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A B S T R A C T

Forest soil carbon is a major carbon pool of terrestrial ecosystems, and accurate estimation of soil organic carbon
(SOC) stocks in forest ecosystems is rather challenging. This study compared the prediction performance of three
empirical model approaches namely, regression kriging (RK), multiple stepwise regression (MSR), random forest
(RF), and boosted regression trees (BRT) to predict SOC stocks in Northeast China for 1990 and 2015. Further-
more, the spatial variation of SOC stocks and the main controlling environmental factors during the past 25 years
were identified. A total of 82 (in 1990) and 157 (in 2015) topsoil (0–20 cm) samples with 12 environmental
factors (soil property, climate, topography and biology) were selected for model construction. Randomly selected
80% of the soil sample data were used to train the models and the other 20% data for model verification using
mean absolute error, root mean square error, coefficient of determination and Lin's consistency correlation co-
efficient indices. We found BRT model as the best prediction model and it could explain 67% and 60% spatial
variation of SOC stocks, in 1990, and 2015, respectively. Predicted maps of all models in both periods showed
similar spatial distribution characteristics, with the lower SOC in northeast and higher SOC in southwest. Mean
annual temperature and elevation were the key environmental factors influencing the spatial variation of SOC
stock in both periods. SOC stocks were mainly stored under Cambosols, Gleyosols and Isohumosols, accounting
for 95.6% (1990) and 95.9% (2015). Overall, SOC stocks increased by 471 Tg C during the past 25 years. Our
study found that the BRT model employing common environmental factors was the most robust method for forest
topsoil SOC stocks inventories. The spatial resolution of BRT model enabled us to pinpoint in which areas of
Northeast China that new forest tree planting would be most effective for enhancing forest C stocks. Overall, our
approach is likely to be useful in forestry management and ecological restoration at and beyond the regional scale.
1. Introduction

Forest plays an irreplaceable role in maintaining global carbon bal-
ance, and has become a central component of the earth system for global
climate change research (Bradshaw and Warkentin, 2015). Forest eco-
systems are the largest carbon pool on the earth except the ocean (Dixon
et al., 1994; Liu et al., 2012; Harper et al., 2018), and the pool includes
forest soil carbon and vegetation carbon. It accounts for about 50% of the
total carbon of the whole terrestrial ecosystem, of which 2/3 of the
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carbon is stored in forest soils (Bockheim and Gennadiyev, 2010; Car-
valhais et al., 2014; Scharlemann et al., 2014). At present, the estimation
of forest soil organic carbon (SOC) stocks has great uncertainty leading to
the estimation error of forest soil annual carbon emissions to the atmo-
sphere as high as 10 Pg C, which is much higher than the total industrial
emissions of 5.3 Pg C (Xu, 1994; Korhonen et al., 2001; Lynn and Peeva,
2021). Therefore, accurately quantifying the carbon pool and seques-
tration capacity of forest soils not only provides scientific basis and data
for the global carbon balance and climate change studies, but also helps
promote ecosystem services delivery, including forest carbon sink.
an).
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Abbreviations

(SOC) soil organic carbon
(RK) regression kriging
(MSR) multiple stepwise regression
(RF) random forest
(BRT) boosted regression trees
(MMA) measure and multiply model
(SLM) soil landscape modeling
(DSM) digital soil mapping
(BD) bulk density
(PTFs) Pedo-Transfer Functions
(NDVI) normalized difference vegetation index
(MAP) mean annual precipitation

(MAT) mean annual temperature
(TWI) topographic wetness index
(DEM) digital elevation model
(SAGA) system for automated geoscientific analysis
(GIS) geographic information system
(ELE) elevation
(SG) slope gradient
(SA) slope aspect
(PC) profile curvature
(CA) catchment area
(MAE) mean absolute error
(LCCC) Lin's concordance correlation coefficient
(RI) relative importance

Fig. 1. Location of study area and soil sampling sites, which are superimposed
on a 90-m resolution digital elevation model.
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The spatio-temporal variability of SOC stocks can be studied through
different technologies, which can be grouped into two categories,
namely, the measure and multiply model (MMA) and soil landscape
modeling (SLM) model (Hengl et al., 2004; Martin et al., 2011; Wang
et al., 2018). In the MMAmodel, the average SOC stocks of each soil type
or land use type were calculated and assigned to each map unit to obtain
the spatial-temporal distribution map of regional SOC stocks. However,
this method makes each map unit had a constant value and cannot cap-
ture the spatial variability of SOC stocks within the map unit, and there
was a large estimation error (Qi et al., 2019; Wang et al., 2019). In
contrast, in order to establish and improve the basic database of forest
SOC dynamics and improve the systematicness and comparability of the
data, the SLMmodel based on digital soil mapping (DSM) technology was
widely used to improve the prediction accuracy (McBratney et al., 2003).
DSM techniques quantitatively describe the relationship between soil
and environment and predict soil attributes based on ‘scorpan’ (i.e., cli-
matic factors, biological factors, topographic factors, parent material,
time factors, soil factors and spatial factors) concept of soil formation and
distribution (McBratney et al., 2003). This approach has been widely
used to establish various DSM methods and predict soil attributes
including SOC. The methods include geographically weighted regression
model (Kumar et al., 2012), support vector machine (Were et al., 2015),
artificial neural network (Li et al., 2013), random forest (Were et al.,
2015; Nabiollahi et al., 2019), cubist (Adhikari et al., 2014), linear
hybrid model (Liu et al., 2020), similarity-based model (Wang et al.,
2020a), and boosted regression trees (Martin et al., 2011; Wang et al.,
2019), among others.

