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Abstract Conventional Q10 soil organicmatter decompositionmodels andmore complexmicrobial models
are available for making projections of future soil carbon dynamics. However, it is unclear (1) how well the
conceptually different approaches can simulate observed decomposition and (2) to what extent the trajectories
of long-term simulations differ when using the different approaches. In this study, we compared three
structurally different soil carbon (C) decomposition models (one Q10 and two microbial models of different
complexity), each with a one- and two-horizon version. The models were calibrated and validated using 4 years
of measurements of heterotrophic soil CO2 efflux from trenched plots in a Dahurian larch (Larix gmelinii Rupr.)
plantation. All models reproduced the observed heterotrophic component of soil CO2 efflux, but the
trajectories of soil carbon dynamics differed substantially in 100 year simulations with and without
warming and increased litterfall input, with microbial models that produced better agreement with
observed changes in soil organic C in long-term warming experiments. Our results also suggest that
both constant and varying carbon use efficiency are plausible when modeling future decomposition
dynamics and that the use of a short-term (e.g., a few years) period of measurement is insufficient to
adequately constrain model parameters that represent long-term responses of microbial thermal adaption.
These results highlight the need to reframe the representation of decomposition models and to constrain
parameters with long-term observations and multiple data streams. We urge caution in interpreting future soil
carbon responses derived from existing decomposition models because both conceptual and parameter
uncertainties are substantial.

1. Introduction

Soils are the largest carbon (C) repository in the terrestrial biosphere, releasing 60–75 Pg C to the atmosphere
each year through decomposition [Schimel, 1995; Schlesinger and Andrews, 2000]. Previous studies suggested
that decomposition rates may respond more positively to increasing temperature than photosynthetic
rates [Ise et al., 2010; Mahecha et al., 2010; Smith and Dukes, 2013], potentially initiating a positive feedback
between the biosphere and warming of the climate system. Thus, projected soil organic C (SOC) dynamics
and microbial activity under future climate change are central to understanding ecosystem responses to
climate change and their feedbacks to climate.

Current “state-of-the-art” process-based biogeochemical models are built on the basis of current consensus
within the scientific community on how to represent key ecosystem processes. In modeling decomposition,
the response of decomposition to temperature has traditionally been characterized with a first-order Q10
relationship that originated from empirical observations in the 19th century [van’t Hoff, 1898] and later evolved
into various forms of Q10 or Arrhenius functions [Lloyd and Taylor, 1994; Sierra, 2012]. Such formulations are
commonly used in contemporary biogeochemical models [Friedlingstein et al., 2006; Todd-Brown et al., 2013].
However, significant uncertainty exists due to (1) conceptual uncertainty associated with fundamental
physiological processes that determine responses of soil carbon dynamics [Wieder et al., 2013] and (2)
parameter uncertainty within the same conceptual approach [Todd-Brown et al., 2013]. In addition, recent
studies that reveal some discrepancies between model outputs and experimental data [Allison et al., 2010;
Wieder et al., 2013] argue for a paradigm shift in representing that soil C dynamics as traditional model structure
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may omit key mechanisms [Davidson et al., 2012; Wieder et al., 2013], such as the ephemeral augmentation of
soil respiration under warming [Luo et al., 2001; Melillo et al., 2002; Oechel et al., 2000] and the direct microbial
control over soil C dynamics [Allison et al., 2010; Lawrence et al., 2009; Wieder et al., 2013].

In spite of recent advances in modeling soil C dynamics and model comparison efforts [Li et al., 2014; Tuomi
et al., 2008], it is unclear whether conceptually different schemes can reproduce observed decomposition
(heterotrophic respiration, RH) from field studies. It is also not clear how the long-term trajectories of soil C
dynamics differ among traditional Q10 andmicrobial decompositionmodels. To answer these two questions,
we evaluated three conceptually different decomposition model structures, including one Q10 model and
two microbial models with different complexities, using the observed RH fluxes from trenched plots over a 4
year period in deciduous forest. The twomicrobial models had different mechanistic complexities: a relatively
simple two-pool model with a microbial biomass pool (MIC) and a SOC pool, and a more complex four-pool
microbial model which included an additional extracellular enzyme pool (ENZ) and soluble C pool. Each
structure was tested using one-horizon and two-horizon versions, where the two-horizon architecture was
implemented to account for differences in decomposability between theO and the A horizons. For comparison,
we used a one-horizon version of Q10model which had one uniform SOC pool, as well as a Q10model that had
three compartments (three-pool Q10 model): a highly labile fast turnover C pool, a resistant slow turnover C
pool, and a passive C pool [Coleman and Jenkinson, 1996; Parton et al., 1993; Schädel et al., 2014]. We first
calibrated all seven decomposition models using an inverse estimation technique. We then used the calibrated
models to simulate soil C decomposition dynamics. We hypothesized that (1) all models would capture the
variation in observed soil RH for the measurement period at model parameterization and validation stage; and
(2) conventional Q10 models would not reproduce realistic long-term SOC dynamics under warming scenarios.

