
1.  Introduction
Estimates of methane emissions from lakes are large with high temporal and spatial variability (Rosentreter 
et al., 2021). The considerable differences among lakes throughout the globe and a paucity of adequate meas-
urements, especially in tropical regions, lead to uncertainty in empirical estimates and in validation of models of 
methane fluxes. Key processes producing and consuming methane and factors controlling emissions are known, 
and have been examined in laboratory and field experiments and through statistical analyses (e.g., Bridgham 
et al., 2013; DelSontro et al., 2016; Harrison et al., 2021; Knox et al., 2021; Segers, 1998). However, interactions 
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sensitive to carbon mineralization rate, Q10 factors for methanogenesis and oxidation, and methane oxidation 
potential. Modeled rates of planktonic photosynthesis were generally lower than measurements, though 
simulated planktonic respiration was often similar to measurements. Simulated rates of methane oxidation 
were considerably lower, with a few exceptions, than measurements of methane oxidation in oxic water of the 
lake. Improvements of results of the linked hydrodynamic-biogeochemical model will result from inclusion of 
advective transport, use of parameter values appropriate for tropical waters, especially for methane oxidation 
and photosynthesis, and addition of changes in hydrostatic pressure to model of ebullition.

Plain Language Summary  Methane emissions from lakes are large, highly variable and without 
adequate measurements, especially in tropical regions. The combination of mechanistic models with results 
from intensive field data provides one way to improve understanding of the processes and sources of variability. 
Riverine floodplain lakes, as occur in the Amazon basin, constitute extensive aquatic ecosystems and are 
important methane sources to the atmosphere. Though tropical lakes typically experience muted seasonal 
variations in climate, strong diel changes occur, and floodplain lakes have additional biogeochemical and 
ecological variability caused by changes in water level, connectivity to rivers and optical properties. We 
modified a one-dimensional process-based, lake biogeochemical model and combined a 3-dimensional 
hydrodynamic model to be applicable to Amazon floodplains and similar shallow, warm waters. The combined 
model simulated well methane processes and fluxes based on evaluation using observations in a representative 
central Amazon floodplain lake with measurements of meteorological variables, water temperatures and 
ecological conditions, and methane emissions over the seasonal hydrological phases with large differences in 
water levels.
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among the processes under the wide range of ecological conditions in lakes are not sufficiently understood. The 
combination of mechanistic models with results from intensive field data provides one way to improve under-
standing of the processes and sources of variability.

Lakes and associated wetlands cover extensive areas in northern latitudes and in tropical regions (Melton 
et al., 2013; Messager et al., 2016; Pekel et al., 2016) and represent major sources of methane to the atmosphere 
(Kirschke et al., 2013; Peng et al., 2022; Rosentreter et al., 2021; Saunois et al., 2020). Riverine floodplains consti-
tute extensive aquatic ecosystems in the tropics and are characterized by seasonal floods that promote the exchange 
of nutrients and organisms among habitats and substantial primary production (Junk, 1997). For example, flood-
plains, lakes,  and other wetlands cover approximately 1 million km 2 of the Amazon basin (Hess et al., 2015; Sippel 
et al., 1991). Due to the large area and abundant carbon supplies, these aquatic habitats are important methane 
sources to the atmosphere (Barbosa et al., 2020; Basso et al., 2021; Beck et al., 2012; Melack et al., 2004; Pangala 
et  al., 2017). However, large uncertainties persist in estimates of tropical CH4 emission, largely due to the few 
studies at appropriate temporal and spatial scales. Most field measurements in the Amazon basin and elsewhere in 
the tropics do not sufficiently capture diel and seasonal variations and often include diffusive, but not ebullitive, 
methane fluxes.

While temperate and arctic lakes undergo strong seasonal variations in solar radiation and temperature, tropical 
lakes typically have muted seasonal variations in climate but undergo diel cycles of stratification and mixing 
(MacIntyre & Melack, 2009; Talling & Lemoalle, 1998). Floodplain lakes have additional biogeochemical and 
ecological variability caused by changes in water level, connectivity to rivers and optical properties (Melack 
et al., 2009, 2021). Despite the importance of floodplains with shallow lakes and variable water levels, existing 
biogeochemical models of methane fluxes are not designed for these environments.

Most current biogeochemical ecosystem models of methane emissions are focused on wetlands, not lakes, and 
do not include most mechanisms influencing methane emissions (e.g., Bloom et al., 2017; Nzotungicimpaye 
et al., 2021; Ringeval et al., 2014). Potter et al. (2014) proposed a model for Amazon floodplains based on 
the supply of organic carbon as a key factor determining methane production. The model requires estimates 
of carbon inputs, uses simple statistical relations for physical processes, and was evaluated at one lake. The 
LAKE model (Stepanenko et al., 2016) includes most key processes, but the methane module has only been 
tested in a small boreal lake, and several physical processes use formulations not well suited to shallow trop-
ical waters.

The Arctic Lake Biogeochemical Model (ALBM) is a one-dimensional (1-D) process-based, biogeochemical 
model that simulates the thermal and carbon dynamics of lakes (Tan et al., 2015, 2017). The model has been 
applied to arctic and boreal lakes on seasonal time scales (Guo et al., 2020; Tan et al., 2015), but the ther-
mal module and several other aspects are not appropriate for conditions in shallow, warm waters. In particu-
lar, the daily cycles of stratification and mixing and intense, near-surface stratification, that can enhance gas 
exchange, are not modeled by ALBM. Shallow, warm lakes often develop strong gradients and large variations 
in dissolved oxygen, that influence methane production and oxidation, and modeling these conditions over diel 
cycles is required.