Among different DSM models, tree-based models are more common
and have been widely used in soil properties predictions including SOC
prediction and mapping (Padarian et al., 2019; Hateffard et al., 2019).
Unlike traditional models, the tree-based models are more effective with
better prediction performance (Wang et al., 2019; Hateffard et al., 2019;
Ebrahimy et al., 2020), and boosted regression trees (BRT) is one of such
examples. The BRT model is relatively new model and has been found
more powerful and efficient in predicting SOC (Martin et al., 2011). It can
flexibly deal with multicollinearity among variables, data types, and
model over-fitting (Keskin et al., 2019). Based on these advantages, BRT
model has been successfully applied in various disciplines, including
epidemiology (Lampa et al., 2014), remote sensing (Colin et al., 2017),
soil science (Martin et al., 2011), marine science (Navarro et al., 2020),
ecology science (Elith and Leathwick, 2017), and environmental science
(Ebrahimy et al., 2020). However, BRT model is rarely used to study the
temporal and spatial changes of topsoil SOC in forest ecosystems (Wang
et al., 2019).

This study thus aims to evaluate the application of BRT model to
predict and map spatial-temporal variation of topsoil (0–20 cm) SOC
stocks in forest ecosystems of Northeast China, and identify the major
driving factors of such variation. The specific objectives were to: (1)
2

predict and map the spatial distribution of SOC stocks in 1990 and in
2015; (2) analyze the spatial pattern of SOC variations in forest ecosys-
tems in the past 25 years; and (3) identify key environmental factors
affecting the spatial-temporal variations of SOC stocks.

2. Materials and methods

2.1. Study area

The study was conducted in one of the largest natural forest regions in
China that mostly occupies the Greater Khingan Mountains, Lesser
Khingan Mountains and Changbai Mountain (Liaoning, Jilin and Hei-
longjiang provinces) (Fig. 1). The area covers about 305,000 km2 of
forests that mainly consists of coniferous and deciduous broad-leaved
mixed forests accounting for 37% of the total forest area in China
(China National Bureau of Statistics, 2015). The timber volume reached
3.2 billion cubic meters, accounting for 1/3 of the total timber volume in
China. The main tree species are Pinaceae, Taxodiaceae, Cupressaceae
and Ginkgoaceae (Zhu et al., 1990). The Greater Khingan Mountains
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forest area was dominated by Larix gmelinii, accounting for 86.1% of the
forest area. About 80% of Korean pine in China is distributed in the Lesser
Khingan Mountains, which is the largest and most complete virgin forest
in Asia. The main vegetation type in Changbai Mountain forest area is
temperate coniferous and broad-leaved mixed forest, with more than
1500 species of higher plants and more than 800 species of plants with
greater economic value. The climatic zone ranges frommiddle temperate
zone to cold temperate zone from south to north with temperate
monsoon climate as the main climate. However, due to the high latitude
in some areas, the winter is cold, long and snowy, the summer is warm
and short, with less evapo-transpiration and is humid. From the north-
west to the southeast, the mean annual precipitation increased from less
than 300 mm to more than 1000 mm. The average temperature in winter
is about�20 �C, and the average temperature in summer is more than 25
�C, and the mean annual temperature is between �4 and 11 �C. Ac-
cording to the Chinese Soil Taxonomy (Chinese Soil Taxonomy Research
Group, 2001), the main dominant soil types were Cambosols, Gleyosols
and Isohumosols, accounting for 82%, 7% and 6% of the total area of the
study area respectively. The other soil types accounting for 5% of the
total area were Argosols, Primosols, Anthosols, Histosols, Andosols and
Halosols.

2.2. Soil sampling

This study only obtained the regions that were forest land in 1990 and
2015 through overlay analysis in ArcGIS 10.2 (ESRI, Redlands, CA, USA),
and focused on discussing the spatial and temporal changes of the topsoil
forest SOC stocks in the areas where the forest cover did not change in the
past 25 years. We then analyzed the main environmental factors that
affected SOC spatial variation in both periods (Fig. S1). Due to the lim-
itation in data acquisition, the spatial SOC information from different
forest types has not been analyzed. In addition, we did not discuss the
conversion of forests to cultivated land, grassland and other types in the
past 25 years, because we did not collect soil samples from those land use
types in 2015.

2.2.1. Soil survey data in 1990
Soil profile data in 1990 were obtained from the second soil survey

database of Liaoning Province, Jilin Province and Heilongjiang Province
respectively. It includes a total of 82 soil profile observations covering
different soil types in the whole region. As this study only focused on
topsoil (0–20 cm) SOC stocks, soil data from the top 20 cm depth were
extracted. Not all samples had bulk density (BD) measured, so a Pedo-
Transfer Functions (PTFs) (W€osten et al., 2001) (Eq. (1)) was used to
supplement the missing BD (26 samples). Previous studies have shown
that BD is closely related to SOC and soil texture, as well as to soil depth
(W€osten et al., 2001; Yang et al., 2020). We applied a linear regression
method to predict BD using SOC measurements (Eq. (1)), and supple-
mented the missing BD data of 26 samples. R2 of the BD prediction model
was 0.73.

BD¼ 1:57� 0:09
ffiffiffiffiffiffiffiffiffiffi
SOC

p
(1)

2.2.2. Soil sampling in 2015
Since the forest area in the study area is large and the topography is

rugged, soil sampling in 2015 did not follow the same location in 1990
considering cost, time, and road accessibility. Instead, a purposeful
sampling method proposed by Zhu et al. (2008) was adopted. First, the
environmental factors closely related to SOC in topsoil including
normalized difference vegetation index (NDVI), mean annual precipita-
tion (MAP), mean annual temperature (MAT), topographic wetness index
(TWI), and elevation, were selected and pretreated to unify the coordi-
nate system and spatial resolution. Second, the selected environmental
factors were clustered with a fuzzy c-means clustering method giving a
total of 33 different clusters or landscape units. Third, local soil experts
were invited to locate 3–5 soil sampling sites in each landscape unit
3

considering different factors such as road accessibility, and a total of 157
topsoil samples were obtained. A handheld GPS was used to record the
longitude and latitude at each site. During the sampling, one kg mixed
soil sample and 100 cm3 undisturbed soil cores were collected at the
center of 0–20 cm depth of each sample site to measure SOC and BD. The
SOC content was measured with C/N analyzer (Elemental Amerivas Ins.
VarioMax, Germany) and bulk density by over drying (at 105 �C for 48 h)
and weighing the core samples in the Central Laboratory of Shenyang
Agricultural University.

