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A B S T R A C T   

Cultivated lands play a crucial role in terrestrial carbon cycle, and enhancing soil organic carbon (SOC) 
sequestration in these areas can help effectively mitigate the rise of atmospheric CO2 concentration. In this study, 
topsoil (0–20 cm) saturated SOC and its density of cultivated soil in Northeast China were mapped using a 
boosted regression trees (BRT) model. The distribution of the SOC sequestration potential was also calculated 
based on the difference between saturated SOC and SOC density in ArcGIS. Nine environmental factors including 
climate, topography and lengths of cultivation data (LCD) and 197 soil samples are used. A 10-fold cross- 
validation technique is applied to derive four statistical indices - mean absolute prediction error (MAE), root 
mean square error (RMSE), coefficient of determination (R2) and Lin’s consistent correlation coefficient (LCCC) 
to verify the model performance. The model explains 81% and 85% of the spatial variation of saturated SOC and 
SOC density, respectively. Mean annual temperature and mean annual precipitation are key factors controlling 
SOC density and saturated SOC distribution. In addition, LCD showed a similar spatial pattern to SOC seques-
tration potential, influencing the distribution of SOC density and saturated SOC in the study area. We recommend 
LCD as an important factor to consider in saturated SOC and SOC density predictions, especially in the farmland 
ecosystem with a long reclamation history. Accurate mapping SOC sequestration potential and identifying 
environmental factors will help manage land use and promote soil quality evaluation and improve soil carbon 
sequestration in this region.   

1. Introduction 

Climate change has a great impact on human living environment and 
sustainable social and economic development (Mikhaylov et al., 2020). 
Reducing greenhouse gas emissions and increasing carbon sequestration 
can minimize climate change impacts to the society and environment 
(Lal, 2004). Cultivated lands have considerable carbon sequestration 
potential and it can play an irreplaceable role in the global carbon cycle 
(Schulp and Verburg, 2009; Amelung et al., 2020). However, human 
activities have a significant impact on cultivated land ecosystems, 

resulting in large temporal and spatial variations of soil organic carbon 
(SOC) (Ramankutty and Foley, 1999; Cui et al., 2011). Improper land 
management measures, such as reduction of organic matter input, 
frequent tilling, and leaving soils uncovered lead to the net loss of car-
bon in soils and the whole system becomes a carbon source (Sumfleth 
and Duttmann, 2008; Amelung et al., 2020). On the contrary, imple-
menting reasonable management measures such as minimum or no 
tillage can effectively enhance carbon content in cultivated soils (Hon-
toria et al., 1999), thereby this system may become a potential soil 
carbon sink (Farage et al., 2007; Denich et al., 2019; Walling and 
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Vaneeckhaute, 2020). 
The storage and composition of SOC in cultivated lands determine 

SOC levels in these agroecosystems. Reasonably increasing carbon 
storage in cultivated land ecosystems is of great significance for ensuring 
national food security and mitigating global climate change (Lal, 2004; 
Kane and Solutions, 2015; Wang et al., 2019a, 2019b). Saturated SOC of 
cultivated soil represents the maximum stable capacity for carbon 
storage under local environmental conditions (Rogasik et al., 2004; 
Singh and Lal, 2005; Lorenz and Lal, 2005). It is the balance between 
carbon input determined by transforming organic carbon into soils and 
output due to decomposition (Akpa et al., 2016). The SOC sequestration 
potential can be calculated by subtracting the SOC density from the 
saturated SOC (Hu et al., 2022). Therefore, precise and efficient pre-
diction of SOC sequestration potential in cultivated land ecosystems 
across large regions holds practical significance for the sustainable 
management of cultivated land (Rogasik et al., 2004; Novara et al., 
2021). 

There are several methods to estimate the regional or global SOC 
sequestration potential. One is based on long-term field experimental 
data under optimized management condition and be extrapolated to 
regional levels, for example, the studies of Lal (2002) and Lu et al. 
(2009) who estimated SOC sequestration potential of cultivated soils in 
China. The other method is to use simulation based on process-based 
model and scenario hypothesis (Heenan et al., 1995), such as the Car-
bon Exchange between Vegetation, Soil, and Atmosphere (CEVSA) (Yan 
et al., 2007), Century (Kelly et al., 1997), Denitrification-decomposition 
(DNDC) (Li et al., 2016), RothC (Coleman et al., 1997; Li et al., 2016), 
and Erosion-Productivity Impact Calculator (EPIC) (Izaurralde et al., 
2006). Another approach is the Dexter-ratio method that quantifies SOC 
sequestration potential empirically using SOC and clay content, and it 
has been successfully tested in Denmark (Schjønning et al., 2009).The 
aforementioned approaches have their own limitations, especially when 
considering the spatial heterogeneity of soil and the regional climate 
variability. As a result, there may be significant uncertainties in esti-
mating SOC sequestration potential in cultivated lands (Podwojewski 
et al., 2011; Wang et al., 2011; Martin et al., 2011; Dorji et al., 2014). 
For example, the extrapolation of SOC sequestration potential rate from 
the optimized land management condition to other areas may not be 
congruent (Allmaras et al., 2000; Jiang et al., 2014; Novara et al., 2021), 
as it ignores the local SOC sequestration potential influencing factors 
leading to high uncertainty in estimation (Ogle et al., 2003; Qin et al., 
2013; Wang et al., 2019a, 2019b). Most simulation models require 
several inputs and parameters to optimize, and it is rather difficult to 
model output variability and uncertainty in the spatial context (Padarian 
et al., 2019; Wadoux et al., 2020). Moreover, some models perform well 
in some local conditions but may not perform well in other areas (Yan 
et al., 2007). For example, the Dexter-ratio method can only be used to 
identify area with critical low organic matter contents (Schjønning et al., 
2009). The limitations of these models are significant and large-scale 
extrapolation cannot be conducted (Smith et al., 1997). 