In this study, we modified ALBM and combined it with a 3-dimensional (3-D) hydrodynamic model 
(AEM3D) suited to tropical floodplain lakes and similar shallow, warm waters. The combined model perfor-
mances in simulating methane processes and fluxes were evaluated in a representative central Amazon flood-
plain lake with observations of meteorological variables, water temperatures and limnological conditions, 
and methane diffusive and ebullitive emissions over the seasonal hydrological phases with large differences 
in water levels (Barbosa et al., 2020, 2021). Our aim is to build a biogeochemical model that reasonably 
represents individual processes in Amazon floodplain lakes, and other shallow warm waters, and provides 
methane fluxes at multiple time scales. To do so, we incorporated algorithms for methane and dissolved 
oxygen production and consumption and selected and calibrated rate functions and coefficients appropriate 
for ecological conditions in shallow warm-water lakes. To include physical processes that generate diel 
variations in mixing we used outputs from a 3-D hydrodynamic model and added improved mechanistic 
understanding of gas exchange.
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2.  Methods
2.1.  Study Sites and Measurements

Lake Janauacá is a large floodplain lake in the central Amazon basin connected to the Solimões River (3.38°S, 
60.25°W; Figure 1). The lake and associated environments represent ecological and hydrological conditions on 
central Amazon floodplains, as summarized in Melack et al. (2009) and Melack (2016), and therefore, serves well 
as a site at which to develop and test a methane model. Measurements were made in the main lake and an embay-
ment from August 2014 to September 2016; a subset of these data were used to develop, calibrate and evaluate the 
model (Table 1, Figure 2). The lake is fringed by flooded forests and floating herbaceous plants during a portion 
of the year. The wide range of water depths, surface areas and light attenuation and two sites, though typical of 
floodplain lakes, could be considered examples of different types of lakes.

The seasonal range of chlorophyll-a (Chla) (2.8–50.5 μg L −1), total phosphorus (1.9–3.8 μmol L −1) and total 
nitrogen (21–108 μmol L −1) in Lake Janauacá indicate mesotrophic conditions during high water and eutrophic 
conditions during low and rising water (Melack et  al.,  2021). Dissolved organic carbon is moderately high 
(2.5–6.6 mg L −1), and total suspended solids varied seasonally from up to 115 mg L −1 during low and rising 
water to 2.4 mg L −1 during high water (Melack et al., 2021).

During each field campaign, environmental variables were measured at each site and fringing habitats over 
24-hr periods (Barbosa et al., 2020). Water temperatures and dissolved oxygen (DO) concentrations were manu-
ally measured every 0.5 m using temperature and oxygen probes and using thermistors and optical DO sensors 
deployed on moorings at multiple depths. Diffusive methane fluxes were measured with floating chambers and 
repeated at least three times a day in all habitats. Ebullitive fluxes were obtained using bubble traps. Concen-
trations of Chla were determined spectrophotometrically using filtered water samples. Detailed methods are 
described in Barbosa et al. (2020, 2021).

Water levels were recorded daily at stage gauges; a digital elevation model of bathymetry is based on Pinel 
et  al.  (2015). Shielded air temperature and relative humidity, solar radiation, wind speed and wind direction, 

Figure 1.  Janauacá floodplain on southern side of Solimões River in central Amazon basin. OL marks approximate location 
of sampling site in open water of lake. Red box marks location of embayment with an enlarged image of the embayment (EM) 
shown in the insert. Planet Scope Rapid-eye image acquired on 15 August 2015 with spatial resolution of 6.5 m resampled to 
a 5-m grid. Insert is an Apollo WorldView-2 image acquired on 14 August 2014 with 0.7 m resolution.
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sampled per second and averaged to five-minute intervals, were measured near each site at a floating laboratory. 
Wind speed and direction sensors were also deployed at 2 m above the water surface at each open water site 
during field campaigns. Underwater light attenuation over the spectral range from 400 to 700 nm (photosyntheti-
cally available radiation, PAR) was measured with a submersible sensor; these data were used to calculate the 
attenuation coefficient (Kd PAR).

2.2.  Hydrodynamic Model

The hydrodynamic portion of the 3-D Aquatic Ecosystem Model (AEM3D; Hodges & Dallimore,  2019) 
was used to model thermal structure, mixing and turbulent energy dissipation. AEM3D is derived from the 
Estuary, Lake and Coastal Ocean Model (Hodges et al., 2000) and uses a z-coordinate Cartesian grid allow-
ing non-uniform spacing in three directions and solves the unsteady Reynolds-averaged Navier-Stokes equa-
tion under the Boussinesq approximation. The model adopts a numerical scheme modified from TRIM-3D 
(Casulli & Cheng,  1992) and simulates temperature with the ULTIMATE-QUICKEST method for scalar 
transport (Leonard, 1991). Details about the AEM3D numerical schemes are provided by Hodges  (2000). 
The model was run with a 30 s time-step, 100 m × 100 m × 0.1 m grid in the main lake and a 20 s time-step, 
5  m  ×  5  m  ×  0.1  m grid in the embayment. It was configured with 150 and 130 Eulerian layers for the 
main lake and the embayment, respectively; the number of layers is the water depth divided by the vertical 
resolution and changes with water level. Initial conditions include temperature and salinity profiles. Initial 
temperature profiles were obtained from temperature measurements at the open water sites at mid-night 
when the water column was mixed or weakly stratified. Initial salinity profiles were estimated from specific 
conductivity data. Bulk transfer coefficients for heat and momentum were initialized with values for neutral 
atmospheric stability, which were updated at each time step taking into account the effects of non-neutral 
atmospheric stability. Bathymetric, meteorological and water level data, described in Section 2.1, are used as 
inputs to the model.

Vertical mixing is simulated using the mixed-layer model adopted from a 1-D hydrodynamic model (Imberger 
& Patterson, 1981; Spigel et al., 1986), in which the rate of turbulent kinetic energy (TKE) dissipated (denoted 
epsilon, ε) is computed as follows: (a) The model calculates the generation of TKE by wind at the surface, drag at 
bottom and shear in the interior of the water column. (b) The model calculates the energy required to completely 
mix two adjacent layers at each depth, if stable thermal structure is detected, or TKE generated by convection, if 
unstable thermal structure is detected. (c) The model conducts full mixing, partial mixing or no mixing depending 
on the amount of TKE generated compared to the amount of potential energy that needs to be overcome. (d) The 
amount of TKE to be dissipated is calculated as a function of the simulation timestep, layer thickness and TKE 
remaining after mixing is conducted, but limited to 100% of the TKE remaining. The TKE dissipation rate is then 
computed by dividing the amount of TKE dissipated by the simulation time step.