2.3. Calculation of SOC stocks

This study modelled the spatial-temporal variations of SOC stocks in
1990 and 2015. For the soil profile with k layers, Batjes (1996) formula
(Eq. 2) was applied to calculate the SOC density in the profile with special
depth.

SOCdensity ¼
Xk

i¼1

SOCcontent ¼
Xk

i¼1

SOCconcentration �BDi �Di � ð1� SiÞ (2)

where SOCdensity, SOCcontent, and SOCconcentration are the SOC density
(kg⋅m�2), the SOC content (kg⋅m�2), and the SOC concentration (g⋅kg�1).
BDi, Di and Si are the bulk density (Mg⋅m�3), the thickness (m) and the
volume fraction of fragments >2 mm, i represents a specific soil layer.

2.4. Environment data

In this study, 12 environmental factors related to four categories (i.e.,
soil, topography, climate, and biological factors) were selected as pre-
dictors of SOC stocks in both periods (1990 and 2015). Because the
environmental factors were obtained from different sources or platforms,
all environmental data were converted to raster data of 90-m resolution
with a unified projection in ArcGIS 10.2 (ESRI, Redlands, CA, USA).

2.4.1. Soil related factors
Soils generate multitude of soil functions to provide ecosystem ser-

vices (Blum, 2005; Adhikari and Hartemink, 2016), and its variability
contributes to changes in biomass production and plant community di-
versity influencing SOC pools in forest ecosystems (Adhikari et al., 2014;
Yang et al., 2020). Therefore, soils are one of the major factors influ-
encing SOC distribution and are widely used as SOC predicting variables
(Anderson, 1988; Bockheim et al., 2014; Adhikari et al., 2014; Riza et al.,
2021). We used soil texture fractions (clay%, silt%, and sand%) as pre-
dictors of SOC in the study area. Soil texture fractions were compiled
from a 1:1 million soil type map, and from the soil profile data obtained
from the second soil survey database of China (1980s). Texture data at
1-km resolution were downloaded from the Resource and Environmental
Science and Data Center (https://www.resdc.cn/), Institute of
Geographical Sciences and resources, Chinese Academy of Sciences, and
were resampled to 90-m spatial resolution.

2.4.2. Topographic factors
Topographic factors were derived from a 90-m gridded digital

elevation model (DEM) downloaded from the Geospatial Data Cloud site,
Computer Network Information Center, Chinese Academy of Sciences
(http://www.gscloud.cn). A total of 6 topographic factors namely,
elevation (ELE), slope gradient (SG), slope aspect (SA), profile curvature
(PC), catchment area (CA), and topographic wetness index (TWI) were
generated using ArcGIS 10.2 (ESRI, Redlands, CA, USA) and by system
for automated geoscientific analysis (SAGA) and geographic information
system (GIS) software (Conrad et al., 2015).

2.4.3. Climatic factors
The climate in Northeast China is characterized by warm and rainy

summer, lush vegetation growth, and more organic matter entering the
soil (Zhang et al., 2016). Accordingly, the cold winter freezes the soil, so

https://www.resdc.cn/
http://www.gscloud.cn
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the microbial decomposition is inhibited, leading to the accumulation of
organic matter in the soil mainly in the form of humus (Yu et al., 2006).
Therefore, the SOC in this region is generally higher than that in other
regions of China. This situation is usually caused by the special climate
conditions of the region, and mean annual precipitation (MAP) and mean
annual temperature (MAT) can better reflect the climate conditions of the
region, while the coldest/warmest month of the year only reflect one
factor and cannot reflect the climate conditions of the whole year. The
MAP and MAT data of 1990 and 2015 from more than 2400 meteoro-
logical stations across China were downloaded from the China Meteo-
rological Data Sharing Service Center (http://cdc.cma.gov.cn/), and
were interpolated using splines function in ANUSPLIN software
(Hutchinson, 1995). The spatial resolution of the MAP andMAT data was
1-km, and it was resampled to 90-m to use in the present study.

2.4.4. Biological factors
This study is only focused on the forest covered areas in 1990 and

2015, so the current land use map could not be used as a biological factor
in SOC modeling. Moreover, the predominant forest species map in the
two periods in the region is lacking. Therefore, we used normalized
difference vegetation index (NDVI) data from remote sensing as a proxy
to biological factor of SOC distribution. NDVI detects growth state of
vegetation and is related to vegetation coverage (Kumar et al., 2016;
Banday et al., 2019; Yang et al., 2020; Dong et al., 2021), the values
range between �1.0 and 1.0. A negative NDVI value indicates clouds,
water or snow cover, values near zero indicates rock or bare soil, and a
positive value indicates vegetation coverage (0.1–0.5 for sparse vegeta-
tion, and >0.6 for dense green vegetation). The NDVI data for both were
downloaded from the Resource and Environmental Science and Data
Center, Institute of Geographical Sciences and resources, Chinese Acad-
emy of Sciences (http://www.resdc.cn/) at a spatial resolution of 1-km,
and was resampled to 90-m grid for the analysis.
2.5. Prediction models

2.5.1. Regression kriging
Regression kriging (RK) method considers the spatial trend and in-

fluence of random factors in the model (Hengl et al., 2004). The spatial
trend between SOC stocks and predictor variables is established using a
linear regression, and the model residual is interpolated by ordinary
kriging. The linear regression equation was established with IBM SPSS
statistics-version 23.0 (Kirkpatrick, 2015), and the interpolation was
completed in ArcGIS 10.2 software (ESRI, Redlands, CA, USA). The linear
trend and the kriging estimate of residual were added to obtain the
predicted value of SOC stocks (Eq. (3))

Z‘ðS0Þ¼m‘ðS0Þþ e‘ðS0Þ¼
Xp

k¼0

β‘kqkðS0Þþ
Xn

i¼0

λieðSi
!

(3)

where m`(S0) is the fitting drift; e`(S0) is the residual of interpolation; β0k
is the estimation of the drift model coefficient; λi is the weight of Kriging,
which is determined by the independent spatial structure of the residual;
e(Si) is the residual at Si position.