2. Methods
2.1. Model Description

The Q10 model follows the formulation described in Fan et al. [2008] and Wickland and Neff [2008]:

k θ; Tð Þ ¼ k�� θc2 � θ � θcð Þ2
h i

�Q
T�15°Cð Þ=10

10 (1)

dSOC=dt ¼ �k � SOC (2)

where θ is the volumetric soil moisture, T is soil temperature (°C), θc is the optimum volumetric moisture
content corresponding to maximum decomposition rate, and k* is the optimum inherent decomposition rate
at θ = θc and T=15°C. In the three-pool Q10 model, k* varies among all three compartments. The simpler
microbial model, which is based on German et al. [2012] (hereafter referred to as GERM), is a two-pool model
with microbial biomass pool (MIC) and a SOC pool. The more complex four-pool microbial model is a hybrid
version based on Allison et al.’s [2010] microbial-enzyme model and Davidson et al.’s [2012] DAMM model
(hereafter referred to as ALDA) (Figure 1). A detailed description of this model can be found in He et al. [2014].
The two microbial models share a similar structure where SOC dynamics is directly regulated by either MIC or
ENZ via a Michaelis-Menten enzyme kinetic function and the maximum reaction rate (Vmax, h�1) follows
Arrhenius temperature function:

DECAY ¼ V max0SOC� exp � EaSOC
R� T þ 273ð Þ

� �
� Enz orMICð Þ � SOC

kMSOC þ SOC
(3)

where EaSOC is the activation energy for SOC decay (Jmol�1), R is the ideal gas constant (8.314 Jmol�1 K�1),
and T is soil temperature (°C) under which reaction occurs. kMSOC (mg SOC cm�3 soil) is the corresponding
Michaelis-Menten half-saturation constant.

Figure 1. Schematic diagram of the three models.
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To investigate whether representing depth-resolved processes influences the simulation of future SOC
dynamics [Knorr et al., 2005; Yi et al., 2010], we constructed a two-horizon and a one-horizon version for each
decompositionmodel. The two-horizonmodel explicitly simulates soil C dynamics in different soil horizons (i.e.,
O horizon, which contains discernable particulate organic matter, and A horizon, which occurs just below
the O horizon). The thickness of each horizon is reassigned to different soil layers each year based on total
simulated thickness of that horizon [He et al., 2014], thus allowing the vertical temperature andmoisture profiles
to correspond with changing the thickness of the soil column. By distinguishing soil horizons we were also
able to partition SOC into components with different intrinsic turnover rates, i.e., the more labile (O) versus the
more recalcitrant (A) SOC. The one-horizon model combines the SOC in the O and A horizons into a single
horizon and thus a single SOC pool. The three-pool Q10model is also one horizon, but partitions total SOC stock
into three compartments with different intrinsic decomposability.

2.2. Inverse Estimation of Model Parameters
2.2.1. Site Description and Observational Constraints
Soil CO2 efflux and physical environmental data were collected at a site at the Maoershan Ecosystem Research
Station in China (127°30–34′E, 45°20–25′N) dominated by Dahurian larch (Larix gmelinii Rupr.), a typical forest
ecosystem in that region. A detailed description of site characteristics can be found inWang et al. [2006]. This site
has three replicate fixed plots (20m×30m) with four RH sampling subplots (50 cm×50 cm) which were trenched
to be free of live vegetation. In each RH subplot, one polyvinyl chloride collar (10.2 cm inside diameter ×6 cm
height) was installed [Wang and Yang, 2007]. To minimize artifacts associated with trenching disturbance
[Bond-Lamberty et al., 2011; Jassal and Black, 2006; Lavigne et al., 2004], we only used measured RH data that
were collected two or more months after trenching. Soil surface CO2 fluxes from trenched plots were measured
with a Li-Cor 6400 portable CO2 infrared gas analyzer connected with a Li-6400-09 chamber (Li-Cor Inc., Lincoln,
NE, USA) biweekly from 2004 to 2007. Biweekly data were averaged to monthly resolution for consistency.
Soil temperature and gravimetric water content were measured at 2 cm and 10 cm depths near each collar
concurrently with RH measurements. Soil temperature was measured with a digital long-stem thermometer.
Soil water content was determined by taking soil samples at two depths and dried at 70°C to a constant mass.
To account for the potential that estimated microbial respiration included decomposition of preexisting roots
[Drake et al., 2012; Graham et al., 2012], we calculated the CO2 efflux caused by the decomposition of labile
components from dead root detritus based on root biomass [Wang et al., 2006], the generalized models of fine
root decay rate with respect to latitude [Silver and Miya, 2001] and the published decay rate for coarse roots
[Landsberg and Gower, 1997], as was done inWang and Yang [2007]. Calculated root decay was then subtracted
from measured soil CO2 efflux. Note that the soil at this site contains only a minimal amount of clay. Measured
thickness, bulk density, SOC content, and microbial biomass of each soil horizon were collected as initial states
and fixed parameters for the models (Table 1) [Liu and Wang, 2010; Yang and Wang, 2005]. The light and heavy
fraction of the organic matter of the O and A horizons was determined by density fractionation [Zhao, 2013].
Light fraction is regarded as highly labile, whereas heavier amorphous material (heavy fraction) is regarded as
more recalcitrant [Boone, 1994; Tan et al., 2007; Trumbore, 1993]. The measured light and heavy fraction of the
soil was used as prior for the inverse modeling of three-pool Q10 model parameters (Table 1).
2.2.2. Assimilation Scheme and Model Validation
Under Bayesian framework, the posterior probability density function (PDF) ppost of a sample from the joint
parameter distribution θ is a function of the prior probability of joint parameter pprior and observation x:

ppost θjxð Þ ¼ L x jθð Þ pprior θð Þ
∫L x θÞpprior θð Þdθ��� (4)

The denominator on the right-hand side is the marginal distribution of x; therefore, given a realization of
observation, the denominator is a constant and then can be ignored in the optimization. We assume that the
prior distribution is uniform, and all observations are independently and identically distributed and follow a
normal distribution, the likelihood L(θ|x) can be formed as

L xjθð Þ ¼∏
n

i¼1

1ffiffiffiffiffiffiffiffiffiffiffi
2πσ2i

p exp � 1
2

f θ; tið Þ � xið Þ2
σ2i

" #
(5)

where n is the number of observations x1, x2,…, xn at time t1, t2,…, tn. σi is the standard deviation of each
observation due to observation noise and measurement error, thus σi can differ among individual
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observations. However, because we lack the information necessary to determine how σi varies with each
measurement, we made a simplification to assume constant σi for all observations. Applying a “log
transformation” to the likelihood and ignoring the constant terms, we obtained the following cost functions
to assimilate measured trenched plot soil efflux with the seven models (three structures × two versions + one
3-pool Q10):

ALDA:

Obj ¼ Wresp�
Xk
i¼1

Respobs;i � Respsim;i

� �2 þWmic=soc�
Xl

i¼1

MICsim;i1

SOCsim;i1
� 0:001

� �2

þWmic=soc�
Xl

i¼1

MICsim;i2

SOCsim;i2
� 0:0005

� �2

þWcue �
Xk
i¼1

CUEsim;i � 0:5
� �2

(6)

GERM:

Obj ¼ Wresp �
Xk
i¼1

Respobs;i � Respsim;i

� �2 þWmic=soc�
Xl

i¼1

MICsim;i1

SOCsim;i1
� 0:001

� �2

þWmic=soc�
Xl

i¼1

MICsim;i2

SOCsim;i2
� 0:0005

� �2

(7)

Q10:

Obj ¼ Wresp�
Xk
i¼1

Respobs;i � Respsim; i

� �2
(8)

where the differences between the simulated decomposition (Respsim), the simulated ratio between
microbial biomass and SOC (MICsim

SOCsim
), and the simulated carbon use efficiency (CUEsim) and observations

were minimized. The measured annual average MIC
SOC of O (0.001) and A (0.0005) horizons are adopted

from [Liu and Wang, 2010] (for the one-horizon model, the average MIC
SOC was used). Simulated CUE was

assumed to fluctuate around 0.5 as commonly reported in other studies [Frey et al., 2013; Manzoni et al.,
2012; Sinsabaugh et al., 2013]. Wresp ,Wmic/soc , and Wcue are the weighting function set to 6.0 × 106, 1000,
and 100, respectively, to reconcile the different magnitudes of metrics. The parameter k is the number of
data pairs available to compare observation and simulation. See the supporting information for more
details of the prior and optimized parameter values.

We applied a global optimization method known as the (shuffled complex evolution) [Duan et al., 1992,
1994], which is an effective and efficient method specifically designed to obtain global convergence in

Table 1. Soil Physical Metrics and MIC/SOC Ratio of Different Horizon (O and A Horizons) Types of the Needleleaf
Deciduous Forest Stand in This Study

Metrics O A References

Bulk density (g cm�3) Mean 0.87 1.1 [Yang and Wang, 2005]
STD (n) 0.45 (9) 0.05 (9)

Organic carbon fraction (%) Mean 5.1 4.1 [Yang and Wang, 2005]
STD (n) 1.2 (9) 0.93 (9)