Figure 2.  Maximum depths in main lake (OL, blue curve) and embayment (EM, red curve) from October 2014 to November 
2016. Attenuation coefficient of PAR (Kd_PAR) in OL (blue diamonds) and EM (red squares). Blue and red dashed lines mark 
the periods when AEM3D and ALBM calibration simulations were done, and blue and red solid lines mark the periods of the 
validation simulations.
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2.3.  Biogeochemical Model

We made several modifications to the Arctic Lake Biogeochemical Model (ALBM, Tan et al., 2015, 2017; Guo 
et al., 2020) to suit Amazon floodplain lakes (illustrated in Figure 3). The thermal module in ALBM was not used, 
and hydrodynamic inputs (water temperature and ε) were obtained from AEM3D. The Hostetler-based algorithm 
used in the original ALBM computes eddy diffusivity (Kz) as a function of the latitudinal Ekman profile, 2-m 
wind speed, and the buoyancy frequency induced by the density gradient (Hostetler & Bartlein, 1990), and does 
not produce correct values in the shallow warm-waters of Amazon floodplain lakes. The Hostetler-based algo-
rithm produces low Kz with high N values as it assumes that turbulent mixing is suppressed by stratification. This 
is not the case in shallow tropical waters where the buoyancy frequency in upper water column during diurnal 
stratification can reach up to 120 cycles per hour (indicating strong stratification), while active mixing is observed 
(MacIntyre et al., 2021). In contrast, at deeper depths Hostetler-based algorithm-based eddy diffusivities are too 
large, mixing dissolved gas too fast, and do not match observations.

The modified ALBM uses vertical profiles of water temperatures provided by AEM3D at five-minute time steps. 
The water column in AEM3D is gridded with 0.1-m intervals, and ALBM is discretized vertically with the same 
intervals. The mixing depth is assumed to be the depth at which the water temperature is 0.05 oC lower than the 
temperature at 0.05 m. We used ε and thermal structure modeled by AEM3D to estimate vertical mixing, Kz, and 

Figure 3.  Processes and fluxes modeled in ALBM and supplied by AEM3D. Items marked with an asterisk are new features compared to the prior version of ALBM. 
Items in italics are rates or fluxes, and those not in italics are quantities. Refer to the Methods for equations and explanations of items shown.
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to distribute the dissolved gases. The gas transfer velocity was modified to a TKE dissipation-based algorithm 
(MacIntyre et al., 2019). Manually measured DO concentrations at the beginning of the simulation periods were 
used as initial conditions. A spin-up period of 90 days was used for each hydrological period by repeatedly using 
representative 24-hr temperatures and turbulence dissipation (from AED3D) and measured dissolved oxygen to 
numerically stabilize water column methane concentrations before running transient simulations. AEM3D does 
not require spin-up.

Photosynthesis and metabolism algorithms were simplified by using measured Chla concentrations and 
Chla-specific process rates. Values of default parameters (Table  2) were adjusted to ranges expected in the 
Amazon basin. Sediment oxygen demand was added to the model. The revised algorithms and formulations of 
methane and oxygen processes are introduced below. Parameter values and sources are summarized in Table 2; 
modeled and physical variables, parameters and coefficients are listed in Table 2 and Appendix A with units.

Methanogenesis in the sediment (𝐴𝐴 𝐴𝐴  ) is modeled as

𝑃𝑃 = 𝑅𝑅𝑐𝑐 ⋅ 𝑃𝑃𝑃𝑃

𝑇𝑇𝑠𝑠−𝑇𝑇𝑃𝑃0

10

10
⋅ 𝑒𝑒

−𝛼𝛼𝑧𝑧𝑧𝑧𝑠𝑠� (1)

where Rc is the carbon mineralization rate, PQ10 is a Q10 factor, Ts is the sediment temperature, Tp0 is a reference 
temperature, zs is depth in sediment; production decreases exponentially with sediment depth at rate αz. We do not 

Fixed-valued parameters

Parameter symbol Value Unit Source

Km 1.4⋅10 −7 m 2s −1 Subin et al. (2012)

Tp0 3.5 °C Walter and Heimann (2000), Marotta et al. (2014)

OQ10 1.13 – Guo et al. (2020) a

TO0 30 °C Barbosa et al. (2018) b

𝐴𝐴 𝒌𝒌𝑪𝑪𝑪𝑪𝟒𝟒
  1.41⋅10 4 μmolm −3 Segers (1998)

𝐴𝐴 𝒌𝒌𝑶𝑶𝟐𝟐
  7.8⋅10 4 μmolm −3 Guo et al. (2020) a

K2 4.2⋅10 −3 molm −2s −1 Megard et al. (1984) c

θr 1.045 – Ambrose (1988) c

θp 1.025 – Stefan and Fang (1994) c

θs 1.065 – Stefan and Fang (1994) c

Calibrated parameters

Parameter symbol Value range Unit Source

Rc [9.6⋅10 −3,4.8⋅10 −1] μmolm −2s −1 Gudasz et al. (2010)

αz [1,10] – Stepanenko et al. (2016)

PQ10 [0.9,17] – Duc et al. (2010), Inglett et al. (2012); Walter and 
Heimann (2000) d

αe [0.2,1.0] – Baird et al. (2004) e

Omax [9.6⋅10 −4,3.73] μmolm −3s −1 Barbosa et al. (2018)

Phmax [6.39⋅10 −4,3.09⋅10 −2] mgO2(mgChla) −1s −1 Forsberg et al. (2017)

Rr [4.94⋅10 −4,4.7⋅10 −3] mgO2(mgChla) −1s −1 Amaral et al. (2018) f

ks [1.74⋅10 −2,1.15⋅10 −1] mgO2m −2s −1 Stefan and Fang (1994) c

Note. Parameters with empirical values are listed with the values and those calibrated are listed with ranges.
 aCalibrated values from previous study on boreal lake modeling used.  bDaily mean water temperature of the sampled lake is used.  cThe K2, θr, and θs values fitted to 
experimental data under temperatures >10°C are used. Measured ks values for eutrophic lakes with nutrient-rich sediment are used.  dThe PQ10 range obtained from 
observed values in northern wetlands, subtropical wetlands, and boreal and northern temperate lakes with sediments incubated from 0 to 35°C.  eBubble formation was 
found to be activated in two poorly decomposed near-surface bog peats at methane concentrations as low as 20% of the saturation level.  fCommunity respiration rates 
and Chl-a concentrations measured in Lake Janauacá at different times through the year. The Chl-a specific respiration rates are calculated by division.