2.5.2. Multiple stepwise regression
Multiple stepwise regression (MSR) is a widely used regression al-

gorithm, and in essence, it is a multiple linear regression (Krishnan et al.,
1980). Regression analysis is used to study the interdependence between
multiple factors, while MSR is used to establish the optimal or appro-
priate regression model, so as to study the dependence between factors
more deeply (Zhang et al., 2012).

The basic idea of MSR is to introduce independent variables in the
model one by one, and the independent variables introduced each time
have the most significant impact on the dependent variable. Each time a
new independent variable is introduced, the variable previously intro-
4

duced into the regression equation shall be tested one by one, and the
insignificant independent variable in the current equation shall be
eliminated from the independent variable with the least impact on the
dependent variable until no new independent variables can be intro-
duced (Zhang et al., 2012). Finally, the independent variables retained in
the regression equation have significant impacts on the dependent vari-
able. The MSR models developed for the two periods were:

SOC Stocks1990 ¼ 0:992� 0:673�MAT� 0:534� SGþ 13:381� NDVI

� 0:077� Clay

(4)

SOC Stocks2015 ¼ � 15:776þ 0:004� ELEþ 0:475� TWI� 0:458�MAT

� 0:534� SGþ 18:787� NDVIþ 0:123� Clay

(5)

2.5.3. Random forest
Random forest (RF) is a machine learning algorithm based on clas-

sification regression tree proposed by Breiman (2011). This method
combines bootstrapping technology and feature random selection tech-
nology. RF model includes multiple classification and regression trees to
ensure the diversity and stability of the model, which can be used to solve
the problems related to classification and regression. RF also be widely
used in prediction problems, and it is simple to apply without complex
parameter adjustment. The model is optimized by adjusting the number
of regression trees and the number of prediction variables at each node of
the decision tree to improve prediction accuracy.

In this study, the RF modeling was completed in R language (R
Development Core Team, 2013) using the “randomForest” package (Liaw
and Wiener, 2002). The model requires users to define three parameters,
namely the number of tree (ntree), the minimum size in each node
(nodesize), and the number of variables as a predictor at each tree (mtry).
The default value of ntree is 500. However, more numbers are often
needed to obtain more stable prediction results. In the study, the ntree
was set at 1000. The nodesize used the default value of 5, and themtrywas
set to 6.

2.5.4. Boosted regression trees
The BRT model (Elith et al., 2008) used in this study combines both

regression tree and boosting algorithms in the model to improve pre-
diction. Regression part evaluates dependent variables and their pre-
dictors with recursive binary splits (Navarro et al., 2020), and boosting
combines multiple simple models and improve model performance (Elith
and Leathwick, 2017).

BRT has several advantages over other tree-based model as it which
can handle different types of predictive variables and allows missing
value data (Ebrahimy et al., 2020). It does not require prior data con-
version or outlier removal, can fit complex nonlinear relationships, and
automatically deals with the interaction between predictors (Wang et al.,
2019). It has stronger prediction ability than most traditional methods,
and can deal with a large number of practical problems in model fitting
(Martin et al., 2011).

The BRT model requires the user to define four parameters, namely,
learning rate (LR), tree complexity (TC), bag fraction (BF) and number of
trees (NT). LR represents the contribution of each tree in the model to the
final fitting model (Martin et al., 2011). TC is the complexity of the tree
(Ebrahimy et al., 2020). BF represents the proportion of data used in the
dataset (Colin et al., 2017). The optimal combination of parameter set-
tings was tested using a 10-fold cross-validation with LR, TC, BF and NT
set at 0.025, 12, 0.75 and 1200 for 1990, 0.025, 12, 0.70 and 1,000,
respectively, for 2015.

2.6. Model validation

Martin et al. (2012) believed that the reasonable selection of training

http://cdc.cma.gov.cn/
http://www.resdc.cn/
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set and test set could improve the prediction performance of the model,
and suggested randomly dividing the data into 80% for modeling and the
remaining 20% for model verification. Therefore, the prediction perfor-
mance of RK, MSR, RF and BRT models was evaluated on randomly
divided training (80% data) and test (20% data) data sets using four
indices namely, mean absolute error (MAE), root-mean-square error
(RMSE), coefficient of determination (R2) and Lin's concordance corre-
lation coefficient (LCCC) (Lin, 1989) (Eqs. (6)–(9)).

MAE¼ 1
n

Xn

i¼1

jXi �Yij (6)

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

ðXi � YiÞ2
s

(7)

R2 ¼
Pn
i¼1

ðXi � YÞ2

Pn
i¼1

ðYi � YÞ2
(8)

LCCC¼ 2r∂X∂Y
∂2X þ ∂2Y þ ðX þ YÞ2 (9)

where Xi and Yi represent the predicted and measured values; n repre-
sents the number of samples; X and Y represent the average predicted
Fig. 2. Boxplot of SOC stocks in 1990 and 2015 derived for different environmenta
aspect; PC, profile curvature; CA, catchment area; TWI, topographic wetness ind
normalized difference vegetation index.

5

value and the average measured value; r represents the correlation co-
efficient between the predicted value and the measured value; ∂X and ∂Y
represent the variance of the prediction set and the measured set.

3. Results

3.1. Descriptive statistics

The boxplot of SOC stocks and corresponding environmental factors
at sampling sites in two periods is showed in Fig. 2. In 1990, SOC stocks
ranged from 0.79 to 11.28 kg⋅m�2, with an average of 6.89 � 1.99 kg
C⋅m�2, and in 2015 it ranged from 3.18 to 16.41 kg C⋅m�2 in 2015, with
an average of 8.45� 2.32 kg C⋅m�2. The Pearson's correlation coefficient
between SOC stocks and environmental factors at sampling site in the
two periods is listed in Table 1. SOC stocks were significantly positively
correlated with ELE, MAP and NDVI, and significantly negatively corre-
lated with MAT in the two periods. In addition, there was a significant
correlation between SOC stocks and clay and sand in 1990, but no sig-
nificant correlation in 2015. The climatic factors were significantly
correlated with SOC stocks in both periods.
3.2. Model performance and uncertainty

The result of model evaluation (Table 2) showed a decreasing order in
performance as BRT > RF > RK >MSR in both periods. Among the three
models tested, BRT showed higher R2 (0.67 vs. 0.60) and LCCC (0.75 vs.
l factors. SOC, Soil organic carbon; ELE, elevation; SG, slope gradient; SA, slope
ex; MAP, mean annual precipitation; MAT, mean annual temperature; NDVI,



Table 1
Relationships between SOC stocks with all environmental predictors in 1990 and 2015 surveys.