Porosity (%) Mean 64.8 59.2 [Fan et al., 2004]
STD (n) - -

Particle density (g cm�3) Mean 2.47 2.75 -
STD (n) - -

Horizon thickness (cm) Mean 4.11 14.22 [Yang and Wang, 2005]
STD (n) 1.6 (9) 8.47 (9)

MIC/SOC (%) Summer Mean 0.054 0.045 [Liu and Wang, 2010]
STD (n) 0.002 (3) 0.001 (3)

Winter Mean 0.09 0.1
STD (n) 0.003 (3) 0.002 (3)

Fraction of light-fraction SOMa Mean 0.14 0.04 [Zhao, 2013]
STD (n) 0.09 (10) 0.01 (10)

Fraction of heavy-fraction SOM Mean 0.8 0.87 [Zhao, 2013]
STD (n) 0.09 (10) 0.05 (10)

aSOM = Soil organic matter.
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the presence of multiple regions of attraction under high-parameter dimensionality. We performed 100
independent optimization runs, each using different random number seed to determine the successive
evolution steps. The resulting stationary distribution from the 100 runs converges to the joint parameter
posterior PDF. The two-horizon ALDA model has the highest number of parameters of 16, and the simplest
one-horizon Q10 model has only three parameters. It took on average ~200,000 and ~15,000 model
evaluations to converge on the optimum parameter sets for the two models, respectively.

Because of limited data availability for calibration, we calibrated each model with the first 3 years of field-based
decomposition estimates and validated each model with field-based decomposition estimates from the fourth
year. The goodness-of-fit statistics between field-based and model simulation estimates of decomposition
were calculated using all 4 years of estimates. Because trenched plot does not have litter inputs, the modeling
systemwill equilibrate when decomposition reaches zero (microbial biomass equals zero); therefore, we did not
start simulation from equilibrium but rather did a 1 year spin-up to stabilize the pool sizes. The initial prior
ranges for model parameters were obtained from literature (e.g., Allison et al. [2010], Knorr et al. [2005], and
German et al. [2012]), and were later expanded or shifted during the optimization process to ensure that
posterior distribution was not truncated by the prior range (Tables S1–S3 in the supporting information).

2.3. Future Extrapolation

To examine how structural differences can affect projection, we conducted two sets of simulations: (1) control
simulations with no litterfall input or warming (i.e., the natural projection of the initial SOC of a trenched plot
that is expected to decrease over time) and (2) simulations with progressively increasing litter inputs and
temperature. Monthly litterfall from an adjacent control plot was collected during 2005 using mesh-gridded
cloth with diameter 1m (J. Yang, unpublished data, 2005; Figure S1 in the supporting information). Our
total annual litterfall C amounts to about 180gCm�2 yr�1 and is comparable to data published in other studies
[e.g., Zhang et al., 2008]. We simulated an increase in litterfall input by 3% every 10 years for future projection
(Figure S1b in the supporting information). The 3% litterfall increase rate (34% increase over 100 years) is chosen
as a moderate scenario based on a suite of seven global vegetation models that simulated 34–70% increase in
net primary production (NPP) under the HadGEM2-ES Representative Concentration Pathway 8.5 (RCP 8.5)
climate and CO2 scenario [Friend et al., 2014]. We also assumed that a constant fraction of NPP is allocated to
litterfall. Litterfall was added to multihorizon and three-pool Q10 models according to an exponentially
decreasing curve [Fan et al., 2008] (70% to the O horizon and 30% to the A horizon formultihorizonmodel; 50%,
30%, and 20% for the fast, slow, and passive pools of three-pool Q10 model, respectively).The surface
temperature was increased progressively using the Representative Concentration Pathway 8.5 (RCP 8.5) from
2000 to 2100 with a projected overall change by 4.9°C (approximately 0.05°C yr�1 global average) [Arora et al.,
2011, 2013]. The scenario we used was a generalized scenario and was not specific to the region of the
field study. Soil moisture values for the warming simulation were based on measurements from the control
plot to avoid bias because soil water content in trenched plots is often higher than that of vegetated plot due
to lack of transpiration [Hanson et al., 2000]. For the simplicity of the analysis, the projected change in soil
moisture in this region was not considered due to its uncertainty under projected warming [Seth et al., 2013].

3. Results and Discussion
3.1. Inverse Estimates of Parameters

The model evaluation statistics showed that all three models can reproduce the field-based estimate of RH of
the trenched plot reasonably well, with an adjusted R2 ranging from 0.5 to 0.78 for two-horizon models and
from 0.58 to 0.80 for one-horizon models (Table 2). The root-mean-squared error (RMSE) of all ensemble runs
was highest for the two-horizon ALDA model (0.0023mgCcm�2 h�1) and lowest for the one-horizon GERM
model (0.0014mgCcm�2 h�1). These results support our first hypothesis. The seasonal dynamics of the
modeled soil CO2 flux showed that all seven models could describe the monthly variations in the field-based
efflux (Figure 2). The two-horizon GERM and ALDAmodels showed themost divergence among ensemble runs
(larger error bar, Figures 2a and 2b), indicating that some of the parameters in these models were poorly
constrained. Note that the near-zero winter RH (November–March) exhibited in the field-based estimates is best
captured by the ALDA model (Figures 2a and 2d).