Table 2 
Values, Units, and Sources of Parameters in the Formulations of Methane and Oxygen Processes
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differentiate the sediment carbon between the fraction utilized for methane production and other processes based 
on the assumption that the carbon supply does not limit methane production. This is a reasonable assumption 
based the large carbon inputs from herbaceous plants, litterfall from trees and inflows from river and streams to 
Amazon floodplain lakes (Melack & Engle, 2010). Sediments in Amazon floodplains generally have moderate 
to high organic carbon content (Moreira-Turcq et al., 2013; Smith et al., 2003; Sobrinho et al., 2016). Sediment 
temperature was initialized with the annual mean near-bottom water temperature and then simulated based on 
heat conduction in water and sediments (Tan et al., 2015).

Methane concentrations (𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶4𝑠𝑠
 ) and vertical transfer in the sediment is simulated by

𝜕𝜕𝜕𝜕𝐶𝐶𝐶𝐶4𝑠𝑠

𝜕𝜕𝜕𝜕
=

𝜕𝜕

𝜕𝜕𝜕𝜕

(

𝐾𝐾𝑚𝑚𝑚𝑚

𝜕𝜕𝜕𝜕𝐶𝐶𝐶𝐶4𝑠𝑠

𝜕𝜕𝜕𝜕

)

+ 𝑃𝑃 − 𝛼𝛼𝐶𝐶𝐶𝐶4
𝐸𝐸𝑠𝑠� (2)

where Kms is molecular diffusivity in sediment, 𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶4
 is the percentage of methane in bubbles, and Es is ebullition. 

Bubbles consist of nitrogen and methane, and their formation is activated when sediment methane concentrations 
reach a saturation level, αe, which is calibrated. The initial bubble diameters are assumed to range between 5 and 
20 mm with a uniform distribution of surface tension at the water-sediment interface.

Methane is transported through the water column by eddy diffusivity, entrainment, and ebullition. The changes in 
methane concentrations (𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶4𝑤𝑤

 ) in the water column are calculated as

𝜕𝜕𝜕𝜕𝐶𝐶𝐶𝐶4𝑤𝑤

𝜕𝜕𝜕𝜕
=

𝜕𝜕

𝜕𝜕𝜕𝜕

(

(𝐾𝐾𝑧𝑧 +𝐾𝐾𝑚𝑚)
𝜕𝜕𝜕𝜕𝐶𝐶𝐶𝐶4𝑤𝑤

𝜕𝜕𝜕𝜕

)

− 𝑂𝑂 + 𝐸𝐸𝐶𝐶𝐶𝐶4𝑤𝑤
+ 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑃𝑃� (3)

where Kz is eddy diffusivity, Km is molecular diffusivity, O is aerobic methane oxidation, 𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶4 ,𝑤𝑤
 is the gas 

exchange with bubbles, Fmet is diffusive methane flux at the water-air interface, and P is methanogenesis in 
the sediment. Methane exchanges at the sediment-water and water-air interfaces are added to the bottom and 
top boundaries, respectively. Advection from fringing habitats may also change methane concentrations, as 
mentioned in the Discussion, but are not included in the 1-D structure of ALBM. Eddy diffusivity is calcu-
lated as Kz = 0.2ε/N 2, where 0.2 is Osborne coefficient, ε is the TKE dissipation rate, and 𝐴𝐴 𝐴𝐴 =

√

−
𝑔𝑔

𝜌𝜌

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 is the 

Brunt-Väisälä frequency, and ρ is water density. Water columns with N < 10 −2 s −1 are treated as well-mixed, and 
the gas concentrations are simulated as the volume-weighted mean.

Aerobic methane oxidation is a function of water temperature, and methane and dissolved oxygen concentrations 
following Segers (1998) and Zhuang et al. (2004):

𝑂𝑂 = 𝑂𝑂max ⋅ 𝑂𝑂𝑂𝑂

𝑇𝑇𝑤𝑤−𝑇𝑇𝑂𝑂0

10

10

𝐶𝐶𝑂𝑂2

𝑘𝑘𝑂𝑂2
+ 𝐶𝐶𝑂𝑂2

𝐶𝐶𝐶𝐶𝐶𝐶4 ,𝑤𝑤

𝑘𝑘𝐶𝐶𝐶𝐶4
+ 𝐶𝐶𝐶𝐶𝐶𝐶4 ,𝑤𝑤

� (4)

where Omax is methane oxidation potential, OQ10 is a Q10 factor, Tw is water temperature, TO0 is a reference temper-
ature, and 𝐴𝐴 𝐴𝐴𝑂𝑂2

 and 𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶4
 are Michaelis-Menten constants.

The governing equations of bubble transfer in the water column are adapted from ocean models (Liang 
et al., 2011; Woolf & Thorpe, 1991). The gas concentration in bubbles of certain size at certain depth and 
time step is calculated by a continuity equation in which the impacts of buoyant rising, gas exchange with 
ambient water, and bubble expansion are included (Liang et al., 2011). Buoyant rising is driven by the hydro-
static pressure gradient across the water columns and kinematic viscosity, and gas exchange by the pressure 
difference between in- and outside of the bubble. The size of a single bubble changes during rising depend-
ing on the air pressure, hydrostatic pressure, and bubble surface tension. Gases in bubbles are assumed to 
release instantly to the atmosphere upon reaching the lake surface. Detailed formulations can be found in Tan 
et al. (2015).

The dissolved oxygen module is based on Stefan and Fang (1994) with modifications to suit the availability of 
observational data. The changes in concentrations of dissolved oxygen 𝐴𝐴

(

𝐶𝐶𝑂𝑂2

)

 in the water column are modeled  as

𝜕𝜕𝜕𝜕𝑂𝑂2

𝜕𝜕𝜕𝜕
=

𝜕𝜕

𝜕𝜕𝜕𝜕

(

(𝐾𝐾𝑧𝑧 +𝐾𝐾𝑚𝑚)
𝜕𝜕𝜕𝜕𝑂𝑂2

𝜕𝜕𝜕𝜕

)

+ 𝑃𝑃𝑃 −𝑅𝑅 − 𝑆𝑆𝑆𝑆𝑆𝑆 − 2 ⋅ 𝑂𝑂 + 𝐹𝐹𝑜𝑜𝑜𝑜g� (5)
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where Ph is oxygen production by photosynthesis, R is community respiration, SOD is sediment oxygen 
demand, O is aerobic methane oxidation and Foxg is oxygen exchange at the air-water interface. Photosyn-
thetic rate is computed as 𝐴𝐴 Ph = Phmax𝜃𝜃

𝑇𝑇𝑤𝑤−30

𝑝𝑝 f (𝐼𝐼𝐼 𝐼𝐼𝑤𝑤)𝐶𝐶Chla , where Phmax is the Chla-specific light-saturation 
rate of photosynthesis, θp is a temperature coefficient estimated as a function of optimal temperature, stand-
ard temperature, and maximum temperature from model input data (Tan et  al.,  2017), f(I,Tw) is a light 
limitation term, I is the incident photosynthetically active radiation, and CChla is Chla concentration. 

