67** − 0.74** − 0.10* 0.42**        
PC 0.01 0.12** 0.16** 0.12** − 0.06 − 0.12**       
LD 0.18** − 0.07 − 0.10* 0.05 0.20** 0.10* − 0.03      
MAP 0.24** 0.73** 0.23** 0.09* − 0.16** − 0.41** 0.08 − 0.04     
MAT − 0.43** − 0.65** − 0.21** 0.07 − 0.04 0.31** − 0.08 0.07 − 0.29**    
Clay 0.01 − 0.01 − 0.06 − 0.07 − 0.01 0.12* − 0.09* − 0.02 0.08 0.08   
Silt 0.14** 0.10* − 0.02 − 0.05 0.09* 0.07 0.07 − 0.12** 0.22** − 0.10* 0.75**  
Sand 0.02 0.07 0.13** 0.12** − 0.09* − 0.20** − 0.01 − 0.20** − 0.09 0.013 − 0.28** − 0.20** 

Note: SG, slope gradient; SA, slope aspect; CA, catchment area; TWI, topographic wetness index; PC, profile curvature; LD, land use; MAP, mean annual precipitation; 
MAT, mean annual temperature. 

Table 3 
Summary statistics of prediction performance of boosted regression tree (BRT) 
and random forest (RF) models on topsoil (0–20 cm) organic carbon stocks in 
2015.  

Model Index Min. 1stQu. Median Mean 3rdQu. Max. 

BRT 

MAE 1.93 1.98 2.00 1.99 2.02 2.04 
RMSE 2.87 2.91 2.96 2.95 2.98 3.01 
R2 0.56 0.58 0.59 0.59 0.61 0.62 
LCCC 0.72 0.72 0.73 0.73 0.74 0.74 

RF 

MAE 2.12 2.13 2.15 2.15 2.16 2.18 
RMSE 2.91 2.93 2.99 3.01 3.02 3.04 
R2 0.51 0.52 0.54 0.54 0.55 0.57 
LCCC 0.67 0.67 0.68 0.68 0.69 0.71  
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scenarios of SSP245 and SSP585 in the 2050s and 2090s had similar 
spatial distribution patterns (Fig. 5), with high SOC stocks distributed in 
the northeast and low stocks distributed in the southwest. 

4. Discussion 

4.1. Environmental variables and SOC stocks 

In this study, soil texture, topography, climate, and land use data 
were selected as prediction variables for estimating historical and future 
SOC stocks in the topsoil of Northeast China. We observed that the 
distribution of SOC was significantly impacted by climatic and topo
graphic variables. Climatic variables play a critical role in mapping the 
spatial distribution of SOC stocks at regional scales (Reyes Rojas et al., 
2018). As reported by Yang et al. (2016), climate influences the input 
level of SOC through its impact on vegetation types and productivity, 
while also serving as the primary driver for SOC decomposition and 
transformation mediated by soil microorganisms (Wang et al., 2021a). 
Climatic variables affect microbial activity by altering soil hydrothermal 
conditions, thereby influencing the decomposition and transformation 
of SOC (Luo et al., 2017). Among climate variables, temperature and 
precipitation have the most significant influence on SOC stocks spatially 
(Wang et al., 2021b). Although it has been demonstrated that the MAP 
exhibits a robust correlation with SOC stocks (Reyes Rojas et al., 2018; 
Adhikari et al., 2019; Wang et al., 2021b; Ngaba et al., 2022), MAT was 
identified as the primary environmental variable governing the spatial 
variation of SOC stocks, accounting for 27% of RI, which has also been 
reported by Yang et al. (2016), Wang et al. (2021b), and Gu et al. (2022). 
In the humid Pampa Grassland in Argentina, Alvarez and Alvarez (2001) 
discovered that temperature was a more reliable predictor of SOC than 
precipitation. Wang et al. (2021b) investigated the temporal and spatial 
dynamics of topsoil SOC stocks across various ecosystems in China; 
revealing that MAT was a key environmental factor driving the spatial 
variation in SOC stocks. They further reported that colder sites exhibited 
higher levels of SOC stocks. 

Fig. 3. Standard deviation (a) and spatial distribution (b) maps of average soil organic carbon (SOC) stock (0–20 cm) based on 100 iterations of the BRT model 
in 2015. 