Whether or not an individual parameter is well constrained can be revealed by its posterior PDF (Figure 3
and Table 3 for parameter descriptions). The posterior PDF of parameters representing SOC intrinsic
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decomposability (Ea_SOC, activation energy; k) andmicrobial sensitivity to temperature (Q10, CUE) all exhibited
a well-defined unimodal distribution but with different variation. The posterior PDF can also be a non-Gaussian
distribution in a few cases (e.g., microbial turnover rate in two-horizon GERM model, optimum soil moisture
content in two-horizon Q10 model, Figures S2 and S3 in the supporting information). In general, parameters for
the A horizon were less constrained than those for the O horizon as the PDF was relatively flat with large
standard deviations. This is likely because the field-based estimate of CO2 flux is a convolution of both horizons,
and the A horizon likely contributes less to the total flux because of its lower temperature and poorer substrate
quality, thus lacking enough variation (information) to constrain the parameters for this horizon. Such
unsymmetrical informativeness is a common challenge for data assimilation of multiple horizon decomposition
models [Keenan et al., 2012a; Schädel et al., 2013]. Additional data streams such as incubation data or other
pool-specific measurements may provide the necessary constraints to reduce posterior PDF uncertainty
[Keenan et al., 2012a]. The decomposition rate (k, Figure 3g) of fast SOC pool in the three-pool Q10 model was
poorly constrained, probably because the small proportion of light fraction soil makes its CO2 flux outweighed
by that of the slow and passive pools (0.04–0.14 in Table 1 and 0.02–0.1 in posterior distribution of the
corresponding parameter, see Figure S7 in the supporting information).

Ranges of parameter posterior PDF also reveal characteristics of SOC decomposition dynamics. The intrinsic
decomposability of the A horizon is lower than that of the O horizon across all two-horizon models

Figure 2. Observed and simulated soil efflux from the three soil decomposition models. (a–c) The two-horizon versions; (d–f)
the one-horizon versions. The red lines in Figure 2f represent the results from the three-pool Q10 model. Error bar shows
the uncertainty of simulated CO2 efflux from 100 ensemble runs.

Table 2. Model Evaluation Statistics From Ensemble Inverse Parameter Estimation for Three Soil Models at a Needleleaf
Deciduous Forest Sitea

Model RMSE (SD) (mgC cm�2 h�1) Adjusted R2 (SD) Slope (SD) Intercept (SD) (mgC cm�2 h�1)

Two-horizon model
ALDA 0.0023 (0.0003) 0.50 (0.07) 0.84 (0.1)** 0.0031 (0.0003)
GERM 0.0016 (0.0001) 0.68 (0.02) 0.92 (0.09)** 0.0015 (0.0011)
Q10 0.0015 (0.00001) 0.78 (0.003) 1.03 (0.02)** �0.0002 (0.0001)

One-horizon model
ALDA 0.0019 (0.0001) 0.58 (0.05) 0.92 (0.1)** 0.0017 (0.0007)
GERM 0.0014 (0.0001) 0.78 (0.01) 1. 15 (0.04)** �0.0008 (0.0002)
Q10 0.0015 (4.3e�8) 0.79 (0.001) 1.03 (0.0002)** �0.0003 (1.9e�6)
Q10 (3-pool) 0.0017 (2.3e�5) 0.80 (0.005) 1.02 (0.046)** �0.0001 (0.0003)

aSD is the standard deviation of the corresponding metrics from ensemble optimization runs.
**Coefficient is significant at p< 0.05.
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Table 3. Descriptions of a Subset of Model Parameters Mentioned in the Text

Parameter Unit Description

Ea_SOC Jmol�1 Activation energy of decomposing SOC to soluble C
Vmax_SOC0 mg decomposed SOC cm�3

soil (mg ENZ cm�3 soil)�1 h�1
Maximum rate of converting SOC to soluble C

CUEc % Carbon use efficiency at temperature of 15°C
k %h�1 Intrinsic SOC decomposition rate
Q10 - Temperature sensitivity of decomposition rate

to every 10°C change in temperature

Figure 3. (a–f ) Posterior parameter probability density function (PDFs) of three soil decomposition models. The O and A
horizons represent the PDFs from the corresponding soil horizon from two-horizon models; one horizon represents the
PDFs from the one-horizon models. (g and h) The results from the three-pool Q10 model. The range of the x axis indicates
the range of the parameter’s prior uniform distribution.
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(Figures 3a, 3c, and 3e), indicating that C in deeper soils is more recalcitrant. Deeper soils also had
higher Q10, suggesting higher temperature sensitivity of heterotrophic microorganisms at that depth
(Figures 3d, 3f, and 3h), in line with field experiments from other studies [Lefèvre et al., 2013; Peng et al.,
2009; Zhou et al., 2009]. As expected, the one-horizon model parameters mostly fell within the mode
of the analogous parameters for the O and A horizons in the two-horizon models, suggesting an
averaging effect when lumping heterogeneous soil horizons together. Note that the CUE in the one-
horizon GERM model is notably lower than that of two-horizon model, suggesting a nonlinear
interaction structure among parameters (Figures S8–S10 in the supporting information).

