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Abstract: Forest ecosystems play an important role in regional carbon and nitrogen cycling. 
Accurate and effective monitoring of their soil organic carbon (SOC) and soil total nitrogen (STN) 
stocks provides important information for soil quality assessment, sustainable forestry 
management and climate change policy making. In this study, a geographical weighted regression 
(GWR) model, a multiple stepwise regression (MLSR) model, and a boosted regression trees (BRT) 
model were compared to obtain the best prediction of SOC and STN stocks of the forest 
ecosystems in northeastern China. Five-hundred and thirteen topsoil (0–30 cm) samples (10.32 kg 
m-2 (±0.53) for SOC, 1.21kg m-2 (±0.32) for STN), and 9 remotely-sensed environmental variables 
were collected and used for the model development and verification. By comparing with 
independent verification data, the best model (BRT) achieved R2= 0.56 and root mean square error 
(RMSE) = 00.85 kg m-2 for SOC stocks, R2= 0.51 and RMSE= 0.22 kg m-2 for STN stocks. Of all the 
remotely-sensed environment variables, soil adjusted vegetation index (SAVI) and normalized 
difference vegetation index (NDVI) are of the highest relative importance in predicting SOC and 
STN stocks. The spatial distribution of the predicted SOC and STN stocks gradually decreased 
from northeast to southwest. This study provides an attempt to rapidly predict SOC and STN 
stocks in the dense vegetation covered area. The results can help evaluate soil quality and facilitate 
land policy and regulation making by the government in the region. 

Keywords: soil organic carbon stocks; soil total nitrogen stocks; remote sensing data; spatial 
variation; digital soil mapping 

 

1. Introduction 

Carbon and nitrogen are two important chemical elements to maintain the structure and 
functioning of forest ecosystems [1]. Their cycling processes and interactions play a key role in 
regulating plant productivity, carbon sequestration potential, and stability of ecosystems [2]. 
Forests are a main component of the terrestrial biosphere, and store large amounts of carbon and 
nitrogen in soils [3]. Forest soil carbon stocks account for about 73% of global soil carbon, and have 
3.5 × 105 - 5.5 × 105 Tg of nitrogen [1]. Their storage and dynamical changes are of a great 
significance to forest productivity, global carbon and nitrogen balance and global climate change [4]. 
Climate can affect carbon and nitrogen changes in forest soils [5], plant distribution and 
productivity [6], and the change in soil organic carbon (SOC) and soil total nitrogen (STN) by 
changing the input of aboveground and underground litter [7]. Furthermore, climate can affect the 
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decomposition and transformation of organic carbon by changing soil temperature and water status, 
affecting greenhouse gas emissions [8], in turn impacting our climate. Mapping soil carbon and 
nitrogen pools have become one of the core research topics in soil science, ecology and global 
climate change. 

Natural ecological processes control the spatial heterogeneity of SOC and STN stocks in forest 
ecosystems [9]. To date, it is still a challenge to accurately predict the spatial distribution of SOC 
and STN stocks at regional scales. It is not realistic to use intensive sampling methods to estimate 
SOC and STN stocks for a large region. A simple and low-cost digital soil mapping (DSM) 
technology, which can estimate the distribution of regional SOC and STN stocks based on a small 
amount of sampling data and environmental variables is desirable [10].  

DSM is based on the principle that natural soil forming factors control soil formation, which 
include climate, biota, time, topography and parent material. Jenny [11] further elaborated this 
principle and laid a foundation for the development of DSM. In forest ecosystems, all SOC comes 
from plants [12] and can be classified into two main sources [13]. First, soil organic matter is formed 
by humification of the dead remains of roots or branches. Second, root exudates or separations 
released to rhizosphere during plant growth, such as root hairs and metabolized fine roots. Soil 
nitrogen mainly comes from litters and changes through nitrification and other processes. Therefore, 
plants in forest ecosystems are closely linked to SOC and STN stocks and their changes. Vegetation 
has been identified as the most important environmental variable that affects the spatial 
distribution of SOC and STN in DSM research, especially in the areas with good and dense 
vegetation coverage [14]. Based on remote sensing data, vegetation type map, vegetation cover 
index, biomass map, SOC and STN stocks can be mapped using various DSM methods [15]. For 
instance, Landsat, WorldView, SPOT, KOMPSAT, and IKONOS images have been effectively used 
for this purpose, for different soil layers [16]. In homogeneous or bare soils, simple linear regression 
models and remote sensing band values are usually used to estimate SOC and STN stocks across 
space [12,17]. To date, various DSM techniques have been used for the mapping, such as multiple 
stepwise regression (MLSR) model [13], regression Kriging [18], ordinary Kriging [19], random 
forest model [20], boosted regression trees (BRT) [21], geographic weighted regression (GWR) [22], 
and principal component regression [23]. However, depending on different study regions, sampling 
schemes, and experimental methods in collecting data, the specific method used to map SOC and 
STN in surface forest soils could vary. 

Remote sensing data have been used to predict SOC and STN stocks with DSM [12]. 
Furthermore, the topsoil SOC and STN stocks in the natural environment proved to have a good 
correlation with the topsoil biomass [9,24]. In this regard, Landsat 8 [25], which is the most 
important free access spatial data source, provided various vegetation indices to make our study 
possible.  