𝐴𝐴 𝐴𝐴 (𝐼𝐼𝐼 𝐼𝐼𝑤𝑤) = 𝐼𝐼

(

1 + 2
√

𝐾𝐾1∕𝐾𝐾2

)

∕
(

𝐼𝐼 +𝐾𝐾1 + 𝐼𝐼
2
∕𝐾𝐾2

)

 , where 𝐴𝐴 𝐴𝐴1

(

approximated as 0.7 × 1.1
𝑇𝑇𝑤𝑤−20

)

 and K2 are light 

inhibition and limitation coefficients. Respiration rate depends on temperature and Chla: 𝐴𝐴 𝐴𝐴 = 𝑅𝑅𝑟𝑟𝜃𝜃
(𝑇𝑇𝑤𝑤−30)
𝑟𝑟 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , 

where Rr is the Chla-specific respiration rate at 30°C, and θr is a temperature coefficient. The vertical distribution 
of Chla is assumed uniform, though only involved in photosynthesis within the euphotic zone. The euphotic zone 
is delimited by the depth where PAR was more than 1 µmolm −2 s −1, a value selected because the phytoplankton 

are circulating in turbid water. SOD is a function of temperature and bathymetry: 𝐴𝐴 SOD =
𝑘𝑘𝑠𝑠𝜃𝜃

𝑇𝑇𝑤𝑤−20

𝑠𝑠

𝐴𝐴

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 , where ks 

is the sediment oxygen demand at 20°C, θs is a temperature coefficient, and A is sediment area as a function of 
depth based on the hypsographic curve of depth versus area derived from the lake's bathymetry. As the water 
level varies seasonally, the appropriate portion of the hypsographic curve is used. If the sediments are overlain by 
anoxic water, the SOD is zero. Advection between habitats is not included.

Diffusive gas flux at the water-air interface (F) is calculated following F = k600·(Cw − Ceq), where k600 is gas 
transfer velocity normalized to CO2 at 20°C, Cw is near-surface gas concentration, and Ceq is near-surface gas 
concentration in equilibrium with the atmosphere. Gas transfer velocity is based on MacIntyre et  al.  (2019): 
k600 = c1(εv) 0.25Sc −0.5, where c1 = 0.5 is a constant coefficient, ε is the dissipation rate of TKE at water surface, v 
is kinematic viscosity, and Sc is the Schmidt number. F was calculated for both methane and dissolved oxygen.

2.4.  Biogeochemical Model Sensitivity Tests, Calibration, and Validation

Parameters for calibration were selected through sensitivity tests using a machine learning-based algorithm, clas-
sification and regression trees (CART, Krzywinski & Altman, 2017). The CART method trains a decision tree by 
recursively partitioning the input data into two subgroups by the value of the explanatory variable at each node. 
The decision tree can be pruned by adjusting the stopping criteria including the number of iterations and the size 
of subgroups to achieve the best size of the tree and the lowest misclassification rate. This method has proved 
adequate and widely used in the inspection of multivariant relationships within large complex data (Choubin 
et al., 2018; Guo et al., 2020; Rodrigues & de la Riva, 2014). In our study, a tree size of 200 nodes was found opti-
mal using the cross-validation method. For each case, the model was run with a perturbed parameter ensemble 
(PPE) of size 10,000, and the simulated methane and DO concentrations at lake surface and bottom were used as 
training data for CART. Data training and sensitivity analysis were done using the R package “gbm” (Greenwell 
et al., 2019). Relative influence percentages are based on Friedman (2001).

The model was calibrated separately for each site and water level using a Bayesian approach in which a uniform 
distribution was prescribed to all parameters, and Monte-Carlo based calibrations were run more than once by 
sampling from the posterior distribution obtained from the previous round. The periods for calibration were 

Parameter Units 201503 201506 201510 201601 201609

Rc μmolm −2s −1 2.33⋅10 −2 3.07⋅10 −2 2.05⋅10 −2 5.5⋅10 −2 1.71⋅10 −2

αz – 4.54 3.0 3.50 4.36 5.64

PQ10 – 1.84 2.64 5.99 7.61 1.77

αe – 0.41 0.45 0.86 0.64 0.63

Omax μmolm −3s −1 1.26⋅10 −2 2.52⋅10 −3 2.33⋅10 −2 5.56⋅10 −3 4.43⋅10 −2

Phmax mgO2(mgChla) −1s −1 1.08⋅10 −2 7.76⋅10 −3 3.55⋅10 −2 7.96⋅10 −3 1.15⋅10 −2

Rr mgO2(mgChla) −1s −1 2.54⋅10 −3 4.5⋅10 −3 1.96⋅10 −3 3.37⋅10 −3 4.45⋅10 −3

ks mgO2m −2s −1 7.32⋅10 −2 8.94⋅10 −2 1.27⋅10 −2 3.22⋅10 −2 1.84⋅10 −2

Table 3 
Calibrated Parameter Values for Main Lake
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selected to span the seasonal range of water depths and limnological conditions. The number of the sampling 
round was case-sensitive and decided by the model performance. The size of the PPE equaled number of param-
eters multiplied by 1,000 in each round. For methane diffusive fluxes, the simulations were compared to hourly 
observations while for ebullitive fluxes, daily totals were calculated to compare with the observed daily ebullition 
collected by bubble traps. Simulated DO concentrations were validated against observations at each observational 
depth. The optimal parameter values were selected based on the simulation accuracy of both methane fluxes and 
oxygen concentrations (Tables 3 and 4).