3.2. Structural Difference Induced Discrepancy in Future SOC Stock Trajectory

The future projections of the trenched plot differed among the three two-horizon models (Figures 4a–4c).
The initial ~5 years SOC stock was similar across all models, where models were constrained by observations
and better model observation matches were achieved. However, the uncertainty in parameter posterior PDF
caused diverging responses within each model. Intermodel variation was notable as SOC loss in both
microbial models (ALDA and GERM) leveled off after 20 to 40 years, while the Q10 model was still losing C
after 100 years. The difference among models was more notable in the litterfall +warming experiments. In
the microbial models (ALDA and GERM), the enhanced respiration was compensated by increased litterfall
input, so that at the end of 100 years, there was less than 250mg SOC cm�2 difference from the initial
SOC stock (Figures 4d and 4e). In contrast, the Q10 model was still losing SOC despite increased litterfall
(Figure 4f). The overall trend in one-horizonmodels was similar to that of corresponding two-horizonmodels,
except that both microbial models showed a greater SOC loss around 20 to 40 years (Figures 4g–4i), but
this loss was later compensated by increasing litterfall similar to what occurred for the two-horizon models.
The one-pool Q10 model and the ensemble mean of the three-pool Q10 model showed very similar SOC
trajectories, although the one-pool Q10 model had much smaller uncertainty range (Figure 4i). Our results
demonstrated two different types of uncertainty in decomposition models: (1) uncertainty associated with
poorly constrained parameters (i.e., the multiple optima problem) [Brun et al., 2001; Duan et al., 1992] and (2)

Figure 4. Simulated 100 years responses of SOC stock for the three models. (a–c) Trenched plot simulation; (d–i) Model
simulations under 4.8°C progressive increasing soil temperature and litterfall. The deep blue and red lines (for three-pool
Q10 model) represent ensemble mean from the 100 independent optimization runs for each model, the light colored lines
are the results from each ensemble member.
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the uncertainty associated with conceptual structure of the model (i.e., system identification), which
fundamentally relies on our current scientific understanding of the system and its mathematical or numerical
representation. While the first issue may be partially attributed to limitations inherent in the inverse
estimation approach, the nonlinear structure of decomposition model (and any process-based
biogeochemical model) also leads to the existence of multiple optima [Duan et al., 1992]. Improved data
assimilation techniques may help reduce parameter uncertainty in model calibration and projection [Keenan
et al., 2012b; Koffi et al., 2012; Parrish et al., 2012; Zhou et al., 2013], but the uncertainty embedded in model
structure (often due to imperfect understanding of the real system) is usually ignored and sometimes difficult
to be disclosed by data assimilation alone, as shown in our results.

Detailed examination of various modeled processes help identify key features of different model structures.
Both microbial models (ALDA and GERM), either one- or two-horizon models, had their labile horizon (O
horizon) depleted within the first 20 years (Figures 5a and 5b) and the A horizon switched from losing C to
eventually become a C sink. A similar labile C depletion was exhibited in the three-pool Q10 model, but not
the two-horizon Q10 model (Figures 5c and 5d), likely because there was not enough information (e.g., an
informative prior for decomposition rate) to differentiate the decomposition rate among the two horizons
(PDF of decomposition rate of O horizon is quite flat, indicating high parameter uncertainty, Figure 3e).
Projected soil RH also diverged across models, with ALDA and two-horizon GERM models having exhibited a
notable initially enhanced RH uponwarming for about 5 years and then stabilized at a similar level (Figures 6a,
6b, and 6d), although ALDA model has a much larger oscillation in soil RH due to the same oscillation in
microbial biomass (Figure 7a). Overall, for the depletion of labile C, warming enhanced RH and loss of SOC
which later attenuated and SOC loss eventually being compensated by increased litterfall of ALDA and GERM
model matched the observed C dynamics in long-term soil warming experiments [Kirschbaum, 2004; Knorr
et al., 2005; Luo et al., 2001; Melillo et al., 2011]. Despite the oscillatory behavior of microbial models which
may be improved by multipool representations (especially ALDA, see discussion of oscillation in section 3.3),
their future projections matched better with observations than the conventional Q10models, supporting our
second hypothesis. Site level parameterization of microbial decomposition models probably require more
measurements to be able to constrain parameters well (under-parameterized, tend to have high biases),
while a simple Q10 type of model is likely to be overparameterized (high variance) with good calibration
results but may fail when tested under different scenarios.