Combining environmental variables, in particular, satellite vegetation data, and DSM 
technology can be powerful. In this study, SOC and STN stocks of topsoil of forests in northeastern 
China were mapped by combining DSM and remote sensing technology. The objectives of this 
research were to: 1) Compare the performance of GWR, MLSR and BRT models in mapping topsoil 
(0–30 cm) SOC and STN stocks by using 513 soil samples and 9 satellite-based variables (Landsat 
TM green band (BGREEN), Landsat TM red band (BRED), Landsat TM near-infrared band (BNIR), 
difference vegetation index (DVI), enhanced vegetation index (EVI), ratio vegetation index (RVI), 
normalized difference vegetation index (NDVI), renormalization difference vegetation index 
(RDVI), and soil adjusted vegetation index (SAVI)); 2) identify the key remote sensing variables in 
predicting these stocks; and 3) analyze the mapping uncertainties.  

2. Materials and Methods  

2.1. Study Area 

Liaoning Province (38°43′- 43°26′N, 38°43′- 43°26′N) is located in the south of northeastern 
China (Figure 1), with a total area of 148,000 km2 [9]. The main land use types are cultivated land, 
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forest land, grassland, construction land, water conservancy facility land, and unused land, 
accounting for 43.5%, 42.4%, 2.2%, 0.6%, 1%, and 9.3% of the total area, respectively (Figure 2a). The 
altitude ranges from 1 m in the southwest of the coastal area to 1288 m in the northeastern 
mountainous area. The terrain is generally reduced from north to south and inclines from east to 
west to the middle. The study area had a continental monsoon climate in the North Temperate 
Zone with four distinct seasons. The annual average precipitation is 400–1100 mm, and 65–75% is 
concentrated from June to August, accompanied by heavy rain. The annual average temperature 
ranges from 7 ℃ to 11 ℃, with the highest temperature of 30 ℃ in summer and the lowest 
temperature of -40 ℃ in winter.  

 
Figure 1. Soil sampling locations in digital elevation model map (c) at a 30 m spatial resolution in 
Liaoning Province (b) of China (a). 

According to the soil system classification of China, the dominant soil types covering the 
whole study area are Cambosols and Argosols [9], followed by Primosols, Anthrosols, Halosols, 
Gleyosols, Isohumosols, and Histosols, accounting for 54.44%, 27.72%, 10.34%, 4.07%, 2.53%, 0.79%, 
0.10%, and 0.01%, respectively (Figure 2b). Cambosols is a soil with cambic horizon. The main 
process of its formation is the low degree of mineralization and leaching of base ions. This type of 
soil is widely distributed in the whole region (Figure 2b). The variation of SOC content in 
Cambosols is large, and affected by soil parent material. Argosols refers to the soil with obvious 
clay particles and fully leached lime under the condition of moist soil moisture. Its clay content is 
high, and it is composed of silicate clay mineral which is not completely weathered. Its texture is 
relatively sticky, mostly in the form of prismatic block structure, with brown glue film. The SOC 
content in Argosols is relatively high (20–40 g kg-1 in the topsoil layer) [9]. This type of soil is mainly 
distributed in the middle Liaohe alluvial plain area in our study region. Primosols is a kind of 
young soil and its soil properties basically keep the characteristics of soil parent material, with only 
an ochric epipedon, which is widely distributed in the river banks, estuarine deltas, alluvial plains 
and sand accumulation areas. Its existence is closely related to the short soil forming time, extreme 
drought, cold climate, high quartz content with strong weathering resistance, continuous soil 
erosion and accumulation, and artificial disturbance, so its SOC content is relatively low. Anthrosols 
is a new kind of soil type. Its original soils have changed through cultivation, fertilization, irrigation 
and drainage due to human activities. This type of soil is mainly distributed in the middle of 
Liaoning Province. This area is the main farming area of Liaoning Province, with frequent and 
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intense human activities. Gleyosols, Isohumosols, and Histosols are relatively less distributed in 
Liaoning Province, but they have the highest SOC content. 
 

 

Figure 2. Land use types (a) and soil types (b) in the study area. 

2.2. Data Sources 

2.2.2. Soil Sampling Collection and Measurement 

Field intensive sampling is a time and money consuming activity, especially for a large forest 
area. In order to accurately reflect the spatial heterogeneity of SOC and STN stocks in those regions, 
a purposeful sampling method [26] was used. First, we selected main environmental factors that 
affect the spatial variability of topsoil SOC and STN, including mean annual precipitation, mean 
annual temperature, elevation, slope gradient, and slope aspect. In addition, we also recognized 
that parent material, groundwater and vegetation are important environmental factors that 
determine the spatial variation of SOC and STN [10,15,21,26]. However, it was difficult to obtain 
them in this study. Consequently, we only used soil type map, topographic wetness index and 
normalized difference vegetation index (NDVI) to approximate their characterization at sampling 
sites. Second, a fuzzy c-means clustering method was used to cluster the whole research area and 
generated 64 clustering units. Finally, combining with road network information, 8–10 soil samples 
were collected in each cluster unit and a total of 513 topsoil (0–30 cm) samples were collected in 
2015. Meanwhile, we also recorded gravel content greater than 2 mm for later calculation of SOC 
and STN density. Among all these samples, 80% of the samples were randomly selected as a training 
dataset, and the remaining 20% of the samples were used as an independent dataset to test the 
prediction performance of the three models. Limited by funds and personnel, it was very difficult to 
sample deeper, in such a large region. In our next research, we plan to select a relatively small forest 
area to carry out deeper sampling so as to obtain more accurate SOC and STN stocks of forest soils. 
In addition, 100 cm3 of undisturbed soil cores were collected from the topsoil layer for subsequent 
laboratory determination of soil bulk density. The longitude and latitude information of each 
sample site was recorded by a hand-held GPS, and the positioning accuracy was 5 m.  