Model validation was done by running simulations for other times using the calibrated parameters. For each site, 
five additional periods were modeled (Table 1) using calibrated parameters from the period with (a) the same 
hydrological phase, and (b) the closest lake depth. Simulated methane fluxes and concentration were compared 

to the measurements to evaluate the model performance. Root-mean-square errors 𝐴𝐴 (RMSE =

√

𝑛𝑛
∑

𝑖𝑖=1

(𝑆𝑆𝑖𝑖−𝑂𝑂𝑖𝑖)
2

𝑛𝑛
 ) were 

calculated for methane diffusive fluxes (μmol m −2 hr −1) and near-surface methane concentrations (μmol L −1). 
Si is simulated value, Oi is measurement, and n is the number of measurements during each simulated period. 
Measured and simulated methane fluxes and concentrations were compared in time-series figures. Measured and 
modeled thermal structure and DO concentrations were evaluated using time-depth diagrams.

3.  Results
Results are presented in three complementary sections. First, sensitivities of the simulated concentrations and 
fluxes to parameters used in the model and their relative importance are presented. Second, the simulated meth-
ane concentrations and fluxes are compared to measurements with examples of the four hydrological phases 
in the main lake and embayment for calibrated and uncalibrated periods. Time-series figures and performance 
metrics are provided. Third, time-depth diagrams of measured and modeled thermal structure and dissolved 
oxygen concentrations at high and low water levels are provided. Subsequently, the discussion examines simu-
lations of specific processes to help decipher influences of various factors and the veracity of the simulations.

3.1.  Parameter Sensitivities

Parameter sensitivity tests were conducted for high and low water periods in the main lake. The simulated methane 
concentrations, methane fluxes and DO concentrations are sensitive to 8 parameters and the relative importance 
(RI) of each parameter is fairly consistent between the two hydrological phases (Table 5). Methane concentrations 
at near-surface and near-bottom are most sensitive to the carbon mineralization rate (Rc), Q10 factors for meth-
anogenesis (PQ10) and oxidation (OQ10), and methane oxidation potential (Omax) during both hydrological phases. 
Diffusive emission is sensitive to the same parameters because it is mainly controlled by near-surface meth-
ane concentration. Ebullitive emission is sensitive to methanogenesis-related parameters, and to the decrease of 
sediment organic carbon with depth and percent saturation of methane concentration, as this initiates bubbling. 
Near-surface and near-bottom DO concentrations are sensitive to community respiration (Rr), sediment oxygen 
demand, the Q10 factor of methanogenesis, and carbon mineralization rate. Only near-surface DO is sensitive to 

Parameter Units 201502 201506 201510 201601 201609

Rc μmolm −2s −1 4.95⋅10 −2 4.98⋅10 −2 3.96⋅10 −2 5.99⋅10 −2 2.92⋅10 −2

αz – 4.93 2.59 3.09 3.0 4.49

PQ10 – 2.9 2.57 9.29 6.97 5.48

αe – 0.53 0.99 0.43 0.42 0.52

Omax μmolm −3s −1 6.68⋅10 −3 2.19⋅10 −3 1.28⋅10 −2 6.19⋅10 −3 1.9⋅10 −3

Phmax mgO2(mgChla) −1s −1 2.2⋅10 −2 1.51⋅10 −2 6.89⋅10 −3 2.54⋅10 −3 2.33⋅10 −2

Rr mgO2(mgChla) −1s −1 9.39⋅10 −4 4.63⋅10 −3 3.93⋅10 −4 4.11⋅10 −3 1.37⋅10 −3

ks mgO2m −2s −1 3.86⋅10 −2 6.12⋅10 −2 5.85⋅10 −2 1.15⋅10 −1 3.33⋅10 −2

Table 4 
Calibrated Parameter Values for Embayment
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photosynthesis potential (Phmax) and is more sensitive to photosynthesis potential at low water than at high water, 
probably due to the higher chlorophyll concentrations at low water. High-water near-surface DO is sensitive to 
methanogenesis-related parameters and thus methane concentration, indicating that the longer methane diffusion 
pathway makes methanotrophy an important sink for both methane and oxygen. For consistency, the parameters 
important for at least one hydrological phase were selected to be calibrated for all sites and time periods.

3.2.  Methane Fluxes and Concentrations

Main lake - Simulated methane fluxes and concentrations for calibrated (Table 6) and uncalibrated periods (Table 
S1 in Supporting Information S1) vary in their similarity to measurements. RMSE values for near-surface CH4 
concentrations ranged from 0.5 to 1.5 μmol L −1 for calibrated periods from 0 to 3.7 μmol L −1 for uncalibrated 
periods. RMSE values for CH4 fluxes ranged from 2.6 to 85 μmol m −2 hr −1 for calibrated periods from 1.3 to 
68 μmol m −2 hr −1 for uncalibrated periods. Time-series of simulated fluxes for calibrated periods show generally 
good agreement with measurements in Oct 2015 and Jan 2016 but less agreement in Aug 2016 when simulated 
values are often higher (Figure 4). During uncalibrated periods, simulated fluxes were similar to measurements 
except for occasional mismatches (Figure S1 in Supporting Information S1).

Vertical profiles of simulated CH4 concentrations during high water in Jun 2015 were similar to measurements near 
mid-night (22:45 hr), but differed considerably at mid-day and sunrise (Figure S2 in Supporting Information S1). 
Vertical variations were usually lacking during low water (October 2015 and January 2016) in both measure-
ments (except for a couple of times in October 2015) and simulations (Figure S3 in Supporting Information S1). 

Parameters

Near-surface CH4 Near-bottom CH4 dflux eflux Surface DO Bottom DO

201506 201510 201506 201510 201506 201510 201506 201510 201506 201510 201506 201510

OQ10 2.4 1.8 2.5 1.4 2.3 2.3 0 0 2.1 0.8 0.3 1.0

𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶4
  0.8 1.48 14.2 0.4 14.3 1.5 0 0.03 0.3 0 0.04 0

𝐴𝐴 𝐴𝐴𝑂𝑂2
  0.03 0.03 0.05 0.01 0.03 0.02 0 0 0.07 0.01 0 0

Rc 23.8 22.0 23.1 22.5 23.0 21.7 8.8 8.8 14.6 2.2 9.0 1.7

αz 0.03 0.1 0.06 0.01 0.06 0.2 20.0 19.5 0.03 0 0.07 0

PQ10 56.7 57.3 56.7 60.1 57.2 56.6 24.2 25.9 53.6 7.5 37.4 5.9

αe 0.8 14.3 0.7 0.2 0.8 1.1 46.7 45.5 0.05 0.03 0 0

Omax 14.2 1.0 0.9 0.3 0.9 14.1 0 0 1.8 0.5 0.6 0.8

Phmax 0 0 0 0 0 0 0 0.03 0.4 34.4 0.2 2.4

Rr 0.1 0.4 0.1 0.03 0.2 0.5 0 0 1.6 22.7 2.2 38.9

ks 0.4 0.8 0.4 15.0 0.5 0.9 0 0.04 24.9 31.9 49.9 49.2

Note. Values above 20 are bold.