Fig. 4. Relative importance of environmental variables based on 100 iterations 
of the BRT model in 2015. SG, slope gradient; SA, slope aspect; CA, catchment 
area; TWI, topographic wetness index; PC, profile curvature; LD, land use; MAP, 
mean annual precipitation; MAT, mean annual temperature. 
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Topographic variables play a crucial role in soil formation and can 
also impact the distribution of SOC by influencing temperature, soil 
moisture content, and evapotranspiration (Zhu et al., 2019). The redis
tribution of water and heat fluxes, which affect biomass growth, litter 
amount, soil microbial activities, and their biomass, are key variables 
that influence SOC decomposition and transformation (Fernández- 

Romero et al., 2014; Yang et al., 2016; Ngaba et al., 2022). Elevation 
exerted the most significant influence among the topographic variables 
(Fig. 4), indirectly impacting SOC transformation and stocks by modu
lating precipitation and temperature. In Taibai Mountain, China, Zhang 
et al. (2020) observed a significant correlation between elevation and 
SOC stocks. They found SOC stocks increased with increasing elevation 

Fig. 5. Spatial distribution map of soil organic carbon (SOC) stocks (0–20 cm) under SSP245 (a: 2050s; b:2090s) and SSP585 (c: 2050s; d: 2090s) scenarios based on 
boosted regression tree model and the space-for-time substitution method. 
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at different soil depths, exhibiting an increase of 10%–88%. SG and SA 
are also critical for altering SOC stocks. The redistribution of water and 
heat conditions leads to diverse microclimates across different SA, 
which in turn influences the composition of vegetation community, soil 
formation processes, as well as plant biomass, litter amount, humifica
tion, and mineralization. Finally, the accumulation and distribution of 
soil carbon vary among different SA (Wang et al., 2020). SG is an 
important factor influencing soil erosion, and its impact on SOC pri
marily stems from its effect on the extent of soil erosion. Jakšić et al. 
(2021) concluded that SOC stocks were significantly higher on downhill 
and shady slopes compared to uphill and sunny slopes, respectively. TWI 
and CA partially reflect the soil water status in the region, with water 
status being a crucial factor that influences SOC mineralization. There
fore, these variables are the most frequently used topographic variables 
for predicting SOC stocks (Yang et al., 2016; Wang et al., 2021b; 
Adhikari et al., 2019). 

Changes in land use or other anthropogenic activities, such as land 
reclamation, overgrazing, water and fertilizer utilization, and farming 
history also affect the spatial distribution of SOC stocks (Wang et al., 
2021b, 2022a). In this study, LD was utilized as a surrogate variable for 
anthropogenic activities to predict SOC stocks, and the model was 
identified as the fourth most significant predictor (RI = 9%), following 
MAT, elevation, and MAP (Fig. 4). Land use change is directly correlated 
with topsoil coverage, disrupts the normal material cycle of the original 
ecosystem, alters the input source and decomposition rate of SOC, and 
significantly impacts underlying soil activity, SOC stock rate, and total 
SOC storage (Smith et al., 2012; Albaladejo et al., 2013; Adhikari et al., 
2019). Changes in land use have accelerated the mineralization of SOC, 
leading to a rapid depletion of SOC stocks within a short period and 
resulting in soil degradation (Albaladejo et al., 2013). 

Soil texture plays a crucial role in the distribution of SOC stock. 
There exists a correlation between soil texture and soil fertility, whereby 
soil with high clay content tend to exhibit higher levels of fertility due to 
their unique clay mineralogy (Galantini et al., 2004; Wang et al., 2022a; 
Gu et al., 2023). Galantini et al. (2004) found a positive correlation 
between SOC stocks and silt and clay, a negative correlation was 
observed with sand. In this study, with the exception of a significant 
positive correlation observed between silt and SOC stocks in 2015, clay 
and sand exhibited a negligible correlation with SOC stocks (Table 2). 
The land use pattern in the study area underwent substantial changes 
from 1990 to 2015, with farmland being converted into forest, grass
land, and economic forest felling activities leading to significant alter
ations in soil structure (Wang et al., 2022a). Although soil texture 
impacts SOC dynamics, the BRT model results indicated that the RI of 
soil texture data was only 6%. 

4.2. Predicted response of SOC stocks to land use and changing climate 

According to a comparison of land use between the 2050s and 2015 
in Northeast China, there will be an increase in forest and grassland 
areas, which can be attributed to the current government policy of 
returning farmland to its natural state. Farmland areas deemed 