Therefore, this study introduced digital soil mapping (DSM) tech-
nology and combined it with long-term field experiment data. DSM is a 
precise, efficient, and economical soil attribute mapping technique that 
can quickly obtain high-precision and high-resolution spatial change 
information of soil attributes (McBratney et al., 2003; Malone et al., 
2011; Adhikari et al., 2013; Wang et al., 2022). Among many DSM 
models, the boosted regression trees (BRT) model does not need prior 
data conversion or outlier removal, can fit complex nonlinear relation-
ships, and can automatically handle the interaction between predictors 
(McCaffrey et al., 2004; Elith et al., 2008). The process of fitting multiple 
trees using BRT can maximally compensate for the weak predictive 
ability of a single tree model, and has stronger predictive ability than 
most traditional model methods. It can handle a large number of prac-
tical problems in model fitting (Martin et al., 2011; Yang et al., 2016; 
Wang et al., 2022). 

In this study, we developed an efficient SOC sequestration potential 

model using a long-term field experiment data and the BRT model, and 
mapped the spatial SOC sequestration potential distribution across the 
cultivated soil in Northeast China. Our study objectives were to: 1) 
accurately map the saturated SOC and SOC density of cultivated soil in 
Northeast China; 2) understand the mechanism of soil carbon seques-
tration and its influencing factors; and 3) objectively evaluate the soil 
carbon sequestration potential of cultivated soil at the regional scale, 
which is the premise for formulating reasonable carbon management 
measures. 

2. Material and methods 

2.1. Study area 

The study area is located in the Northeast China Plain 
(118.53◦–135.05◦ E, 38.43◦–53.33◦ N) (Fig. 1) that includes Songnen 
Plain, Liaohe plain and Sanjiang Plain, and it covers an area of about 
217,000 km2 accounting for 20% of the total cultivated land in China. 
Most part of the region belongs to temperate monsoon climate, but due 
to the high latitude of some regions, the winter is cold and long, the 
summer is warm and short, the snow falls in winter, the evaporation is 
small, the climate is humid, and the lowlands are swampy (cold and 
wet). The mean annual temperature (MAT) ranges from − 4 ◦C to 11 ◦C, 
and the mean annual precipitation (MAP) ranges from 350 mm to 1100 
mm. The terrain is mainly plain and mountainous, with the highest 
elevation of 2665 m and the average elevation of 200 m (Fig. 1). Ac-
cording to the World Reference Base (WRB) for Soil Resources (IUSS 
Working Group WRB, 2006), the dominant soil types are Cambisols 
(52.4%) and Phaeozems (34.1%) both covering >85% of the study area, 
and the remaining area covered by other soil types, Anthrosols (4.1%), 
Gleysols (3.8%), Leptosols (3.7%), and Luvisols (1.0%). 

With the growth of population, the demand for grain and other 
agricultural products increased, and the area of reclamation increased 
year by year. The earliest written record of cultivated land reclamation 
in the Northeast Plain began in the Qing Dynasty of China (1636–1912), 
and gradually moved from the south to the north of China. At present, 
Northeast China is an important grain region in China, mainly planting 
corn, soybean and sugar beet. According to China’s National Bureau of 
statistics (http://www.stats.gov.cn/english/), the total grain output of 
this region in 2021 was 144.456 million tons, accounting for 21.15% of 
the total grain output of the country. The study area presents an ideal 
area to investigate the SOC sequestration potential in cultivated land 
ecosystems. 

2.2. Soil sampling and analysis 

Because of the diverse nature of the study site and vast area covered, 
we applied a purposeful sampling design (Zhu et al., 2008) to identify 
soil sampling locations. We first obtained the quantitative information 
of synergistic environmental factors reflecting the spatial change of SOC. 
The main factors considered were climate (temperature and precipita-
tion), topography (elevation, slope gradient, slope aspect, etc.) and soil 
reclamation history. Through fuzzy c-means clustering (FCM) the 
environmental factors were clustered to obtain an optimum combina-
tion of environmental factors corresponding to the spatial change 
pattern of soil organic carbon. We obtained 27 different clusters or 
environmental-landscape units, and selected 8–10 sampling points in 
each unit to collect soil samples. Finally, a total of 197 sampling sites 
were identified, and from each site one kilogram of soil sample was 
collected from the topsoil (0-20 cm) depth in 2013. The geographic 
coordinates of each site were recorded using a handheld global posi-
tioning system (Garmin, eTrex221 x, America). A separate core sample 
was collected for bulk density (BD) estimation with three replicates. Soil 
samples were sent to the Liaoning Key Laboratory of agricultural re-
sources and environment, Shenyang Agricultural University for labora-
tory analysis. SOC content was determined using wet oxidation method 
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(Nelson and Sommers, 1996), BD by oven-dry method, pH using a pH 
meter (Ohaus, AB33pH, USA), and soil texture by hydrometer method 
(McKeague, 1978). In addition, because the soil cores were not collected 
at 37 sampling sites leading those sampling sites missing BD data, which 
were estimated according the Pedo-Transfer Functions (PTFs) (Wang 
et al., 2019a, 2019b). The specific formula is as follows: 

BD = 1.52 − 0.08×
̅̅̅̅̅̅̅̅̅̅
SOC

√ (
R2 = 0.74, p < 0.001

)
(1)  