Table 5 
Relative Importance (RI) for Parameters Tested in the Sensitivity Analysis; Diffusive Flux (dflux) and Ebullitive Flux (efflux)

Site Main lake Embayment

Year 2015 2015 2016 2016 2015 2015 2015 2016 2016

Month Jun Oct Jan Aug Feb Jun Oct Jan Aug

Near-surface CH4 (μ mol L −1) 0.5 (3) 0.5 (11) 1.5 (7) 0.8 (20) 0.6 (5) 2.0 (3) 2.2 (7) 2.8 (7) 2.2 (12)

Diffusive CH4 flux 
(μ mol m −2 hr −1)

2.6 (6) 33 (22) 85 (14) 45 (37) 23 (12) 28 (8) 246 (18) 242 (15) 190 (24)

Note. Number in parenthesis is the number of measurements during each simulated period. Mar 2015 not shown because 
only one measurement overlapped simulated period.

Table 6 
Root-Mean-Square Errors (RMSE) for Simulated Variables During Different Water Levels in Main Lake and Embayment 
for Calibrated Periods
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Figure 4.  Measured (red dots) and simulated (lines) diffusive fluxes in Lake Janauacá (main lake) for June 2015 (a), October 2015 (b), January 2016 (c), and August 
2016 (d). Note different scales on y-axes. All replicates of measured fluxes are shown and expressed as hourly values. Simulated diffusive fluxes are summed for each 
hour and the values are assigned to the end of each hour. Mar 2015 not shown because only one measurement overlapped simulated period.

Simulation dates

Main lake Embayment

ALBM Measurements ALBM Measurements

S days
Flux (μ mol 

m −2 d −1) n
Flux (μ mol 

m −2 d −1)
S 

days
Flux (μ mol 

m −2 d −1) n
Flux (μ mol 

m −2 d −1)

Calibrated Feb/Mar 2015 1.2 253 4 152 3.3 461 11 482

Jun 2015 3.3 146 6 90 1.4 250 8 630

Oct 2015 1.3 1,261 22 1,331 1.3 5,496 8 6,227

Jan 2016 2.4 2591 14 3,838 1.4 6,931 13 6,495

Aug 2016 5.5 825 37 497 3.5 3,380 15 2388

Uncalibrated Jan 2015 2.3 182 12 68 2.9 426 16 365

May 2015 2.4 37 8 22 2.6 318 8 224

Aug 2015 1.5 184 8 629 3.4 1,239 8 560

Feb 2016 2.3 2975 15 1,800 1.3 2445 15 3,221

Apr 2016 2.5 368 24 275 1.3 2038 24 2431

Note. For ALBM simulations, average diffusive CH4 fluxes computed as the sum of fluxes divided by the length of simulation, 
and for measurements as the arithmetic mean of the measurements. Both averages are converted to daily values. S days is 
number of days simulated; n is number of measurements.

Table 7 
Average Daily Diffusive CH4 Fluxes (μ mol m −2 d −1): ALBM (Calibrated and Uncalibrated) and Measurements
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Time-series of simulated near-surface concentrations were consistently less than measurements in Oct 2015 and 
consistently higher than measurements in Jan and Aug 2016 (Figure S4 in Supporting Information S1). During 
uncalibrated periods simulated near-surface concentrations matched measurements well in January 2015 and 
February and April 2016 but less well in May and August 2015 (Figure S5 in Supporting Information S1).

Average daily diffusive CH4 fluxes, calculated from measurements and simulations, have generally consistent 
seasonal patterns with higher and lower values matching, albeit with conspicuous differences in August 2016 
(calibrated) and August 2015 and February 2016 (uncalibrated (Table 7). The few comparisons available for daily 
ebullitive fluxes indicate negligible fluxes except during low water (Table S2 in Supporting Information S1).

Embayment—Simulations of methane fluxes and concentrations for calibrated (Figure  5 and Figures S6–S8 
in Supporting Information S1; Tables 6 and 7 and Table S2 in Supporting Information S1) and uncalibrated 
(Table 7, Tables S1 and S2 in Supporting Information S1; Figures S9 and S10 in Supporting Information S1) peri-
ods vary in their similarity to measurements. RMSE values for near-surface CH4 concentrations ranged from 0.6 
to 2.8 μmol L −1 for calibrated periods from 0.1 to 3.9 μmol L −1 for uncalibrated periods. RMSE values for CH4 

Figure 5.  The same as Figure 4 for Lake Janauacá (embayment) in February 2015 (a), June 2015 (b), October 2015 (c), January 2016 (d), and August 2016 (e).
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fluxes ranged from 23 to 246 μmol m −2 hr −1 for calibrated periods from 14 to 88 μmol m −2 hr −1 for uncalibrated 
periods. Time-series of simulated fluxes for calibrated and uncalibrated periods show generally good agreement 
with measurements except for occasional mismatches (Figure 5 and Figure S9 in Supporting Information S1).

Vertical profiles of simulated CH4 concentrations during high water in Jun 2015 were similar to measurements 
in the upper 2 m, but progressively diverged at deeper depths with simulated values exceeding measurements 
(Figure S6 in Supporting Information  S1). Vertical variations were usually lacking during low water (Janu-
ary 2016) in both measurements (except for a few high values near the bottom) and simulations (Figure S7 in 
Supporting Information S1). Time-series of simulated near-surface concentrations were consistently more than 
measurements in August 2016, and comparisons varied in other periods with no patterns (Figures S8 and S10 in 
Supporting Information S1).

Average daily diffusive CH4 fluxes, calculated from measurements and simulations, have generally consistent 
seasonal patterns with higher and lower values matching, albeit with conspicuous differences in August 2016 
(calibrated) and August 2015 and February 2016 (uncalibrated (Table S1 in Supporting Information S1). The few 
data available for daily ebullitive fluxes indicate comparable values and seasonal patterns for measurements and 
simulations except for a mismatch in values in January 2016 (Table S2 in Supporting Information S1).