Property SOC stocks ELE SG SA PC CA TWI MAP MAT NDVI Clay Silt

1990
ELE 0.382**
SG �0.036 0.400**
SA 0.051 0.157 �0.012
PC �0.107 �0.044 0.412** �0.137
CA �0.056 �0.309** �0.437** �0.013 �0.065
TWI 0.067 �0.454** �0.827** 0.060 �0.171 0.729**
MAP 0.223** �0.039 0.202 �0.202 0.180 �0.313** �0.353**
MAT �0.628** �0.344** �0.034 �0.008 0.071 0.054 0.020 0.536**
NDVI 0.487** 0.157 0.099 �0.110 �0.063 �0.058 �0.129 0.146 �0.442**
Clay 0.256* �0.013 �0.219* �0.102 �0.006 0.221* 0.287** �0.036 �0.005 0.065
Silt 0.196 0.075 �0.208 0.048 �0.047 0.270* 0.324** �0.090 0.003 0.007 0.830**
Sand �0.238* �0.029 0.223* 0.034 0.026 �0.255* �0.318** 0.064 0.001 �0.040 �0.963** �0.950**

2015
ELE 0.274**
SG �0.169* 0.164*
SA 0.034 0.049 0.001
PC �0.112 0.037 0.090 �0.010
CA �0.198* �0.247** �0.416** 0.046 �0.053
TWI 0.095 �0.265** �0.799** �0.015 �0.072 0.740**
MAP 0.238** 0.688** 0 0.047 0.085 �0.117 �0.068
MAT �0.552** �0.004 �0.197* �0.016 0.097 0.275** 0.203* 0.542**
NDVI 0.178* 0.265** 0.188* �0.014 0.035 �0.462** �0.280** 0.382** �0.027
Clay �0.133 0.161* �0.083 �0.102 0.031 �0.059 0.099 0.200* 0.025 �0.040
Silt �0.006 0.270** �0.104 0.032 0.020 �0.089 0.073 0.324** 0.033 0.115 0.674**
Sand 0.080 �0.233** 0.102 0.042 �0.028 0.080 �0.095 �0.282** �0.031 �0.037 �0.924** �0.905**

Note: p< 0.05 shown in “*“; p< 0.01 shown in “**“. SOC, soil organic carbon; ELE, elevation; SG, slope gradient; SA, slope aspect; PC, profile curvature; CA, catchment
area; TWI, topographic wetness index; MAP, mean annual precipitation; MAT, mean annual temperature; NDVI, normalized difference vegetation index.

Table 2
Summary statistics of the predictive performance of regression kriging (RK), multiple stepwise regression (MSR), and boosted regression trees (BRT) models in the
prediction of SOC stocks in 1990 and 2015 surveys.

Year Model Index Min. 1stQu. Median Mean 3rdQu. Max.

1990 RK MAE 1.63 1.63 1.63 1.63 1.63 1.63
RMSE 2.47 2.47 2.47 2.47 2.47 2.47
R2 0.62 0.62 0.62 0.62 0.62 0.62
LCCC 0.68 0.68 0.68 0.68 0.68 0.68

MSR MAE 1.64 1.64 1.64 1.64 1.64 1.64
RMSE 2.49 2.49 2.49 2.49 2.49 2.49
R2 0.54 0.54 0.54 0.54 0.54 0.54
LCCC 0.59 0.59 0.59 0.59 0.59 0.59

RF MAE 1.46 1.51 1.52 1.53 1.55 1.58
RMSE 2.07 2.13 2.15 2.16 2.18 2.23
R2 0.56 0.59 0.62 0.63 0.64 0.66
LCCC 0.63 0.68 0.69 0.71 0.73 0.74

BRT MAE 1.37 1.41 1.42 1.43 1.45 1.47
RMSE 1.95 1.99 2.00 2.01 2.03 2.07
R2 0.59 0.66 0.68 0.67 0.68 0.69
LCCC 0.73 0.74 0.75 0.75 0.75 0.77

2015 RK MAE 1.55 1.55 1.55 1.55 1.55 1.55
RMSE 2.24 2.24 2.24 2.24 2.24 2.24
R2 0.54 0.54 0.54 0.54 0.54 0.54
LCCC 0.63 0.63 0.63 0.63 0.63 0.63

MSR MAE 1.57 1.57 1.57 1.57 1.57 1.57
RMSE 2.30 2.30 2.30 2.30 2.30 2.30
R2 0.47 0.47 0.47 0.47 0.47 0.47
LCCC 0.59 0.59 0.59 0.59 0.59 0.59

RF MAE 1.35 1.38 1.39 1.41 1.42 1.15
RMSE 1.89 1.91 1.93 1.94 1.97 1.99
R2 0.49 0.52 0.53 0.55 0.56 0.58
LCCC 0.69 0.71 0.73 0.74 0.75 0.77

BRT MAE 1.28 1.29 1.30 1.31 1.32 1.37
RMSE 1.74 1.78 1.80 1.79 1.81 1.84
R2 0.56 0.57 0.59 0.60 0.62 0.65
LCCC 0.72 0.75 0.76 0.78 0.78 0.79