2.3. Environmental factors 

2.3.1. Topographic factors 
A digital elevation model (DEM) with a 90-m grid resolution was 

downloaded from the Geospatial Data Cloud site of the Chinese Acad-
emy of Sciences (http://www.gscloud.cn). Five topographic factors, 
namely elevation, slope gradient (SG), slope aspect (SA), plan curvature 
(PLC) and profile curvature (PRC) were derived from the DEM in ArcGIS 
10.2 (ESRI Inc., USA). Topographic wetness index (TWI) was calculated 
in System for Automated Geoscientific Analyses (SAGA GIS) (Conrad 
et al., 2015). Elevation is the height difference between a certain place 
and the sea level. SG is the steepness and gentleness of the surface unit, 
which is the deviation of a topographic surface from the horizontal 
plane. SG directly affects the distribution of surface material and energy, 
the development of soil, the distribution of vegetation and the type of 
land use (Bae and Ryu, 2015). SA affects the flow direction of surface 
runoff and the distribution of surface light and heat resources (Muñoz- 
Rojas et al., 2015). Curvature can be used to characterize the movement 
of surface materials and also affect the distribution of soil attributes 
(Conforti et al., 2016). TWI can reveal the soil attributes and spatial 
distribution under different landscapes through the quantitative 

reflection of soil water storage and drainage (Kirkby, 1999; Zhu et al., 
2008). These topographic factors are known to influence the spatial 
distribution of soil attributes including SOC distribution (Fissore et al., 
2017; Guo et al., 2019; Zhang et al., 2021). 

2.3.2. Climatic factors 
A 30-yr annual average of MAT and MAP data were downloaded 

from China Meteorological Data Service Center (http://data.cma. 
cn/en), and were interpolated using inverse distance weighting to 
generate continue maps. The downloaded climate factors (MAT and 
MAP) were 1-km resolution raster data, which were resampled to a grid 
of 90 m to be used in this study. High altitude areas have higher MAP 
and lower MAT, with opposite trends in MAP and MAT. 

2.3.3. Data on cultivation history 
In the past 300 years, Northeast China has been a typical area where 

land use has changed a lot, especially through land reclamation (Wang 
et al., 2019a, 2019b). Due to changes in political power, policies and 
migration, the land development has undergone several major changes 
and the reclamation boundary has been moving northward. This has 
created a great impact on social and economic development of the whole 
region since the last 300 years. To quantify the influence of cultivation 
history on SOC distribution (Wang et al., 2022), we combined the 
detailed historical data on land reclamation and applied a factor 
correction method to update and delimit the lengths of cultivation data 
(LCD) of Ramankutty and Foley (1999). The updated LCD was further 
divided into seven time periods, namely 0–10 years (T1), 10–30 years 
(T2), 30–70 years (T3), 70–120 years (T4), 120–200 years (T5), 
200–300 years (T6) and >300 years (T7). The time period LCD were 
later converted into integer values 1, 2, 3, 4, 5, 6 and 7, respectively, to 

Fig. 1. Location of the study area and 197 sampling sites superimposed on a 90-m resolution digital elevation model.  
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facilitate modeling. The entire procedure to derive the LCD is docu-
mented in Wang et al. (2019a, 2019b). 

2.4. Prediction model 

Prediction model was built using Boosted regression tree (BRT) al-
gorithms which have been widely used in soil attributes predictions with 
promising results (Martin et al., 2011; Yang et al., 2016; Wang et al., 
2018). BRT was proposed by Elith et al. (2008), which has a good 
interpretation and prediction characteristics, such as it can handle 
nonlinear relationship between variables and is not typically affected by 
missing values (McCaffrey et al., 2004). BRT combines regression tree 
and boosting methods (Martin et al., 2011). Regression tree part com-
bines dependent variables and their predictors with recursive binary 
splits (Yang et al., 2016) while boosting combines multiple simple 
models and improve the prediction ability (Wang et al., 2022). This 
method does not need prior data conversion or outlier removal, can fit 
complex nonlinear relationships, and can automatically deal with the 
interaction between prediction factors (Elith et al., 2008). It has stronger 
prediction ability than most traditional tree-based models and can 
handle a large number of practical problems in model fitting (McCaffrey 
et al., 2004; Martin et al., 2011; Yang et al., 2016). 

The BRT model requires to set four model parameters, namely 
learning rate (LR), tree complexity (TC), bagging fraction (BF), and 
number of trees (NT). LR determines the relative contribution rate of a 
single decision tree during model building (Yang et al., 2016). TC con-
trols the number of branch nodes of a single decision tree or the number 
of splits, representing the depth of the tree and controls interaction 
between prediction variables (Wang et al., 2018). BF represents the 
proportion of data set be used in the model, that is, the proportion of 
random observations used to obtain a single decision tree in the total 
sample data set, which is generally recommended to be 0.5–0.75 
(McCaffrey et al., 2004). NT is obtained by the best fitting between LR 
and TC (Yang et al., 2016). Finally, we set LR, TC, BF, and NT to 0.025, 9, 
0.55, and 1500 in predicting saturated SOC, respectively. In predicting 
SOC density, LR, TC, BF, and NT were set to 0.025, 9, 0.65, and 1750, 
respectively. 