unsuitable for agriculture will be converted into forest or grassland (Li 
et al., 2020). Wang et al. (2021a) reported that conversion of farmland 
to forests would result in an annual increase in regional forest area, 
thereby augmenting SOC stocks. By the 2050s, under both climate sce
narios (SSP245 and SSP585), approximately 90% of the total SOC stocks 
were predominantly stored within farmland and forests (Table 4). The 
primary contributing factor to this circumstance is that the study area 
serves as China’s principal commodity grain and economic forest base, 
with its grain output accounting for 20% of nation’s total forest area and 
its forest coverage representing 27% of the overall figure (Wang et al., 
2022b). Additionally, the projected increase in temperatures during the 
2050s is expected to enhance soil organic matter decomposition, stim
ulate CO2 emissions, and reduce SOC stocks (Luo et al., 2017; Reyes 
Rojas et al., 2018; Adhikari et al., 2019). The anticipated increase in 
precipitation during the 2050s might promote plant growth and enhance 
SOC input; however, it may not fully offset the loss of soil carbon caused 
by elevated temperatures (Byrd et al., 2015). Changes in precipitation 
impact the availability of water to plants (Wang et al., 2022b). A 
decrease in precipitation can significantly diminish photosynthesis and 
plant growth, while an increase in precipitation can stimulate the pro
liferation and activity of soil microorganisms (Yang et al., 2016). 
However, several studies have indicated that an increase in soil moisture 
can mitigate the temperature sensitivity of soil respiration. Lovett 
(2002) suggested that the increase in precipitation and humidity played 
a crucial role in transforming the terrestrial ecosystem of North America 
into a carbon sink. Borken et al. (1999) discovered that alterations in 
precipitation amount or distribution can result in fluctuations of soil 
carbon emissions and ecosystem carbon storage. However, surprisingly, 
the study region’s SOC stocks exhibited a declining trend in the 2050s 
under both climate scenarios (SSP245 and SSP585), with reductions of 
80 Tg C and 236 Tg C, respectively. The topsoil exhibited the highest 
dynamic rate of SOC change due to fluctuations in temperature and 
precipitation. As explained by Rumpel et al. (2003) and Zheng et al. 
(2018), an increase in precipitation can result in the leaching of topsoil 
SOC from black land soils, which are commonly observed in our study 
area. Similarly, an increase in temperature and a change in precipitation 
pattern will accelerate the decomposition of SOC in such soils. Addi
tionally, climate-induced intensification of soil erosion in substantial 
loss of soil carbon (Lal, 2002). 

In the 2090s, there will be an increase in farmland and grassland 
areas while forest, water, urban, and barren areas will experience a 
decrease. The SOC stocks were projected to rise by 103 Tg C in the region 
bunder the SSP245 scenario but decline by 19 Tg C under the SSP585 
scenario. In future social and economic development, it is essential to 
combine scientific and reasonable management of SOC with measures 
aimed at reducing soil carbon response to climate change. The Chinese 
government has been actively promoting policies that encourage the 
return of straw to farmland and the protection of black land (Yang et al., 
2021). Each year, the government provides subsidies to farmers (Wang 
et al., 2021b). Furthermore, the state has invested billions of dollars in 
scientific research funds to study the black land in Northeast China and 
maintain its production capacity (Huang et al., 2019). Moreover, as a 

Table 4 
Summary statistics of topsoil (0–20 cm) organic carbon (SOC) stocks under different land use patterns and climate change scenarios in different periods.  

Land use pattern 2015 2050s 2090s 

Area 
(104 km2) 

SOC stocks (Tg) Area 
(104 km2) 

SOC stocks (Tg) Area 
(104 km2) 

SOC stocks (Tg) 

SSP245 SSP585 SSP245 SSP585 

Farmland 30.9 1626.8 19.4 944.8 959.1 40.8 2272.7 2232.2 
Forest 33.6 2734.6 47.5 3772.7 3594.1 29.3 2708.1 2630.4 
Grassland 3.3 227.8 9.2 386.1 394.2 5.9 302.2 298.6 
Water 1.8 100.2 0.3 20.7 20.8 0.3 20.7 20.5 
Urban 3.0 155.6 1.7 88.0 87.6 1.7 88.0 87.1 
Barren 5.5 448.3 0.02 0.9 0.9 0.1 5.1 5.1 
Total 78.1 5293.3 78.1 5213.2 5056.7 78.1 5396.8 5273.9  
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result of economic development, more individuals are leaving agricul
ture for urban opportunities, leading to an increase in SOC stocks on 
abandoned lands (Liu et al., 2021; Wang et al., 2022b). 