Note: SOC, soil organic carbon; MAE, mean absolute error; RMSE, root mean squared error; R2, coefficient of determination; LCCC, Lin's concordance correlation
coefficient.
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0.78) and lowerMAE (1.43 vs. 1.31) and RMSE (2.01 vs. 1.79) explaining
67% and 60% of the spatial variability of SOC stocks in 1990 and 2015,
respectively. Furthermore, with respect to the spatial SOC stocks pre-
diction in topsoil forest ecosystem, the BRT model could fully capture it,
while RK and MSR models showed the SOC spatial variation which
showed a convergence trend with the characteristic of equilibrium
development between regions during 1990–2015. The RK and MSR
models could not fully describe the temporal variations of forest SOC
stocks in the central region between 1990 and 2015, whereas BRT model
did provide a more realistic scenario. Previous studies have also obtained
similar conclusions (Colin et al., 2017; Ebrahimy et al., 2020; Wang et al.,
2020b). Therefore, the BRT model was selected as the final prediction
model to map spatial distribution of topsoil SOC stocks in the study areas
in both periods. In order to further illustrate the uncertainty of BRT
model, the model was iterated 100 times and the standard deviation (SD)
of 100 prediction was reported as the uncertainty of model prediction in
both periods (Fig. S2). Average SD was 0.36 kg C⋅m�2 in 1990, and 0.28
kg C⋅m�2 in 2015, respectively, indicating a lower prediction uncertainty
in both periods.

3.3. Relative importance of environment factors

In order to identify the key environmental factors, we iterated the
BRT model for both periods 100 times, and the average relative impor-
tance (RI) of each environmental factor was calculated and scaled to
100% (Fig. 3). The results showed that the key environmental factors
affecting the spatial variation of SOC stocks were MAT, ELE, CA, and
MAP and they accounted for nearly 67% variation in 1990. Corre-
spondingly, MAT, ELE, TWI, and MAP were the key environmental fac-
tors affecting SOC stocks, accounting for 65% variations in 2015. We also
found that MAT and ELE were the most important environmental factors
among the 12 environmental factors used with corresponding RI of
42.9% and 47.5% in 1990 and 2015, respectively.

3.4. Spatial and temporal variation of SOC stocks

The average spatial distribution map of the 100 iterations of BRT
models were selected as the final maps of topsoil forest SOC stocks in
both periods (Fig. 4). In both periods, the SOC stocks decreased gradually
from northwest to southeast of the study area in forest topsoil. In order to
further reveal the spatial and temporal variation of SOC stocks, we used
the grid calculation module of ArcGIS 10.2 software (ESRI, Redlands, CA,
USA) to compare the spatial distribution of SOC stocks in the two periods
Fig. 3. Relative importance (RI) of environmental factor in SOC stocks prediction as
2015 (b).
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(Fig. 5a). Then, the change of SOC stocks in six levels were obtained
based on cluster analysis (Fig. 5b). Over the past 25 years, SOC stocks did
show an upward trend, on average SOC stocks increased by 0.063 kg
C⋅m�2⋅yr�1 (Fig. 5a). The areas with increased SOC stocks were mainly
distributed in the southwest and northeast of the studied area. The 25%
of the total area with decreased SOC stocks were primary distributed in
the central region, and were mostly in the �2.0 to 0 kg C⋅m�2 range of
declining SOC stock and accounted for about 23% of the whole study
region (Fig. 5).

In order to further explore the spatial-temporal SOC stocks distribu-
tion, we quantified the changes of SOC stocks in different soil types be-
tween the two periods (Table 3). In the past 25 years, the SOC stocks
increased by 471.04 Tg C in topsoil forest ecosystem of Northeast China.
The SOC stocks were mainly stored under Cambosols, Gleyosols and
Isohumosols in both periods, accounting for 95.6% in 1990 and 95.9% in
2015 of the total stocks, respectively. The decrease of SOC stocks did
mainly occur in Andosols and Isohumosols being �0.2 and �6.52 Tg C,
respectively in the past 25 years.

4. Discussion

4.1. Estimates of SOC stocks

Forest carbon accumulation can reduce increasing atmospheric CO2
concentration and plays an irreplaceable role in slowing down global
climate change (Lal, 2004). Cao et al. (2003) estimated the carbon flux of
China's terrestrial ecosystem by using CEVSA model and showed that
China's forest carbon stocks increased gradually at the end of the 20th
century. Xu et al. (2007) had showed that China's forest vegetation had
been playing an obvious role in CO2 sink, and the carbon sink function of
China's forest vegetation would be further enhanced with the growth of
carbon stocks of young and middle-aged forests since the 1980s. Zhao
et al. (2009) considered the spatial distribution of SOC stocks of the forest
ecosystem as closely related to the interference intensity of human ac-
tivities on the forest. Similar conclusions were obtained in several other
studies (e.g., W€aldchen et al., 2013; Fern�andez-Romero et al., 2014;
Ngaba et al., 2019; Wang et al., 2020b; Su et al., 2021). Wang et al.
(2020a) studied the SOC stocks of different ecosystems in Dalian of
China, and found that the rapid urbanization and the transformation of
land use type were the main reasons for the decline of topsoil SOC stocks.
Fern�andez-Romero et al. (2014) considered a similar conclusion in Jaen,
Spain. Our results also showed that the forest ecosystem in Northeast
China played a role as carbon “sink” from 1990 to 2015, which was the
determined from 100 runs of the boosted regression trees model in 1990 (a) and



Fig. 4. Spatial distribution of soil organic carbon (SOC) stocks predicted by boosted regression trees model in 1990 (a) and 2015 (b).

Fig. 5. Changes in SOC stocks in the study area in 1990 and 2015, and its area percentages change.
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same as the overall change trend of China's forest carbon reserves in the
same period (He et al., 2019).

Our results indicated that the spatial pattern of topsoil SOC stocks in
the forest ecosystem in both periods showed a similar characteristics-
higher SOC in the southeast and lower in the northwest, with an
average of about 6.89 kg C⋅m�2 in 1990, and 8.48 kg C⋅m�2 in 2015
(Fig. 4). The highest SOC stocks appeared in the northwest part of the
study area. It was mainly because of the latitudinal effect, especially, in
the cold temperate zone where the MAT and evapotranspiration were
lower, high soil relative humidity and long soil freezing time was
8

conducive to the accumulation of soil organic matter (Gomes et al.,
2019). With denser vegetation, SOC decomposition rate was minimum
leading to higher SOC accumulation (Adhikari et al., 2019). In addition,
litter accumulation for several years might have contributed to the higher
soil organic matter accumulation (Wang et al., 2020b).