2.5. Calculation of saturated soil organic carbon 

The calculation of soil saturated SOC follows the method proposed 
by Qin and Huang (2010), which used long-term field experimental data 
from 95 cultivated lands worldwide to establish a comprehensive test 
database. The database included information about the geography, 
climate (temperature and precipitation), soil attributes including SOC 
and management information. They used Levenberg marquardt (LM) 
and universal global optimization (UGO) algorithms to establish the 
saturated SOC model. Among 95 long-term field experimental data, 76 
long-term field experimental data from all over the world except China 
were used for correlation analysis and model parameter determination, 
and the other 19 long-term field experimental data from China were 
used for model validation. The calculation formula of saturated SOC was 
as follows: 

SaturatedSOC =140.5× e(− 0.021×MAT) − 98.8× e(− 0.42×MP) − 39.6× e(− 0.1×CL)

− 4.1× pH − 27.7
(2) 

(R2 = 0.58, n = 76) 
where saturated SOC is the soil organic carbon sequestration po-

tential; MAT is the mean average temperature (◦C); MP refers to the 
mean annual water supply (100 mm, paddy field is the sum of mean 
annual precipitation and mean annual irrigation; dry farm is only the 
mean annual precipitation); CL is the soil clay content (%). The model 
coefficient is determined by 76 foreign long-term field experimental 
data. 

2.6. Calculation of soil organic carbon density 

Soil organic carbon (SOC) density was calculated according to Eq. 3: 

SOC density = SOC×BD×D×(1 − F) ÷ 10 (3)  

where SOC density is soil organic carbon density (t ha− 1); SOC is soil 
organic carbon content (g kg− 1); D represents the thickness of the soil 
layer (cm), and this study focused on the topsoil (20 cm) with a sampling 
depth of 10 cm. F represents the fraction of >2 mm fragments in soil; BD 
represents soil bulk density (g cm− 3). 

2.7. Model validation 

The BRT model performance was evaluated with mean absolute error 
(MAE), root mean square error (RMSE), coefficient of determination 
(R2) and Lin’s concordance correlation coefficient (LCCC) (Lin, 1989) 
indices (Eq. 4–7) using a 10-fold cross-validation technique. In the R 
environment (R Development Core Team, 2013), the BRT model comes 
with a ten fold cross validation technology, which can be implemented 
and verified during the BRT model construction process (Elith et al., 
2008). The saturated SOC model was verified by the long-term field 
experimental data of 19 stations in China with MAE, RMSE, and R2. The 
calculation formula are as follows: 

MAE =
1
n
∑n

i=1
|Xi − Yi| (4)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Xi − Yi)

2

√

(5)  

R2 =

∑n

i=1
(Xi − Yi)

2

∑n

i=1
(Yi − Yi)

2
(6)  

LCCC =
2r∂X∂Y

∂2
X + ∂2

Y + (Y − X)2 (7)  

where Xi and Yi are the observed and predicted saturated SOC and SOC 
density values at site i, respectively; n is the number of samples; ∂X and 
∂Y are the variances of observed and predicted values; and r is the 
Pearson correlation coefficient between the observed and predicted 
values. 

3. Results 

3.1. Exploratory data analysis 

The summary statistics of saturated SOC, SOC density and 9 envi-
ronmental variables at sampling locations are shown in Table 1. Satu-
rated SOC ranged from 35.30 t ha− 1 to 89.04 t ha− 1, with an average of 
65.87 t ha− 1. The average SOC density was 46.8 t ha− 1. The skewness 
coefficient of saturated SOC and SOC density were − 0.38 t ha− 1 and 
0.26 t ha− 1, respectively. The dataset presents a non-generalized skew 
distribution. 

The linear relationship between saturated SOC and SOC density with 
environmental variables is shown in Table S1. Elevation (0.39 vs. 0.32), 
TWI (0.33 vs. 0.25) and MAP (0.46 vs. 0.17) were significantly posi-
tively correlated with saturated SOC and SOC density. Correspondingly, 
saturated SOC and SOC density were significantly negatively correlated 
with SG (− 0.17 vs. - 0.16), MAT (− 0.77 vs. - 0.68) and LCD (− 0.59 vs. - 
0.62). In addition, multi-collinearity among the environmental factors 
was checked with variance inflation factor (VIF). The results showed 
that the VIF of each factor was <3, indicating there was no 
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multicollinearity problem (Table S2). 

3.2. Performance evaluation and uncertainty 

RMSE, MAE and R2 were selected to test the accuracy of the saturated 
SOC model simulation, which were 7.0 t ha− 1, 5.7 t ha− 1 and 0.74, 
respectively. The validation results showed that the saturated SOC 
model could better simulate the saturated SOC of cultivated land soil in 
China based on local climate and soil factors. The regression slope and 
intercept between saturated SOC simulation value and observation 
value were 0.82 and 5.2 t ha− 1, respectively. 

The summary statistics of the validation indices based on 100 iter-
ations of the BRT model to predict saturated SOC and SOC density are 
shown in Table 2. The model had a lower systematic MAE (3.63 t ha− 1 

vs. 4.40 t ha− 1) and RMSE (4.99 t ha− 1 vs. 5.68 t ha− 1) but a higher R2 

(0.79 vs. 0.85) and LCCC (0.90 vs. 0.92) to predict saturated SOC and 
SOC density, respectively. The R2 value ranged between 0.73 and 0.82 
for saturated SOC, and between 0.82 and 0.86 for SOC density predic-
tion. Similarly, LCCC ranged from 0.88 to 0.90 for saturated SOC and 
from 0.91 to 0.92 for SOC density predictions. Results showed that the 
BRT model was able to explain nearly 80% and 85% of the saturated 
SOC and SOC density variations in the study area, respectively. 