SOC and STN contents were measured using a dry combustion method and a Vario EL III 
elemental analyzer in the Central Laboratory at Shenyang Agricultural University. The 100 cm3 core 
samples were dried in an oven at 105 ℃ for 48 hours to determine the soil bulk density. SOC and 
STN stocks were calculated using the following formulas: 

( )
1

1
k

density content i i i
i

SOC SOC BD D S
=

= × × × −  (1) 
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where SOCdensity and STNdensity are the SOC and STN density at i soil layer (kg m-2), respectively; 

SOCcontent and STNcontent are the SOC and STN contents (g kg-1), respectively; BDi is the soil bulk 

density (g cm-3); Di and Si are the soil layer thickness (m) and the gravel content greater than 2 mm 

(%), respectively; i is specific soil layer, in this study, it represents topsoil 30 cm; k represents the 

number of sampling sites. 

2.2.3. Remote Sensing Related Data 

In this study, the remote sensing data were obtained from Landsat 8 satellite, downloaded 
from the United States Geological Survey (USGS). We obtained 11 satellite images from July to 
September of 2015, with cloud cover less than 10%. In MATLAB software, we used a homomorphic 
filtering method [27] to remove the cloud from the remote sensing images. The spatial resolution of 
the remote sensing data was 30 meters, and the data level was L1T, which went through geometric 
precision correction. Therefore, it was not necessary to use the ground control points or digital 
elevation model (DEM) data to do geometric precision correction again. In addition, many previous 
studies have shown that the Bottom-Of-Atmosphere (BOA) reflectance is the most appropriate 
remote sensing variable to predict the spatial distribution of SOC and STN [28]. However, to obtain 
the BOA reflectance, atmospheric correction shall be performed for the remote sensing data. In this 
study, we used the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) 
atmospheric correction method [29] to calibrate the atmosphere in Environment for Visualizing 
Images (ENVI) 5.1 software. Due to the sun's altitude angle, some remote sensing images appeared 
to have mountain shadow, so we used a ratio method [12] to eliminate it in ENVI 5.1 software. 
Furthermore, we also carried out topographic correction because the study region is a mountainous 
area. We used a cosine correction method for the topographic correction of remote sensing images 
[30]. This method is based on the modeling of illumination (IL) condition, so a DEM with the same 
spatial resolution as Landsat 8 images was needed. Subsequently, the IL conditions were modeled 
using the ground slope and aspect, as well as solar and satellite parameters. DEM is required to 
calculate the incident angle ( iλ ), defined as the angle perpendicular to the ground and the sun 
light. The IL parameter is between - 1 and + 1, indicating the minimum and maximum illuminance, 
respectively, which can be calculated with Equation (3): 

( )co s co s co s sin s ini p z p z a bIL λ ϕ ϕ ϕ ϕ φ φ= = + −  (3) 

where pϕ is the slope angle; zϕ is the solar zenith angle; aφ is the solar azimuth angle; and bφ is 

the aspect angle. In the cosine correction method, the reflectance of the surface is calculated using 
Equation (4): 

 

cos z
h t IL

θρ ρ  =  
 

 (4) 

where hρ is the surface reflectance; tρ  is the reflectance of an inclined surface; and zθ  is the solar zenith 

angle. This method does not require any external parameters. 
Then, the region of interest (ROI) (forest boundary vector layer which was obtained from 

Liaoning Provincial Department of Natural Resources, China) was used to cut the remote sensing 
imagery data, remove the overlapped parts, and then to assemble the multiple images to form a 
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mosaic of the region. The selected remote sensing data with 9 variables, included Landsat TM green 
band reflectance (BGREEN), Landsat TM red band reflectance (BRED), Landsat TM near-infrared band 
reflectance (BNIR), difference vegetation index (DVI), enhanced vegetation index (EVI), ratio 
vegetation index (RVI), normalized difference vegetation index (NDVI), renormalization difference 
vegetation index (RDVI), and soil adjusted vegetation index (SAVI). BGREEN, BRED, and BNIR represent 
the growth and biomass of vegetation, respectively, and the ground feature images are rich, clear 
and well-organized [15,21]. In the field of remote sensing science, NDVI is widely used in crop 
growth monitoring and yield prediction and serves as the best indicator of vegetation growth [31]. 
SAVI explains the change in optical characteristics of the background [32]. Different from NDVI, 
SAVI introduces a soil-adjusted coefficient to modify NDVI, which mainly reflects the influence of 
soil background on vegetation coverage, and its value ranges from 0 to 1. When SAVI is 0, 
vegetation coverage is 0; when SAVI is 1, the influence of soil background value is 0, mainly 
indicating that the influence of soil background is 0 in areas with dense canopy. Huete’s research 
[33], conducted in a well-vegetated area, found that when the coefficient of soil adjusted L is 0.5, 
SAVI had a better effect on eliminating soil reflectance. RVI can better reflect the difference of 
vegetation coverage and growth status, especially suitable for vegetation monitoring with vigorous 
growth and high coverage [34]. DVI, proposed by Richardson et al. [35], is very sensitive to the 
change of soil background. It can be used to identify water bodies well, and it increases rapidly 
with an increase in vegetation. RDVI increases rapidly with the increase of vegetation coverage 
when the vegetation is within the middle and low coverage, and increases slowly when the 
vegetation reaches certain coverage. So RDVI is suitable for monitoring the early and middle 
growth stages of vegetation [36]. The specific definitions of these indices are: 