Our study also analyzed the spatial variation of SOC stocks under
different soil types in both periods (Table 3). The reduced SOC stocks in
2015 mainly appeared on Andosols and Isohumosols, equivalent to the
loss of 0.2 and 6.5 Tg C; an unexpected result. It had been shown that the
two soil types have the potential to sequester carbon in the forest setting



Table 3
Soil organic carbon (SOC) stocks under different soil type in 1990 and 2015 surveys.

Soil type Area (km2) Average SOC stock (kg C⋅m�2) SOC stock (Tg C) Change of average SOC stock (kg C⋅m�2) Change of stocks (Tg C)

1990 2015 1990 2015

Andosols 253.68 7.53 7.15 2.01 1.81 �0.38 �0.20
Anthrosols 1375.03 5.84 6.69 8.75 9.96 0.85 1.21
Argosols 8340.05 7.34 8.33 63.24 69.81 0.99 6.57
Cambosols 251027.45 6.48 8.22 1693.20 2108.58 1.74 415.38
Gleyosols 22300.17 7.62 9.81 174.19 222.17 2.19 47.98
Halosols 75.95 2.73 3.16 0.24 0.28 0.43 0.04
Histosols 547.20 7.48 8.36 4.26 4.70 0.88 0.44
Isohumosols 17927.42 6.58 6.58 132.82 126.30 0 �6.52
Primosols 3111.00 3.64 5.38 13.19 19.33 1.74 6.14
Total 304957.93 – – 2091.90 2562.94 – 471.04
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(Yu et al., 2007; Huang et al., 2017; Wang et al., 2019). We think how-
ever that it was the central location in which these soil types were
dominant which lead this observation. The central area was where the
original forest had felled, cultivated land created, leading to an overall
reduction the SOC stocks, rather than being related to the soil type itself.
The inverse holds for the specific increase of SOC stocks in Cambosols
and Gleyosols and Isohumosols. These soil types are mostly distributed in
the more ‘virgin’ forest area in the northern high latitudes. Here, lower
air temperatures reduce microbial activity, limiting the organic matter
decomposition leading to a relative higher SOC accumulation in the re-
gion, independent of soil type (Carvalhais et al., 2014). Therefore, we
suggest that the government support for returning farmland to forest
under the Andosol and Isohumosol should be accelerated in the areas
with relatively high elevation and steep slope. Tree planting in such areas
should therefore be rapidly increased in order to speed up the recovery of
the local and regional ecological environment and simultaneously to the
beneficial enhancement of their forest soil carbon sequestration.

4.2. SOC stocks change and its dynamics

During the past 25 years, SOC stocks in the forest ecosystem in
Northeast China has increased by 471 Tg C (Table 3), equivalent to an
average SOC stock increase of 0.063 kg C⋅m�2⋅yr�1. It was however
surprising that 25% of the study area did show a decreasing SOC trend
(mostly�2 to 0 kg C⋅m�2 range) primary distributed in the central region
(Fig. 5). We found that those areas might be the main timber forest
production base in Northeast China. With China's reforms and opening-
up in the 1990s, the growing demand for wood had increased, result-
ing large areas of virgin forest been felled, and the land was used for
farming, urban and industrial development, mining (Zhao et al., 2009; Su
et al., 2021). Subsequently, the Chinese government did realize the
importance of more ecological environment protection and implemented
a series of policies of returning significant areas of farmland back to
forests. This greatly restored the forest coverage of these areas and
significantly improved the overall ecological environment (Xu et al.,
2007; Wang et al., 2020b). Qi et al. (2019) also concluded that a large
number of forests and grasslands in Liaoning Province (Northeast China)
had been reclaimed for farmland or converted to construction land since
the 1990s, and that this was the main reason for the reduction of forest
SOC stocks in that region. This conclusion was also confirmed by other
studies, such as Cao et al. (2003), Zhao et al. (2009), and Wang et al.
(2019).

4.3. Controlling factors of SOC stocks

For both periods, climatic factors were the most powerful and effec-
tive environmental factors in predicting SOC stocks, and the results are
consistent with previous studies (Fantappi�e et al., 2011; Zhong et al.,
2018; Zhou et al., 2019; Gomes et al., 2019). Climate plays an important
role in the accumulation and consumption of SOC (Lal, 2020). To un-
derstand the extent to which climate change can explain the SOC change
9

in Italy from 1961 to 2008, Fantappi�e et al. (2011) predicted the spatial
distribution of SOC in the two periods with MAP, MAT, elevation and
latitude as predictors. They found a significant interdependence between
SOC and climatic variables. In our study area, SOC increased with pre-
cipitation but decreased with the increasing temperature. In Brazil,
Gomes et al. (2019) used historical data and four machine learning al-
gorithms (random forests, cubist, generalized linear model boosting and
support vector machines) to estimate SOC stocks, and pointed out a
significant correlation between climatic factors and SOC stocks, as also
reported in this study. In North and Northeast China, Zhou et al. (2019)
used environment data (land use, topographic factors, vegetation index,
visible near infrared spectroscopy and climatic factors) and random
forest model to predict spatial-temporal variations of SOC stocks in the
1980s and 2000s. They recognized climatic factors as the main envi-
ronmental factors affecting SOC stocks but had different contributions in
different regions. Adhikari et al. (2019) assessed the future climate and
land use change impacts on topsoil SOC stocks in Wisconsin and found
climatic factors as the main environmental factor affecting SOC stocks.
Among all climatic factors, MAT and MAP were the powerful and effec-
tive environmental factors, which were widely used in the spatial
simulation of SOC stocks (Gomes et al., 2019; Adhikari et al., 2019; Wang
et al., 2021; Gu et al., 2022). In China, Wang et al. (2021) used nine
environmental factors and BRT model to map SOC stocks in different
ecosystems in the 1980s and 2010s. Their results showed that MAT and
MAP were the main environmental factors affecting the spatial variation
of SOC stocks. Study of Meersmans et al. (2012) reported precipitation
pattern as the main reason affecting the spatial variation of regional SOC.