The uncertainty in the model prediction was represented by the 
standard deviation (SD) generated by 100 iterations of the BRT model 
(Fig. 2c and d). The model had an average SDs of 0.64 and 0.97 t ha− 1, 
respectively, in predicting saturated SOC and SOC density confirming a 
robust prediction. In addition, we also mapped the histograms of RMSE 
for 100 iterations of the BRT model (Fig. 3). The mean RMSE for satu-
rated SOC and SOC density were 4.99 t ha− 1 and 5.68 t ha− 1, and the 
RMSE for each BRT model run was distributed on the mean RMSE, 
indicating that the BRT model has robust performance in predicting 
saturated SOC and SOC density. Although other sources of uncertainty 
such as sampling error, laboratory analysis error and model error that 
might have reduced the model performance, quantification of such un-
certainty was not included in the present study. 

3.3. Relative importance of environment factors 

The average relative importance (RI) of environmental factors in 
predicting topsoil saturated SOC and SOC density was calculated 
through 100 BRT model iterations, and the RI values were standardized 
to 100% (Fig. 4). We found MAT, MAP, elevation, LCD and TWI (ac-
counting for 81.6% of RI) as the main environmental factors affecting 
the spatial variability of topsoil saturated SOC, and MAT, MAP, TWI, 
elevation, SG and LCD that accounted for 83.6% of RI for SOC density in 
Northeast China. It was worth noting that climatic factors (MAT and 
MAP) played an important role in the spatial variation of saturated SOC 
and SOC density. 

3.4. Spatial distribution of SOC sequestration potential 

Predicted map of saturated SOC and SOC density in the study area 
are shown in Fig. 2a and b. Both saturated SOC and SOC density maps 
had similar spatial distribution characteristics- predicted values gradu-
ally decreased from southwest to northeast. The average of saturated 
SOC and SOC density were 68.28 t ha− 1 and 49.70 t ha− 1, respectively. 

Fig. 5a is the SOC sequestration potential map derived as a difference 
between the saturated SOC and SOC density map. SOC sequestration 
potential refers to the maximum capacity of soil to increase SOC under 
certain environmental conditions, which is jointly affected by human 
activities, soil characteristics and natural environment. Average SOC 
sequestration potential in the study area was 18.47 t ha− 1 with a SD of 
5.57 t ha− 1. The SOC sequestration potential values were mainly 
concentrated in three different levels: 10–15 t ha− 1, 15–20 t ha− 1 and 
20–25 t ha− 1, accounting for about 80.4% of the total area (Fig. 5b). We 
found that the spatial distribution pattern of SOC sequestration potential 
was similar to the LCD (Fig. S1), and the SCO sequestration potential was 
mainly concentrated at three LCD levels: T4 (70–120 years), T5 
(120–200 years) and T6 (200–300 years) (Table 3). In order to further 
reveal the spatial distribution characteristics of SOC sequestration po-
tential in the region, we summarized the SOC sequestration potential 
under different soil types (Table 4). The results showed that the SOC 
sequestration potential of Cambisols and Phaeozems was the largest, 

Table 1 
Summary statistics of saturated SOC, SOC density and environmental variables at sampling sites.  

Property Unit Min. Max. Mean SD Skewness Kurtosis 

Saturated SOC t ha− 1 35.30 89.04 65.87 11.72 − 0.38 − 0.54 
SOC density t ha− 1 16.15 83.22 46.81 14.50 0.26 − 0.63 
Elevation m 2.00 673.00 207.57 128.66 1.03 1.39 
SG degree 0.00 17.87 1.90 2.40 3.00 12.50 
SA degree 0.00 358.26 163.63 103.84 0.10 − 1.14 
PRC  − 0.28 0.15 0.00 0.04 − 1.62 13.81 
PLC  − 0.15 0.24 0.00 0.04 0.93 9.03 
TWI  6.86 12.99 10.57 1.19 − 0.29 − 0.31 
MAT degree Celsius − 0.30 10.60 5.34 2.33 − 0.02 − 0.73 
MAP mm 409.30 1094.40 593.22 130.81 1.35 2.06 

Notes: SOC, soil organic carbon; SG, slope gradient; SA, slope aspect; PRC, profile curvature; PLC, plan curvature; TWI, topographic wetness index; MAT, mean annual 
temperature; MAP, mean annual precipitation; SD, standard deviation;Min., minimum value; Max., maximum value. 

Table 2 
Predictive quality of the boosted regression tree (BRT) models for saturated SOC and SOC density.  

Property Index Min. 1st quartile Median Mean 3rd quartile Max. 

Saturated SOC MAE 3.51 3.59 3.63 3.63 3.66 3.82 
RMSE 4.84 4.93 4.98 4.99 5.03 5.31 
R2 0.73 0.78 0.80 0.79 0.81 0.82 
LCCC 0.88 0.90 0.90 0.90 0.90 0.90 

SOC density 

MAE 4.33 4.36 4.38 4.40 4.45 4.47 
RMSE 5.60 5.61 5.68 5.68 5.72 5.81 
R2 0.82 0.84 0.85 0.85 0.85 0.86 
LCCC 0.91 0.92 0.92 0.92 0.92 0.92 

Notes: SOC, soil organic carbon; MAE, mean absolute error; RMSE, root mean squared error; R2, coefficient of determination; LCCC, Lin’s concordance correlation 
coefficient; Min., minimum value; Max., maximum value. 
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accounting for 52.5% and 34.9% of the total SOC sequestration potential 
in the study area, respectively. The corresponding SOC sequestration 
potential was 29.9 × 107 t and 19.9 × 107 t, respectively. 