( ) ( ) ( )1 /NIR RED NIR REDSAVI B B L B B L= − + + +    L=0.5 (5) 

( ) ( )/N IR R E D N IR R E DN D V I B B B B= − +  (6) 

/RED NIRRVI B B=  (7) 

2.4 N IR REDD VI B B= −  (8) 

RDVI N DVI D VI= ×  (9) 

( )
( )

2.5
6 7.5 1

NIR RED

NIR RED BLUE

B B
EVI

B B B
−

=
+ − +

 (10) 

where BNIR, BRED, and BBLUE represented Landsat TM near-infrared band reflectance, Landsat TM red 
band reflectance, and Landsat TM blue band reflectance, respectively; L is the coefficient of soil 
adjusted, and its value range is from 0 to 1. In this study, we set it to 0.5. 

2.3. Prediction Models 

2.3.1. Geographically Weighted Regression 

Geographically weighted regression (GWR), multiple stepwise linear regressions (MSLR), and 
boosted regression trees (BRT) models were compared to obtain the best prediction of SOC and 
STN stocks in the forest area. GWR is the most classical spatial analysis technology and has been 
widely used in geographic science and spatial analysis [22]. GWR could be used for prediction by 
establishing a local regression equation at each point in space [37]. Because it considers the local 
effect of spatial objects, its advantage is of high accuracy. GWR is developed on the basis of the least 
square (OLS) model. The basic assumption of OLS is that the direct relationship between 
independent variables and dependent variables in a region is stable and uniform. In the OLS model, 
the regression coefficient of the model is for the whole research area and is calculated as an average 
value, which does not reflect the spatial characteristics of the regression parameters [38]. To 
overcome this problem, a spatial variable parameter regression model was used [39]. The 
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parameters in the global model are a function of geographical location, so the change trend of 
parameters in space can be measured [22]. GWR is an extension of ordinary linear regression model, 
which embeds the spatial position of data into regression [37]. The GWR model was expressed as: 

,( ) ( , ) ( , )o i i k i i i k i
k

Y i xξ υ δ ξ υ δ ϖ= + +  (11) 

where (νi, δi) are the coordinates for the i location; ξo (νi, δi), is the intercept, ξk is a regression 
coefficient, and xi,k is an environmental variable at the i location, and k is the number of 
environmental variables. The regression parameters of this equation are estimated at each location i 
(νi, δi). ωi is the residual values at i point. In this study, we used the “spgwr” package [22] in R 
software environment. 

2.3.2 Multiple Stepwise Linear Regressions 

As a classical prediction method, MLSR is widely used to predict soil properties and the 
interaction between analysis variables by considering many factors [40,41]. For instance, Ishii et al. 
[42] used the MLSR method by considering all relevant information, eliminating irrelevant factors, 
simplifying equations, reducing errors, adding variables to the model one by one, and analyzing 
the explanatory variables with F-test. The MLSR model introduced each variable into the model one 
by one, and F-test was used to analyze and explain the contribution of each variable to the 
prediction [43]. In the process of modeling, environment variables were introduced into the model 
one by one, and unimportant environment variables were proposed by using t-test [41]. During the 
whole iteration process, the iteration was stopped until there were no environment variables that 
could be added and deleted in the modeling process. Therefore, the final model only included the 
important environmental variables that affected the spatial distribution of soil attributes. The MLSR 
models can be expressed as: 

12.73 0.87 0.07) * +(0.46 0.06) * -(0.43 0.03) * +(0.23 0.density GREENSOC B SAVI RVI= − ± ± ± ±（

 
(12) 

1.39 0.18 0.02) * +(0.26 0.04) * -(0.28 0.05) * +(0.14 0.density GREENSTN B SAVI RVI= − ± ± ± ±（

 
(13) 

R2 values of Equations 12 and 13 were 0.46 and 0.41, respectively, while the errors were 9.32 kg 
m-2 (±0.52) for SOC stocks and 1.26 kg m-2 (±0.31) for STN stocks. 

2.3.2. Boosted Regression Trees 

BRT model was developed by Friedman et al. [44]. It is composed of boosting and regression 
trees [15]. Based on the random gradient of decision tree, boosting technology introduces all 
samples into the model at one time, and corrects the model by constantly changing the weight. In 
the process of multiple iterations, the goal of the next iteration is to find a function to fit the 
residuals of the previous round. The iteration can only be stopped when the residuals are small 
enough or when they reach the number set by the user [9]. BRT models can easily deal with soil 
environment problems in complex landscape areas, and avoid nonlinear and interaction problems 
[15]. Compared with the traditional regression model, the BRT model has better prediction 
performance, especially in the spatial prediction of soil properties (such as SOC, STN, and pH) [9]. 
In this study, we used the "gbm" software package developed by Elith et al. [45] to build the model 
in the R language environment. The fitting of BRT model was controlled by four parameters: 
Learning rate (LR), tree complexity (TC), bag fraction (BF), and tree number (NT) [46]. LR 
represents the contribution of each tree in the model to the final fit model. TC is a direct predictor of 
tree depth and maximum interaction level [21]. BF represents the scale of data used in each model 
[9]. NT is determined by LR and TC [15]. To obtain the best prediction performance of the BRT 
model, we tested different combinations of LR (0.0025, 0.025, 0.25, and 0.50), TC (3, 6, 8, 9 and 10), 
BF (0.45–0.75) and NT (500, 800, 1000, 1200, and 1500) through 10-fold cross-validation technology. 
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Finally, we found the model has the smallest error when LR, TC, BF and NT are 0.025, 9, 0.65 and 
1200, respectively. 