The RI of the topography-related factors was 53.4% in 1990, and
58.5% in 2015 indicating that topography-related factors also had an
important impact on the spatial variation of SOC Stocks in the region. In
both periods, ELE had the highest RI among all topographic factors.
Other studies also showed an impact of elevation in SOC stocks distri-
bution in forest ecosystem (Fern�andez-Romero et al., 2014; Loz-
ano-García et al., 2016; Wang et al., 2020a; Sch€onauer et al., 2022). This
might be related to the impact of elevation on vegetation type, climate
zone, soil properties, soil microenvironment, soil layer thickness, soil
microbial community structure and activity (Lozano-García et al., 2016).
Tsozu�e et al. (2019) studied the impact of ELE on SOC stocks and found
that the accumulation and stability of SOC were related to clay content,
parent material, climate and vegetation, but mainly controlled by alti-
tude gradient - increased SOC value with the increase of ELE. Prietzel and
Christophel (2014) found that SOC stocks showed an upward trend in
high-altitude areas with low temperature and high precipitation. Liu
et al. (2011) found a significant impact of elevation on SOC across the
Loess Plateau region of China, as reported in present study.

There are few studies investigating the effect of SA on SOC stocks, and
most studies found a higher SOC stocks in shady slope than in sunny slope
(Sun et al., 2015; Lozano-García et al., 2016; Wang et al., 2020b). Qin
et al. (2017) found an increased SOC from 16.16 to 72.50 g⋅kg�1 from the
south slope to the north slope, with an increase of 77.71%. SG affects soil
erosion, and its impact on SOC was mainly due to the impact of SG on the
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degree of soil erosion. Most studies showed a decreased SOC with
increasing soil erosion. Koulouri and Giourga (2007) reported an accel-
erated reduction of SOC in steeper slopes. In this study, TWI was found to
be a good predictor of SOC stocks. TWI represents an impact of regional
topography on runoff flow direction and accumulation, and showed a
positive correlation with soil moisture (Zhu et al., 2017; Sch€onauer et al.,
2022). Craine and Gelderman (2011) considered TWI as an effective
environmental factor in the prediction of SOC stocks as it relates poten-
tial moist areas in the landscape (Riihim€aki et al., 2021) where a higher
SOC could be expected.

NDVI and soil related factors (clay, silt and sand) showed weak RI in
the spatial prediction of SOC stocks in both periods. Although studies of
Wang et al. (2019), Bhunia et al. (2019), and Yang et al. (2020) reported
a stronger relationship of NDVI with SOC stocks spatial distribution, we
believe that the effectiveness of NDVI in our study was offset by other
variables such as terrain and climate (Table 2) resulting a weaker rela-
tionship RI. Peng et al. (2015) obtained similar conclusions to ours.
Among the texture fractions, clay content had a higher RI (1.9% in 1990,
2.1% in 2015) than the RI of silt and sand content. This conclusion is
consistent with previous studies of Leifeld et al. (2005) and Poeplau et al.
(2020). In addition, soil texture was not significantly correlated with SOC
stocks in 2015, but showed a significant correlation with SOC stocks in
1990, which might be caused by the fact that the sampling sites in 2015
were mostly in economic forests and soil structure was artificially
modified. In eastern China, Zhong et al. (2018) concluded that the SOC
stocks and clay content at the depth of 0–10 and 10–20 cm showed a
synchronous increase trend from semi-arid area to humid area, and they
were correlated.

4.4. Potential research limitations

Based on low MAE and RMSE and high R2 and LCCC, BRT model was
found the best model to accurately predict the spatial distribution of SOC
stocks in the study area for both periods. Apart from the higher model
uncertainty in 1990 (0.36 kg C⋅m�2) than in 2015 (0.28 kg C⋅m�2), there
were other potential sources of uncertainties associated with this pre-
diction. Firstly, soil data in 1990 were obtained from the second soil
survey database of three provinces (Liaoning, Jilin, Heilongjiang).
Changing staff responsible for the data collection undertaken in 1990
might have caused some unforeseen errors during sampling in 2015.
Secondly, the collection of soil samples in 2015was not conducted in-situ
in 1990, which may lead to estimation errors between the final predicted
results and the actual ones. Thirdly, in 1990, some soil samples did not
have BD measured. BD for those samples were estimated with PTFs that
might have also added some uncertainty in the final prediction. As far as
the uncertainty in both times is concerned, it might be attributed to the
differences in data source, data conversion in GIS, point interpolations of
weather data, and the spatial detail of the prediction grid itself. These
sources of uncertainties which were rather inevitable in DSMmight have
led to the differences between our estimates and the true SOC stocks
measured in the region.

5. Conclusions

The BRT model approach had the lowest MAE and RMSE and highest
R2 and LCCC values compared to MSR and RK in predicting spatial dis-
tribution of forest topsoil SOC stocks in Northeast China in 1990 and
2015. The average SOC stocks increased (in ca. 75% of the total area)
from 6.89 kg C⋅m�2 (1990) to 8.48 kg C⋅m�2 (2015) adding a total of 471
Tg C. The SOC stocks in 1990 and 2015 had similar spatial distribution
patterns, with higher stocks in northeast and lower southwest. Topsoil
forest SOC stocks did decline in 25% of the study area primary in the
central area of timber forest. These reduced SOC stocks were mainly
found on Andosols and Isohumosols, amounting to a loss of 0.2 and 6.5
Tg C, respectively. MAT and ELEwere themain controlling factors of SOC
stocks spatial variation in the two periods. Accurate assessment of spatial
10
and temporal variations of topsoil forest SOC stocks is helpful for accu-
rate assessment of forest ecosystem carbon cycle, which is of great sig-
nificance for predicting climate change and formulating strategies and
measures to deal with climate change. The results of this study will also
provide data support for forestry management and ecological restoration
in the region.
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