4. Discussion 

4.1. Role of environmental factors in saturated SOC 

Among all the environmental factors, MAT and MAP were identified 
as the key variables affecting the spatial distribution of saturated SOC in 

the study area (Fig. 4), as also reported in previous studies been obtained 
(Giardina and Ryan, 2000; Fantappiè et al., 2011; Adhikari et al., 2019). 
Changes in climatic factors influence SOC levels through precipitation, 
temperature and atmospheric CO2 concentration, (Wiesmeier et al., 
2012; Wang et al., 2019a, 2019b; Mikhaylov et al., 2020) and subse-
quently influenced the spatial variations in saturated SOC. Availability 
of water and heat control the nature and quantity of plant residues, an 
important source of soil organic matter (Lal, 2004), and it impacts mi-
crobial population, their activity and biomass (Luo et al., 2017). The rise 
of temperature would cause drought, exacerbate transpiration and 

Fig. 2. Standard deviation (SD) and spatial distribution of the saturated soil organic carbon (t ha− 1) (a,c) and the soil organic carbon density (t ha− 1) (b,d) predicted 
from 100 runs of the boosted regression trees (BRT) model. 
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evaporation, promoting the release of SOC (Fantappiè et al., 2011; 
Aguilera et al., 2013; Wang et al., 2018; Reyes Rojas et al., 2018). 
Similarly, too high or too low water would limit soil respiration and the 
release of SOC. In Northeast China, temperature and precipitation affect 
the spatial differentiation of saturated SOC by changing crop produc-
tivity and litter decomposition (Wang et al., 2019a, 2019b). 

As one of the five major soil forming factors, topographic factors had 
a vital impact on the spatial distribution of soil moisture, temperature 
conditions and other soil forming processes (Webster et al., 2011; Brus 
et al., 2016). Therefore, the spatial variability of soil properties was 
closely related to topographic factors (McBratney et al., 2003; Adhikari 
et al., 2013; Yang et al., 2016). We found elevation as the most impor-
tant topographic factors in saturated SOC prediction, followed by TWI, 
SG and SA, while PRC and PLC had the weakest influence. The study 
area is highly variable in terms of topography, and elevation could form 
different hydrothermal conditions or micro-climatic pockets, which 
indirectly affected microbial activity, resulting in the variation of satu-
rated SOC. Similar conclusion has been verified by Wiesmeier et al. 
(2014a, 2014b) and Akpa et al. (2016) in their studies. TWI could reflect 
the influence of topography on soil water distribution, and might have 

influenced the spatial variation of saturated SOC in the region (Allmaras 
et al., 2000). SG had a negative effect on the spatial distribution of 
saturated SOC, which could be attributed to the low vegetation biomass 
and limited retention of precipitation on the steep slope (Novara et al., 
2021). 

In cultivated land ecosystems, a higher correlation of saturated SOC 
and SOC density with LCD was expected (Bedard-Haughn et al., 2006; 
Wang et al., 2017; Wang et al., 2022). We found LCD as one of the main 
factors affecting saturated SOC in the study area. Tillage measures had a 
positive impact on SOC, especially on microorganisms, which could 
explain the higher RI of LCD in saturated SOC prediction (Ramankutty 
and Foley, 1999). Once the natural soil is reclaimed and converted to a 
cultivated land, surface vegetation and soil microbial community 
changes accelerating a faster SOC decomposition during the early stage 
of reclamation. After that, a gradual downward trend in decomposition 
is expected with the increase of reclamation years (Post and Kwon, 
2000; Jiang et al., 2014; Xu et al., 2020). Therefore, we proposed to use 
LCD in the spatial prediction of saturated SOC and SOC density, espe-
cially in areas with a long farming history. 

Fig. 3. Histogram showing the root mean square error (RMSE) response to 100 iterations of BRT model for saturated soil organic carbon (a) and the soil organic 
carbon density (b) predictions (b). 

Fig. 4. Relative importance of each predictor in predicting a) saturated soil organic carbon and b) soil organic carbon density using the boosted regression tree (BRT) 
model. SG, slope gradient; SA, slope aspect; PRC, profile curvature; PLC, plan curvature; TWI, topographic wetness index; MAT, mean annual temperature; MAP, 
mean annual precipitation. 
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Fig. 5. Spatial variation map (a) and percentages map (b) of soil organic carbon sequestration potential in the future.  

Table 3 
Soil organic carbon sequestration potential under different Lengths of cultivation.  

Lengths of cultivation Area (km2) Saturated SOC SOC density SOC sequestration potential 
(t) 

Mean ± SD 
(t ha− 1) 

Summary 
(t) 

Mean ± SD 
(t ha− 1) 

Summary 
(t) 

T1 14,001.37 69.6 ± 25.17 10.70 × 107 57.69 ± 21.69 8.88 × 107 1.82 × 107 

T2 7850.37 64.12 ± 21.67 5.63 × 107 51.06 ± 18.94 4.60 × 107 1.03 × 107 

T3 37,871.08 72.3 ± 20.23 29.03 × 107 59.78 ± 18.14 24.04 × 107 4.99 × 107 

T4 131,269.38 65.97 ± 18.58 91.90 × 107 48.16 ± 16.02 66.96 × 107 24.94 × 107 

T5 50,297.47 63.42 ± 17.53 33.14 × 107 44.54 ± 16.01 23.18 × 107 9.96 × 107 

T6 53,196.65 54.33 ± 16.1 30.55 × 107 34.78 ± 11.98 19.40 × 107 11.15 × 107 

T7 15,885.68 49.84 ± 12.67 8.34 × 107 31.26 ± 9.37 5.23 × 107 3.11 × 107 

Total 310,372.00 – 209.29 × 107 – 152.29 × 107 57.00 × 107 

Note: SOC, soil organic carbon; SD, standard deviation; T1, 0–10 years; T2, 10–30 years; T3, 30–70 years; T4, 70–120 years; T5, 120–200 years; T6, 200–300 years; T7, 
above 300 years. 