2.4. Prediction Accuracy 

Randomly selected, 80% of the total samples were used as model training data (n=410), and the 
remaining 20% for model validation and accuracy assessment (n=103). The mean absolute error 
(MAE), the root mean square error (RMSE), the coefficient of determination (R2) and the 
concordance correlation coefficient (LCCC) [47] were selected to test the performance of the GWR, 
MLSR and BRT models. Previous studies [44,47] have revealed that error estimation is an effective 
method to test different models and datasets. The specific indices used for the validation were: 

1

1 -
n

i i
i

MAE Y X
n =

= 
 

(14) 

( )2

1

1 n

i i
i

RMSE Y X
n =

= −  (15) 

( )
( )

2

2 1
2

1

-

-

n

ii
i
n

ii
i

Y X
R

Y X

=

=

=



 (16) 

( )22 2

2 Y X

Y X

rLUCC
Y X

∂ ∂=
∂ +∂ + +

 (17) 

where Y and X represent the predicted value and measured value at sampling point i; Yand X
represent the average value of the predicted value and measured value at sampling sites; Y∂ and 

X∂ represent the change of the predicted value and measured value at sampling point; n represents 
the number of samples; r represents the Pearson correlation coefficient. 

3. Results 

3.1. Exploratory Data Analysis 

Table 1 listed the descriptive statistics of the measured topsoil (0–30 cm) SOC and STN stocks, 
and remote sensing environment variables at sample sites. The average SOC and STN stocks of 
topsoils were 10.32 kg m-2 (±0.53) and 1.21kg m-2 (±0.32), respectively. Under the generalized skew 
distribution with skew coefficients of 0.54 and 0.63, the measured topsoil SOC and STN stocks can 
be well described in this area. Histosols (the average SOC and STN stocks were 13.14 kg m-2 and 
1.43 kg m-2, respectively) and Isohumosols (the average SOC and STN stocks were 10.71 kg m-2 and 
1.37 kg m-2, respectively) have the highest SOC and STN stocks, while Primosols (the average SOC 
and STN stocks were 4.32 kg m-2 and 0.93 kg m-2, respectively) has the lowest SOC and STN stocks 
in 2015 (Table 2). 
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Table 1. Summary statistics of topsoil (0–30 cm) soil organic carbon (SOC) stocks (kg m−2), soil total 
nitrogen (STN) stocks (kg m−2), and remote sensing environment variables at sample sites. 

Property Min. Median Mean Max. SD Skewness Kurtosis 

SOC stocks 0.23 9.32 10.32 30.23 0.53 0.54 2.31 

STN stocks 0.13 1.15 1.21 2.96 0.32 0.63 3.12 

BGREEN 0.09  0.14  0.16  0.37  0.17 0.54 1.65 

BRED 0.18  0.34  0.35  0.50  0.21 0.32 1.72 

BNIR 0.18  0.40  0.41  0.63  0.24 0.48 1.83 

SAVI 0.16 0.41 0.44 0.76 0.24 -0.41 1.87 

NDVI 0.13 0.39 0.41 0.72 0.22 -0.38 1.75 

RVI 1.65 2.29 2.78 4.12 1.16 -1.13 1.23 

DVI 65.31 135.33 136.21 193.11 24.51 0.04 2.24 

EVI 0.18 0.59 0.60 0.95 0.33 -0.58 2.51 

RDVI 72.44 138.61 143.21 201.43 26.41 0.62 3.13 

Note: BGREEN, Landsat TM green band reflectance; BRED, Landsat TM red band reflectance; BNIR, Landsat TM 

near-infrared band reflectance; SAVI, soil adjusted vegetation index; NDVI, normalized difference vegetation 

index; RVI, ratio vegetation index; DVI, difference vegetation index; EVI, enhanced vegetation index; RDVI, 

renormalization difference vegetation index. 

Table 2. Summary statistics of topsoil (0–30cm) soil organic carbon (SOC) stocks (kg m−2) and soil 
total nitrogen (STN) stocks (kg m−2) of each soil group according to the Chinese soil system 
classification at sampling sites. 

Property Soil groups Number Min. Median Mean Max. SD Skewness Kurtosis 

SOC stocks Argosols 154 0.49 9.86 10.38 26.16 0.54 0.57 2.41 

Cambosols 148 0.44 8.84 9.30 22.41 0.47 0.47 2.21 

Gleyosols 23 0.26 5.36 5.58 13.67 0.43 0.52 2.14 

Halosols 43 0.23 4.62 4.86 11.23 0.37 0.43 1.95 

Histosols 27 0.62 12.48 13.14 30.23 0.49 0.55 2.17 

Isohumosols 29 0.5 10.39 10.71 28.38 0.38 0.49 1.87 

Primosols 89 0.23 4.1 4.32 10.02 0.36 0.41 1.72 

STN stocks Argosols 154 0.26 1.32 1.35 2.47 0.35 0.68 3.23 

Cambosols 148 0.23 1.17 1.23 2.25 0.27 0.59 2.75 

Gleyosols 23 0.22 1.06 1.14 1.97 0.25 0.52 2.17 

Halosols 43 0.19 0.97 1.02 1.66 0.22 0.47 2.83 

Histosols 27 0.27 1.39 1.43 2.96 0.32 0.63 2.95 

Isohumosols 29 0.26 1.3 1.37 2.53 0.29 0.54 1.98 

Primosols 89 0.13 0.89 0.93 1.27 0.23 0.52 2.03 

Note: Min., minimum; Max., maximum; SD, standard deviation. 