Figure 5. Simulated 100 years responses of SOC stock for each of the horizons for the two-horizon models and three-pool
Q10 model. The deep blue and red lines (for three-pool Q10 model) represent ensemble mean from the 100 independent
optimization runs for each model, the light colored lines are the results from each ensemble member.

Journal of Geophysical Research: Biogeosciences 10.1002/2014JG002701

HE ET AL. ©2014. American Geophysical Union. All Rights Reserved. 9



Figure 6. Simulated 100 years soil RH for the three models. The deep blue and red lines (for three-pool Q10 model) repre-
sent ensemble mean from the 100 independent optimization runs for each model, the light colored lines are the results
from each ensemble member.

Figure 7. (a, b, a1, and b1) Microbial biomass C and (c, d, c1, and d1) CUE changes in the ALDA and the GERMmodels (two-
horizon and one-horizon models) under warming plus litterfall model simulations. Annual microbial biomass and 30 day
moving average of hourly CUE are shown in Figures 7a–7d; seasonal microbial biomass and CUE dynamics for the first
5 years are shown in embedded graphs, Figures 7a1–7d1.
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There are several limitations of this study that need to be explored further to make the results more
generally applicable. First, our hierarchy of models was applied to a limited data set which is specific to a
particular ecosystem and soil type. A more comprehensive study that covers various ecosystems and soil
properties would help to separate ecosystem-specific recommendations for model selection from more
generalized conclusions. Second, this limited data set also imposes a certain structure on our model in
that the two-horizon model is composed of O and A horizons for the larch forest we tested. Models
should be conceptually tailored to match the ecosystem characteristics being simulated. If the models
were to be applied in a grassland ecosystem, which generally does not possess an O horizon, then a
one-horizon model or a multilayer model with parameters that correspond to observed depth-resolved
decomposition properties may be appropriate. Third, we assumed constant soil moisture for future
scenarios and did not include a feedback of soil moisture to soil temperature. This feedback could
result in a different SOC trajectory than what we presented, yet the divergent model response probably
would still exist due to the model structures. Fourth, in our long-term extrapolation, an implicit
assumption was that the model structure and represented processes are appropriate for the simulation
period. Such an assumption is debatable. An option to address model structural uncertainty is Bayesian
model averaging where a dynamic range of model structures are weighted by their posterior
model probability [Hoeting et al., 1999; Wasserman, 2000].

We also acknowledge that we are limited to only 4 years of observations to inform the model and that a
longer period of observation (decadal to multidecadal) would have provided tighter constraints. This is
especially true given the slow turnover rate of SOC. The importance and difficulty of constraining
parameters associated with slow decomposition processes was also recognized in a 12 year study in a
temperate deciduous forest in the Eastern U.S. [Braswell et al., 2005]. For an efficient assimilation,
data length is only one aspect, data quality and the amount of information encompassed by the
observation are also critical [Liu and Gupta, 2007]. We argue that from the perspective of efficient data
assimilation, other characteristics of the soil system (e.g., microbial-related features) can help identify
proper parameters that will constrain the modeling system and thus should be included in the model.
Note however that because the Q10 model has only one variable (i.e., SOC stock) that can be evaluated,
the increased availability of other soil-related data (e.g., measured CUE, MIC pool sizes [Frey et al., 2013;
Serna-Chavez et al., 2013]) cannot further inform the Q10 model. Without the support of sufficiently
long and diverse observations to inform the model, model structure becomes a dominating factor in the
future projection of SOC. It is worthy to note here that under the warming + litterfall scenario, the
trajectories of the three models can differ notably from each other. Therefore, observations from warming
manipulations or other manipulating experiments would be very valuable for informing models, as
parameters should be better constrained.

3.3. Structural Difference Induced Discrepancy in Microbial Activity

In this study, different conceptual structures of microbial models led to different response trajectories.
Annual average microbial biomass in both the ALDA and GERM models exhibited an initial increase and
leveled off around year 60 and year 40, respectively (Figures 7a and 7b). Oscillatory behavior of
microbial models has been analytically demonstrated by Wang et al. [2013] and is exhibited in the
interannual variation of MIC of the two models in this study. The amplitude is much greater in the ALDA
model, which is likely caused by the sensitivity of microbial biomass to soil moisture variation in the
model (Pearson correlation between MIC and soil moisture is 0.6, p< 0.05), a sensitivity that does not
occur in GERM model as soil moisture was not represented. In our field measurements, soil moisture
increased in the second and third year and then slightly declined in subsequent years; such interannual
cyclic moisture variation drove the MIC response so that MIC tightly tracked the moisture in the ALDA
model. The increased MIC at the beginning of the simulation likely reflects the microbial responses to
existing root exudates and sloughed-off cells that cannot be accounted for by correcting measured CO2

efflux using root biomass. The high sensitivity of microbial activity to rhizodeposition (or so-called
“rhizosphere priming effect” [Kuzyakov, 2002]) suggests that microbial models should account for the
interaction between root and microbial activities. The seasonal patterns of MIC in both models were
similar with both featuring lower MIC during the growing season and accumulating during the winter
(Figures 7a1 and 7b1). This agreed well with the previously reported observed seasonal dynamics of soil
microbial biomass C for the same site [Liu and Wang, 2010].