S. Wang et al.                                                                                                                                                                                                                                   



Geoderma Regional 33 (2023) e00655

9

4.2. Estimates of SOC sequestration potential and its distribution 

The map of saturated SOC and SOC density showed a similar spatial 
distribution pattern (Fig. 2a and b), gradually decreasing saturated SOC 
and SOC density from southeast to northwest. The larger saturated SOC 
and SOC density were usually concentrated in the north of the study area 
where the main soil type was Phaeozems, an area with the most abun-
dant SOM in China. Once these areas are disturbed by human activities 
and reclaimed into cultivated land, the organic carbon in the soil will be 
lost rapidly. In Fig. S1, we could see that the LCD showed an opposite 
spatial distribution pattern with saturated SOC and SOC density (Fig. 2a 
and b). In areas with long reclamation years, saturated SOC and SOC 
density were usually low. As reported in Wang et al. (2019a, 2019b), this 
study further verified the usefulness of LCD to represent the degree of 
human interference in cultivated land, especially in areas with long 
farming history. We found that saturated SOC and SOC density 
decreased gradually with the increase of reclamation years. Although 
the value of saturated SOC should not change with the change of LCD in 
theory, it was difficult to reach the theoretical maximum value with the 
influence of human activities. It was only a dynamic balance, which was 
different from the saturated SOC of natural soil. Therefore, human ac-
tivities were the main inducement for the reduction of SOC in cultivated 
land soil. In Wafangdian District of Dalian, Wang et al. (2018) reached a 
similar conclusion. They concluded that human activities were the main 
reason for the reduction of topsoil SOC stocks in the main agricultural 
region that supplied agricultural products to annex cities. Similar con-
clusions were reached in Seoul Forest Park, Seoul, Republic of Korea by 
Bae and Ryu (2015). 

Among all soil types, Camposols and Phaeozems were the main soil 
types in the region (Table 4). The saturated SOC and SOC density under 
the Camposols were 105.14 × 107 t and 75.21 × 107 t, accounting for 
50.24% and 49.39% of all saturated SOC and SOC density, respectively. 
In the Northeast cultivated land ecosystem, the variation of SOM in the 
Camposols was large, and the change of soil erosion rate caused by 
human activities and tillage were the main reasons (Liu et al., 2006). 
Phaeozems was mainly distributed in Heilongjiang provinces and Jilin 
provinces, which was the most fertile land and the largest commercial 
grain production base in China (Yu et al., 2006). The areas with 
Phaeozems are characterized by warm and rainy summer, with lush 
vegetative growth causing more organic matter entering the soil (Zhang 
et al., 2016). Correspondingly, the cold winter makes the soil frozen and 
thus the microbial decomposition is inhibited, leading to the accumu-
lation of organic matter in the soil mainly in the form of humus (Yu 
et al., 2006). Therefore, a thicker humus layer is formed in this area, 
with the humus content gradually decreasing from the top to the bottom 
of the soil profile. Under natural conditions, the humus layer of 
Phaeozems could be up to 1 m thick, with rich nutrient content and high 
fertility level. However, due to long-term reclamation and over- 
utilization, and climate change, Phaeozems became thinner and 

harder, threatening the sustainable development of agriculture (Liu 
et al., 2006; Ou et al., 2017). Therefore, in order to manage these soils 
accurately and reasonably appropriate land management practice pol-
icies should be taken. 

In addition, we found that the SOC sequestration potential had 
similar spatial distribution characteristics with the LCD. The largest SOC 
sequestration potential was usually concentrated in the area with the 
longest LCD period, which was mainly distributed in the central part of 
the study region (Fig. 5). With the increase of reclamation years, the SOC 
content in soil showed a decreased trend. In cultivated soil, the effects of 
tillage and other agricultural activities would affect soil water status and 
microbial activity (Ramankutty and Foley, 1999), leading to the 
destruction of physical protective layer and accelerating organic matter 
decomposition. Due to the increase of microbial activity, increasing soil 
respiration, SOC decomposition rate and SOC mineralization rate de-
creases SOM content in cultivated soils (Post and Kwon, 2000; Jiang 
et al., 2014). The SOC sequestration potential of different LCD was 1.03 
× 107 t ha− 1 to 24.94 × 107 t ha− 1, while the SOC sequestration po-
tential of T2 was the lowest and T4 was the highest (Table 3). We found 
that with the increase of LCD, the SOC sequestration potential increased 
first and then decreased. Our analysis showed that T4 (70–120 years) 
was the stage before and after the establishment of new China. To date, a 
large number of forest land and grassland has been reclaimed for 
cultivated land, and the corresponding supplement to organic sub-
stances was relatively small, resulting in a large loss of SOC and the 
largest SOC sequestration potential. With the implementation of con-
servation tillage and black land protection policies in recent years, this 
trend has been effectively minimized (Zhang et al., 2016; Ou et al., 
2017). 