The correlation coefficients between topsoil SOC and STN stocks, and selected remote sensing 
environmental variables are shown in Table 3. SOC and STN stocks were negatively correlated with 
BGREEN, BNIR, and RDVI, and positively correlated with SAVI, NDVI and EVI. We found that there 
was a multicollinearity between the environmental variables of remote sensing data (Table 3). It 
was not reliable to use a simple linear method to predict topsoil SOC and STN stocks in space. 
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Comparing multiple, more sophisticated models helps identify the best model and obtain accurate 
spatial distribution of topsoil SOC and STN stocks. 

Table 3. Pearson correlation coefficient between observed topsoil (0–30 cm) SOC and STN stocks (kg 
m−2) and all remote sensing environmental variables at sample sites. 

Property 
SOC 

stocks 

STN 

stocks 
BGREEN BRED BNIR SAVI NDVI RVI DVI EVI 

STN stocks 0.65**          

BGREEN -0.53** -0.43**         

BRED 0.21* 0.13 -0.39**        

BNIR -0.36** -0.29** 0.61** 0.14       

SAVI 0.45** 0.34** -0.53** 0.33** -0.41**      

NDVI 0.56** 0.45** -0.65** 0.57** -0.39** 0.73**     

RVI -0.18* -0.23* -0.22* 0.39** -0.29** -0.22** -0.26**    

DVI 0.26* 0.34** 0.16* -0.28** 0.43** 0.17* 0.29** -0.33**   

EVI 0.39** 0.32** 0.15* -0.09 0.32** -0.25** -0.35** -0.24** 0.37**  

RDVI -0.35** -0.25* -0.07 0.17 -0.18* 0.43** 0.46** -0.08 0.41** 0.26** 

Note: p < 0.05 shown in “*”; p < 0.01 shown in “**”. BGREEN, Landsat TM green band reflectance; BRED, Landsat 

TM red band reflectance; BNIR, Landsat TM near-infrared band reflectance; SAVI, soil adjusted vegetation index; 

NDVI, normalized difference vegetation index; RVI, ratio vegetation index; DVI, difference vegetation index; 

EVI, enhanced vegetation index; RDVI, renormalization difference vegetation index. 

3.2. Model Performance and Uncertainty 

In forest ecosystems in northeastern China, the spatial prediction performance of GWR, MLSR 
and BRT models for topsoil SOC and STN stocks was compared. The summary statistical results of 
model validation are shown in Table 4. Comparing the three models in topsoil SOC and STN stock 
prediction performance, BRT was the best, followed by GWR and MLSR models. The BRT model 
with the best performance could explain the spatial variation of 56% and 51% SOC and STN stocks 
in the region, respectively. To further examine the three models, we created density plots of the 
predicted and measured values of SOC and STN stocks at the sampling sites (Figure 3). We also 
presented scatter plots of the predicted and measured values, which also indicated that the BRT 
model has the best performance (Figure 4). Overall, BRT performs the best, matching with the 
measured topsoil SOC and STN stocks. We iterated the BRT model 100 times and calculated the 
average standard deviation (SDs) to analyze the uncertainty of the BRT model in predicting topsoil 
SOC and STN stocks (Figure 5). We found that the BRT model had a lower uncertainty compared 
with GWR and MLSR models. 
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Table 4. Summary statistics of the predictive quality of geographically weighted regression (GWR), 
multiple stepwise linear regression (MSLR), and boosted regression trees (BRT) for topsoil (0–30 cm) 
SOC and STN stocks based on an independent dataset (n=103) in 2015. 

Property Model Index Min. Median Mean Max. 