Journal of Geophysical Research: Biogeosciences 10.1002/2014JG002701

HE ET AL. ©2014. American Geophysical Union. All Rights Reserved. 11



The dynamics of CUE were also different between the two models, despite the similar seasonal dynamics
where lower CUE occurs during the growing season than during the nongrowing season. Because the
GERM model used prescribed CUE as a linearly decreasing function of temperature, CUE decreased
consistently due to progressive warming (Figure 7d). In contrast, in the modified ALDA model, CUE was
simulated as a function of the ratio between respired CO2 and assimilated SOC, which were both
explicitly controlled by environmental conditions. Therefore, CUE of the ALDA model did not vary
much with temperature (Figure 7c). Note that the upward shift in CUE in the ALDA model around year
20 is caused by a depletion of the O horizon due to fast substrate assimilation (Figure 5a), in line with
Knorr et al. [2005] and Kirschbaum [2004], where their modeling approaches suggested “substrate
depletion” as an explanation for apparent thermal acclimation in soil respiration under warming climate.
Given the fairly good inverse estimation results against field-based estimates of both models, we
conclude that both changing and constant CUEs are plausible with increasing temperature. Note that
the average MIC declined in the ALDA two-horizon model under warming scenario (Figure 7a), yet
CUE increased due to depletion of the O horizon. This is because the activation energy that controls
SOC enzymatic decay of the A horizon is smaller than that of microbial respiration (Figure S2,
Ea_SOC_A0< Ea_Sx_A0) indicating smaller temperature sensitivity, therefore, the amount of Soluble C
(substrate) consumed relative to microbial biomass declined with warming.

It is worth noting here that the oscillation amplitude of microbial biomass in the two-horizon ALDA model is
notably smaller than that of the one-horizonmodel, whichmay be due to amore heterogeneous architecture
of the soil C pools. The oscillations arise because of tight coupling between microbial and SOC pools, yet
this behavior might weaken with greater pool heterogeneity in microbial models. In reality, there are many
organisms consuming chemically heterogeneous substrates on varying timescales. Such heterogeneity could
dampen the oscillations.

It should also be acknowledged that we tested a simplified modeling framework because the decomposition
model was not coupled to other key element cycles. Soil C sequestration under ambient and rising atmospheric
CO2 can be constrained directly by nitrogen availability and indirectly by nutrients that support N2 fixation
[Hobbie et al., 2002; van Groenigen et al., 2006]. Kinetic and stoichiometric constrains on microbial physiology
also pose key controls over SOC decomposition dynamics [Allison, 2005; Sinsabaugh et al., 2013]. Incorporating
those interactions into models could produce even more realistic future SOC dynamics than the models used
in this study.

4. Conclusion

In this study, we calibrated three structurally different soil organic matter decomposition models
(Q10 and two microbial models with different complexities) against in situ soil efflux observations, each
with two-horizon and one-horizon versions. The calibration and validation results showed that all
models can reasonably simulate 4 years of field-based estimates of RH from a forest plot. However, there
were differences among the models’ projected decomposition dynamics under increased temperature
and litterfall. Our study has three main conclusions. First, effective data assimilation requires sufficient
data length and information content. For soils with long turnover time, long period of observations and
multiple data streams (e.g., microbial biomass and enzyme characteristics) are needed to adequately
constrain the models. Second, conceptual understanding of the ecological mechanisms represented in
models dominates the trajectory of model projections among models that assimilate the same data
to constrain parameters. While all the models in our study produced similar decomposition dynamics
early in the projected simulations, the long-term projections varied substantially across all models. This
indicates that there is substantial uncertainty associated with microbial processes among the models.
Finally, labile C depletion was observed in both two-horizon microbial models. The substrate depletion
shifted the carbon use efficiency in the ALDA model to result in an efficiency level and SOC trajectory
similar to that of the GERM model in which carbon use efficiency was prescribed to decline with
increasing temperature. This suggests that both constant and variable carbon use efficiency are
plausible when modeling future decomposition dynamics and that short-term (e.g., a few years)
observations are not sufficient to inform model parameters of the long-term responses of microbial
thermal adaption.
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