SOC stocks will exhibit diverse patterns in response to various 
climate scenarios in the future (Adhikari et al., 2019; Wang et al., 
2022b). Our findings indicate that SOC stocks are projected to decline by 
1.5% and 4.5% in the 2050s under SSP245 and SSP585 scenarios, 
respectively, while they are expected to increase by 1.9% under SSP245 
scenario and decrease by 0.4% under SSP585 scenario in the 2090s. 
These findings are consistent with the results of Wang et al. (2022b), 
who found that SOC stocks would decline by 7.6–12.9% under SSP245 
and 9.1–20.9% under SSP585 in New South Wales, Australia, by 2050. 
However, Adhikari et al. (2019) have demonstrated the A1B scenario 
would result in a 22% increase in SOC stocks by 2050 in Wisconsin, USA. 
Similarly, Yigini and Panagos (2016) suggested an overall increase in 
SOC stock across Europe by 2050 under all climate and land cover 
scenarios; however, the extent of this increase varied depending on the 
climate model and emissions scenarios. Wang et al. (2022b) posited that 
a declining trend is also expected to occur in the 2090s under both 
SSP245 and SSP585 scenarios. In southeastern Jiangsu Province, China, 
Song et al. (2019) demonstrated a positive trend in topsoil SOC con
centration from 14.45 g kg− 1 in 2020 to 15.33 g kg− 1 in 2080, repre
senting an increase of 7.8%. Therefore, accurate prediction of the impact 
of future climate change on the carbon cycle is crucial in the context of 
global climate change, as it provide a theoretical foundation for man
aging future climate change and promoting high-quality economic 
development. 

4.3. Uncertainties in this study 

Based on the higher R2 and LCCC values, as well as the lower MAE 
and RMSE, the BRT model was selected as the final model to predict SOC 
stocks under different land use and climate change scenarios. Although 
the BRT model yielded a lower prediction error than RF model, it is 
important to acknowledge that there might be other sources of uncer
tainty associated with the prediction. For instance, in 2015, different 
groups analyzed the soil data which could have introduced personnel 
bias into the measurements. Second, environmental data were collected 
from various sources and GIS operations such as resampling might have 
introduced some errors. Third, the climatic data for both historical and 
future periods were sourced from disparate platforms, with no consid
eration given to the impact of future extreme climate events in the future 
or the uncertainty and inconsistency of spatial pattern across various 
climate factors. Fourth, the future land use data for the 2050s and 2090s 
were extracted from the global land use prediction database (Liu et al., 
2017). However, due to limitations in data modeling methods and ac
curacy at that time, there may be a significant degree of uncertainty in 
the simulated land use data. In addition, due to the future land use 
dataset simulated under the A1B scenario, although both the SSP245 
path under this scenario and WorldClim are simulated under the mod
erate development path, there are still differences that may cause bias in 
the final prediction results. Fifth, the soil texture data were derived from 
a second national soil survey conducted over 30 years ago. Nevertheless, 
due to significant changes in land use patterns during this period, there 
have been notable alterations in topsoil properties within the study area. 
Sixth, the prediction of SOC stocks under various future scenarios was 
based on historical soil environment conditions. However, it is possible 
that the soil environmental conditions in the future may deviate from 
what has been simulated. Seventh, the 497 soil samples solely assessed 
the topsoil at a depth of 20 cm, but there exists a greater SOC stock in the 
subsoil than in the topsoil, particularly within the northeast region 
where deep black soil is predominant. Nevertheless, the results pre
sented in this study are based on state-of-the-art soil mapping techniques 
that also quantify potential model uncertainties. However, it should be 
noted that all relevant assumptions suggest that this may not necessarily 
reflect the reality we will encounter in the future, but rather represents 

an intriguingly simplified version of it. We anticipate that our research 
findings can inform future soil management policy making in this 
region. 

5. Conclusions 

The BRT model and STS method were employed to simulate the 
annual and intergenerational dynamics of SOC stocks in the topsoil 
(0–20 cm) under future climate change conditions (the SSP245 and 
SSP585) and land use patterns in Northeast China for the 2050s and 
2090s. In both emission scenarios, the spatial distribution was relatively 
similar; however, there was less loss of SOC stocks in the SSP245 sce
nario compared to the SSP585 scenario, and carbon accumulation was 
greater. The SSP585 scenario induced the decomposition of SOC, 
resulting in a greater loss of carbon in the source region and smaller 
accumulation compared to SSP245 scenario. Under the scenarios of 
SSP245 and SSP585, the carbon storage in the 2050s was reduced by 80 
and 236 Tg C, respectively, compared to that in the historical period. In 
the 2090s, the SSP245 scenario exhibited a carbon sink with an increase 
of 101 Tg C, while the SSP585 scenario showed a carbon source. The 
distributions of source and sink for SOC across six land use patterns were 
found to be similar. These findings can assist stakeholders in managing 
ecosystems within the region to enhance soil carbon stocks under 
changing land use and climate conditions. 
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