SOC 

stocks 
GWR 

MAE 0.82  0.84  0.84  0.90  

RMSE 0.89  0.91  0.92  0.95  

R2 0.48  0.49  0.49  0.51  

LCCC 0.60  0.61  0.61  0.66  

MLSR 

MAE 0.82  0.84  0.84  0.89  

RMSE 1.02 1.04 1.06 1.08 

R2 0.45  0.45  0.46  0.48 

LCCC 0.58  0.62  0.64  0.68  

BRT 

MAE 0.66  0.70  0.71  0.75  

RMSE 0.82  0.84  0.85  0.88  

R2 0.53  0.56  0.56  0.58  

LCCC 0.77  0.78  0.80  0.82  

STN 

 stocks 
GWR 

MAE 0.15  0.16  0.16  0.19  

RMSE 0.26  0.27  0.27  0.31  

R2 0.39  0.42  0.44  0.45  

LCCC 0.47  0.47  0.47  0.50  

MLSR 

MAE 0.18  0.19  0.19  0.20  

RMSE 0.17  0.19  0.20  0.22  

R2 0.39  0.40  0.41  0.43  

LCCC 0.42  0.44  0.45  0.47  

BRT 

MAE 0.16  0.16  0.16  0.17  

RMSE 0.20  0.22  0.22  0.25  

R2 0.47  0.50  0.51  0.54  

LCCC 0.63  0.64  0.65  0.65  

Note: MAE, the mean error; RMSE, root mean squared error; R2 coefficient of determination; LCCC, 
Lin’s concordance correlation coefficient are used to evaluate accuracy; Min., minimum; Max., 
maximum. 
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Figure 3. Density plots of the predicted and measured values of topsoil (0–30 cm) soil organic 
carbon stocks (SOC) (kg m-2) and soil total nitrogen (STN) (kg m-2). The predicted data are derived 
from geographically weighted regression (GWR) (a,d), multiple stepwise linear regression (MSLR) 
(b,e), and boosted regression trees (BRT) (c,f). 
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Figure 4. Scatter plot of the predicted and measured topsoil (0–30 cm) soil organic carbon stocks 
(SOC) (kg m-2) and soil total nitrogen (STN) (kg m-2). The predicted data are derived from 
geographically weighted regression (GWR) (a,d), multiple stepwise linear regression (MSLR) (b,e), 
and boosted regression trees (BRT) (c,f). 
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Figure 5. Standard deviation of topsoil (0–30 cm) SOC stocks (a) and STN stocks (b) predicted by the 
boosted regression trees (BRT) model. 

3.3. Importance of Remotely Sensed Environmental Variables 

Through 100 iterations of BRT model, the average relative importance of each remotely-sensed 
environmental variable in predicting topsoil SOC and STN stocks was calculated. To facilitate the 
analysis of the model, we combined the relative importance of all environments to 100% (Figure 6). 
We found that the main remotely-sensed environmental variables affecting the spatial variability of 
topsoil SOC stocks were NDVI, SAVI, BGREEN, EVI, and RDVI (77% of the total relative importance). 
Correspondingly, SAVI, NDVI, BGREEN, EVI and DVI were the main environmental variables 
(accounting for 80% of the total relative importance) that affect the spatial variability of topsoil STN 
stocks in forest dominated areas.  

 

Figure 6. Relative importance of remotely-sensed environment variables as determined from 100 
iterations using the boosted regression trees (BRT) in predicting topsoil (0–30 cm) SOC stocks (a) 
and STN stocks (b) in 2015, which are combined into percentage. Note: BGREEN, Landsat TM green 
band reflectance; BRED, Landsat TM red band reflectance; BNIR, Landsat TM near-infrared band 
reflectance; SAVI, soil adjusted vegetation index; NDVI, normalized difference vegetation index; 
RVI, ratio vegetation index; DVI, difference vegetation index; EVI, enhanced vegetation index; RDVI, 
renormalization difference vegetation index. 
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3.4. Spatial Prediction of SOC Stocks  

Our model verification showed that BRT model performs best, so it was selected as the final 
model to predict the spatial distribution of topsoil SOC and STN stocks (Table 5). The topsoil SOC 
and STN were mainly stored in Argosols and Cambosols in forest ecosystems Liaoning Province, 
accounting for 88.9% and 85.8% of topsoil SOC and STN stocks, respectively. In addition, the BRT 
model showed that topsoil SOC and STN stocks had a similar spatial distribution pattern (Figures 7 
and 8), increasing gradually from southwest to northeast, and the average topsoil SOC stocks 
increase from 0.51 to 28.12 kg m-2 estimated with BRT model. Correspondingly, the average topsoil 
STN stocks increased from 0.22 to 2.73 kg m-2. 

Table 5. Statistical description of soil organic carbon (SOC) and soil total nitrogen (STN) stocks of 
each soil groups according to the Chinese soil system classification estimated with boosted 
regression model (BRT) in forest topsoil (0–30 cm). 

Soil groups Area (km2) 
Average SOC 

stocks(kg m-2) 

Average STN 

stocks (kg m-2) 
SOC stock (Tg) STN stock (Tg) 

Argosols 5486.00 3.46  0.45  19.01  2.46  

Cambosols 43959.00  2.92  0.49  128.35  21.54  

Gleyosols 233.00  1.72  0.37  0.40  0.09  

Halosols 774.00  1.51  0.32  1.17  0.25  

Histosols 13.00  4.13  0.35  0.05  0.01  

Isohumosols 12.00  3.57  0.40  0.04  0.01  

Primosols 12275.00 1.36  0.29  16.68  3.61  

Sum 62752.00  
  

165.69  27.96  
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Figure 7. Spatial distribution of the predicted topsoil (0–30 cm) soil organic carbon (SOC) stocks 
with models of geographically weighted regression (GWR) (a,b), multiple stepwise linear 
regression (MSLR) (c,d), and boosted regression trees (BRT) (e,f) 
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Figure 8. Spatial distribution of the predicted topsoil (0–30 cm) soil total nitrogen (STN) stocks with 
models of geographically weighted regression (GWR) (a,b), multiple stepwise linear regression 
(MSLR) (c,d), and boosted regression trees (BRT) (e,f). 