4.3. Model performance 

This study used an empirical formula based on long-term field 
experimental data combined with machine learning algorithms—BRT 
model to predict SOC sequestration potential in topsoil cultivated land 
ecosystems in Northeast China. The calculation of SOC sequestration 
potential was based on the difference between saturated SOC and SOC 
density. The BRT model has high predictive performance in predicting 
saturated SOC and SOC density, which explains 79% and 85% of the 
spatial variations of saturated SOC and SOC density within the region 
(Table 2). Traditional SOC sequestration potential estimation was often 
based on a large amount of long-term field experimental data, which 
were used to estimate carbon sequestration rate under one or several 
management measures, then extrapolating it to estimate regional or 
global-scale SOC sequestration potentials (Heenan et al., 1995; Mishra 
and Riley, 2012). These methods often ignore the impact of environ-
mental factors on SOC sequestration potential, leading to increased 
uncertainty in potential estimation (Qin and Huang, 2010). On the other 
hand, our study introduces a DSM technology that can reduce the 

Table 4 
Soil organic carbon sequestration potential under different soil type.  

Soil type Area (km2) Saturated SOC SOC density SOC sequestration potential 
(t) 

Mean ± SD 
(t ha− 1) 

Summary 
(t) 

Mean ± SD 
(t ha− 1) 

Summary 
(t) 

Andosols 54.51 68.1 ± 30.88 0.04 × 107 56.55 ± 26.47 0.03 × 107 0.01 × 107 

Anthrosols 13,013.03 62.93 ± 15.38 8.40 × 107 45.83 ± 13.05 6.09 × 107 2.31 × 107 

Luvisols 3144.21 68.71 ± 22.33 2.3 × 107 53.76 ± 19.64 1.78 × 107 0.52 × 107 

Cambisols 162,720.47 61.13 ± 20.72 105.14 × 107 44.28 ± 18.57 75.21 × 107 29.94 × 107 

Gleysols 11,888.15 70.68 ± 22.66 8.99 × 107 58.74 ± 20.28 7.49 × 107 1.51 × 107 

Solonchaks 1437.4 54.2 ± 19.22 0.85 × 107 34.56 ± 12.84 0.54 × 107 0.31 × 107 

Histosols 533.71 66.94 ± 21.72 0.38 × 107 52.62 ± 19.54 0.30 × 107 0.08 × 107 

Phaeozems 106,000.64 70.06 ± 14.97 76.38 × 107 52.02 ± 14.9 56.48 × 107 19.90 × 107 

Leptosols 11,579.88 54.97 ± 17.49 6.80 × 107 35.61 ± 12.87 4.38 × 107 2.42 × 107 

Total 310,372.00 – 209.29 × 107 – 152.29 × 107 57 0.00 × 107 

Note: SOC, soil organic carbon; SD, standard deviation. 
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quantification uncertainty. Chen et al. (2018) also used the same strat-
egy to predict the topsoil (0–30 cm) and subsoil (30–50 cm) of the SOC 
sequestration potential in different ecosystems using the Hassink equa-
tion and the regression kriging method in France. Our study focused on 
cultivated land ecosystems, using long-term agricultural experimental 
data to estimate saturated SOC, and ultimately obtain the topsoil SOC 
sequestration potential in Northeast China. 

4.4. Uncertainties in the present study 

Although the extrapolation algorithm based on long-term field 
experimental data and BRT model well predicted saturated SOC and SOC 
density, there were some uncertainties mainly coming from five 
different sources: 1) the saturated SOC model was obtained from Qin 
and Huang (2010), which used 76 long-term field experimental data 
covering most agricultural areas in the world to build the model. There 
might be some systematic differences between experimental conditions, 
research methods, and data quality reported in the literature. Although 
some measures were taken to improve the data quality, there were still 
some uncertainties; 2) the spatial climate data were obtained from 
interpolation of meteorological station data, which does not truly 
represent the actual meteorological conditions; 3) due to the lack of 
annual irrigation data in Northeast China, only the MAP rather than the 
annual water supply was used to calculate saturated SOC, which might 
lead to the underestimation of saturated SOC; 4) although the 90 m 
spatial resolution is relatively fine, it still cannot capture the terrain 
details in the area with large terrain fluctuation, which would inevitably 
lead to the deviation of saturated SOC simulation; 5) due to the lack of 
bulk density data at some sampling points, this study used the Pedo- 
Transfer Functions (PTFs) to complete the bulk density data at these 
points. Because the data were not from the actual measurement, it might 
cause the error of SOC density simulation. 

5. Conclusions 

Combining the extrapolation algorithm, long-term field experi-
mental data, and a BRT model, we predicted saturated SOC, SOC den-
sity, and SOC sequestration potential of cultivated topsoil (0–20 cm) in 
Northeast China. The model presented lower systematic MAE and RMSE, 
higher R2 and LCCC. With terrain, climate and LCD as predictors, the 
models had high prediction performance and explained the spatial 
variation of 81% saturated SOC and 85% SOC density, respectively. 
MAT and MAP were the most important environmental factors affecting 
saturated SOC and SOC density. In addition, LCD was an important 
environmental factor. With the increase of reclamation period, saturated 
SOC, SOC density and SOC sequestration potential all increased first and 
then decreased. The spatial distribution pattern of saturated SOC and 
SOC density was similar, and gradually decreased from southeast to 
northwest. SOC sequestration potential had similar spatial distribution 
characteristics to the LCD. At present, due to over reclamation and uti-
lization, climate change and other factors, the topsoil of cultivated land 
has become thinner and harder posing challenges to sustainable agri-
cultural development. Scientific and accurate spatial data of SOC 
sequestration potential is the premise for formulating reasonable carbon 
management measures. Similarly, accurately predicting the spatial dis-
tribution of topsoil SOC sequestration potential and identifying its 
controlling factors are of great significance in studying the regional 
carbon cycle, soil fertility maintenance, which will facilitate decision- 
making for cultivated land ecosystem environmental planning in the 
region. 
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