 



Remote Sens. 2020, 12, 1115 18 of 22 

 

4. Discussion 

4.1. Role of Remotely-Sensed Enviroment Variables in Predicting Topsoil SOC and STN Stocks 

In forest ecosystems, the combination of remotely-sensed data and BRT model provided a 
better prediction (Table 3) of SOC and STN stocks in topsoil, which was consistent with previous 
findings [21,46]. For instance, Chen et al. [48] used remote sensing images to predict the topsoil 
SOC content of a 115-hectare land in crisp County, Georgia. They found that the remote sensing 
data showed a significant linear relationship with the topsoil SOC content. Through the study on 
the semi-arid grassland in eastern Australia, Wang et al. [49] concluded that spatial prediction of 
SOC stocks was a very challenging task in the semi-arid grassland area, especially in those areas 
lacking basic data and vegetation coverage. Compared with direct measurement in the field, DSM 
is an economical method to predict SOC. Previous studies also indicated that the vegetation is 
correlated with carbon and nitrogen stocks in topsoil [50]. The spectral reflectance of remote sensing 
data and derived vegetation index reflect vegetation coverage well, which are valuable for mapping 
SOC and STN. 

To compare the contribution of various remotely-sensed environmental variables to the 
prediction of topsoil SOC and STN stocks, we iterated the BRT model 100 times to calculate their 
average relative importance, and then merged them into a percentage. We found that NDVI, SAVI 
and BGREEN were the most effective variables affecting topsoil SOC and STN stocks in the forest 
dominated areas. This conclusion was consistent with previous studies. For example, Gong et al. [51] 
used 8227 soil profiles and a cubist model, a generalized linear model, support vector machines, 
and random forest models to simulate the SOC stocks in Brazil, by using NDVI as an effective 
predictor. In the coastal forest area of northeastern China, Qi et al. [52] concluded that SAVI was an 
important remotely-sensed variable to predict SOC stocks. In the same study area, Wang et al. [21] 
recommended that SAVI should be introduced into the spatial prediction model of topsoil SOC 
stocks, especially in dense forest ecosystems. BGREEN has also been used as an efficient predictor in 
estimating SOC and STN stocks. According to Yang et al. [53] and Wang et al. [49], BNIR and BRED 
reflected the land-use situation in a region to a certain extent, but our study was limited to the 
study of SOC and STN stocks of surface forest soils, not all land use types in the region. Therefore, 
in mapping SOC and STN stocks, BNIR and BRED showed the lowest relative importance. DVI could 
better reflect the difference of vegetation coverage and growth status, especially suitable for 
vegetation monitoring of dense forests. Similarly, RVI could better reflect the difference of 
vegetation coverage and growth status, especially suitable for dense forests [54]. DVI was sensitive 
to the change of soil background and could better identify water bodies. Its value increased with 
the increase of vegetation density. Therefore, both DVI and RVI were introduced into SOC and STN 
mapping [55]. Furthermore, in the Jutland peninsula, Denmark, Pouladi et al. [56] used NDVI, SAVI, 
DVI, RVI and terrain related variables combined with Kriging, cubist model, random forest and 
regression-Kriging models to predict the SOC content in the topsoil layer. They found these 
remotely-sensed variables explained the spatial variation of 89% SOC content on average. They also 
found that, there is no need to introduce other environment variables into the model construction 
when the sampling sites were dense enough. However, our study suggests that environmental 
variables including remotely-sensed data are necessary to map these stocks, especially for dense 
forest areas.   

A few studies have also pointed out the importance of using remote sensing data in mapping 
SOC. For instance, in the coastal forest areas of northeastern China, Wang et al. [46] constructed a 
BRT model using three multispectral bands, NDVI and SAVI to predict the SOC stocks in topsoil, 
and achieved high prediction accuracy (R2=59%). Yang et al. [53] used BGREEN, BRED, BNIR and a 
random forest model to predict SOC stocks and found that these variables could explain the spatial 
variation of 72% SOC stocks in this region. In Dalian, China, Wang et al. [15] used three Landsat 5 
satellite bands and NDVI data, combining a random forest model, to predict STN content in the 
topsoil layer. They found that remotely-sensed data should be used as key environmental variables 
for the prediction in densely forest dominated areas. 
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4.2. Uncertainty in Current Research 

BRT performed best in comparison with GWR and MLSR models to predict SOC and STN in 
forest areas of northeastern China. However, there were still uncertainties in our prediction. First, 
data collection and lab analysis were conducted by several groups. Thus, there might be some 
sampling errors and experimental errors. Second, due to the influence of terrain and clouds, high 
altitude areas were prone to produce shadows in the process of image segmentation, leading to 
large reflectivity errors in satellite imagery data. Finally, this study was limited to estimating the 
SOC and STN stocks of the forest topsoil (0–30 cm), which might lead to underestimation of SOC 
and STN stocks in the region since SOC and STN are also stored in deep soil layers of forest 
ecosystems. 

5. Conclusions 

We used GWR, MLSR and BRT models to estimate the spatial variation of SOC and STN stocks 
in the forest topsoil of northeastern China. We found that remotely-sensed variables are key to 
estimating SOC and STN stocks. The BRT model had the best prediction performance in mapping 
SOC and STN stocks with lower MAE, RMSE and higher R2, in comparison with other models. In 
addition, the estimated SOC and STN stocks show a similar spatial distribution pattern, and 
gradually increase from southwest to northeast in the region. Among remotely-sensed environment 
variables, NDVI and SAVI were key factors to predict SOC and STN stocks in forest ecosystems in 
our study region. We expect our relatively more accurate mapping of SOC and STN shall benefit 
forest management and climate change policy making in our study region.  
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