An overall comparison of measured and simulated fluxes that combines all replicates of measured diffusive 
fluxes from both sites and the wide range of water levels and associated ecological conditions indicates consider-
able variability (Figure S11 in Supporting Information S1), as expected by the results illustrated in figures with 
measurements and simulated methane fluxes. Temporal variability is not expected to be replicated exactly by 
ALBM, given the inherent variability of methane fluxes and sparseness of field data.

3.3.  Thermal Structure and Dissolved Oxygen Concentrations

The hydrodynamic model simulated well the diurnal stratification and nocturnal mixing in the open lake and 
embayment during both high and low water periods (Figures 6 and 7). Time-depth plots of simulated and meas-
ured DO values for high and low water periods in main lake (Figure  6) and embayment (Figure  7) indicate 
general similarities in diel and vertical variations. However, in Oct 2015 in the main lake larger day-night differ-
ences were simulated than measured (Figures 6b3 and 6b4). RMSE for simulated near-surface dissolved oxygen 
concentrations (mg L −1) during calibrated periods ranged from 0.9 to 4.4 (Table 8), and for uncalibrated periods 
from 0.6 to 6.3 (Table S3 in Supporting Information S1). RMSE values for simulated near-bottom dissolved 
oxygen concentrations (mg L −1) during calibrated periods ranged from 0.1 to 1.4, except for larger values at low 
water (October 2015); the especially high value in August 2016 is misleading because most of the water column 
was anoxic. During uncalibrated periods RMSE values from 0.1 to 2.0 mg L −1, except for larger values during 
low water (January 2015 and February 2016) in the main lake (Table S3 in Supporting Information S1).

4.  Discussion
Hipsey et al. (2020) identified several aspects of model performance including comparison of simulated variables 
with observations, as described in Results, and evaluation of the processes being simulated. Here, we discuss the 
algorithms used, the basis for revisions of the original ALBM formulations and alternative algorithms for the 
physical and biogeochemical processes and the inputs needed to apply these algorithms. We compare modeled 
rates of photosynthesis, respiration and methane oxidation with measurements from Amazon floodplain lakes. 
We then consider challenges and limitations of modeling methane fluxes including the heuristic value of the 
model and how the model's result could be used to extend in time and space estimates of methane emissions.

4.1.  Algorithms and Processes

4.1.1.  Hydrodynamic Models and Inputs

While 3-dimensional hydrodynamic models, such as AEM3D, can characterize most of the relevant physical 
processes in lakes, these models are computationally demanding. Hence, application of 3-dimensional models 
to regional analyses over multiple years is not currently practical. One-dimensional hydrodynamic models, 
such as the “DYnamic REservoir Simulation Model” (DYRESM) and its derivatives (Hipsey et  al.,  2019; 
Imberger & Patterson, 1981), also have well characterized parameterizations of physical processes. DYRESM is 
computationally efficient and has been shown to be accurate with respect to temporal variations in temperature 

 19422466, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S003385, W
iley O

nline L
ibrary on [19/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Advances in Modeling Earth Systems

GUO ET AL.

10.1029/2022MS003385

15 of 26

structure in seasonally stratified lakes and reservoirs (Yeates & Imberger,  2003). A recent extension to the 
Multi-Basin DYnamic REservoir Simulation Model (MB-DYRESM) has been developed to bridge between 
one-dimensional lake models and computationally expensive, three-dimensional lake models (Zhou et al., 2021).

Given the importance of diel variations in physical processes in shallow, warm water lakes, as well as other types 
of lakes in some seasons, meteorological data at least hourly intervals are required as inputs. Ideally, meteorologi-
cal sensors are deployed on or near the lake, but meteorological measurements are sparse for Amazon floodplains 
and seldom on lakes elsewhere. Alternatives for regionalization may be output of the Weather Research and 
Forecasting model (e.g., Yang & Dominguez, 2019) or reanalysis results, such as the 3-hourly MERRA-2 data at 

Figure 6.  Time-depth plots of measured and simulated temperatures (a1 to a6) and dissolved oxygen (DO) concentrations (b1 to b6), respectively, during high water 
(June 2015) and low water (October 2015 and January 2016) in Lake Janauacá (main lake). White dots indicate depths of thermistors or DO sensors. Both the measured 
and simulated temperatures were averaged with 5-min bins.
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0.5° resolution (https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/), or the ERA5-Land hourly meteorology data 
at 0.1° (∼9 km) resolution (https://doi.org/10.24381/cds.e2161bac). Daily data, such as used for climate projec-
tions, are not suitable (e.g., Frieler et al., 2017).

The revised version of ALBM uses a formulation of Kz derived as a TKE-based ε. As an alternative to estimates 
of TKE by hydrodynamic models, ε can be calculated with meteorological data and thermal structure of the lake, 
as described in MacIntyre et al. (2019).

Hydrodynamic simulations with AEM3D were done as part of an analysis of spatial variations in carbon diox-
ide in L. Janauacá (Amaral et al., 2021) and illustrate the potential influence of lateral exchanges and advection 
on dissolved gas concentrations. In the embayment, the presence of floating plants fringing open water led to 

Figure 7.  The same as Figure 6 for high water (June 2015) and low water (January 2016) in Lake Janauacá (embayment). White dots indicate depths of thermistors or 
DO sensors.

Site Main lake Embayment

Year 2015 2015 2015 2016 2016 2015 2015 2015 2016 2016

Month Mar Jun Oct Jan Aug Feb Jun Oct Jan Aug

Surface DO (mg L −1) 1.3 0.9 3.7 1.4 1.4 1.9 1.6 2.2 1.0 4.4

Near-bottom DO (mg L −1) 1.0 0.8 4.8 0.6 1.4 1.2 0.1 2.6 0.4 8.6

Note. If lower water column was anoxic, deepest DO sensor was just above oxycline.

Table 8 
Root-Mean-Square Errors for Calibrated Simulations of Near-Surface and Near-Bottom Dissolved Oxygen Concentrations 
(mg L −1) at Different Water Levels in Lake Janauacá, Main Lake and Embayment Based on 10-Minute Readings of Moored 
DO Sensors
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differential heating and cooling that resulted in diel changes in the direction and depths of lateral flows. In the open 
lake, exchange between the littoral and offshore zones occurred at the surface and interior of the lake, and were 
moderated by wind direction, temperature differences and internal wave motions. A similar approach using meth-
ane concentrations in floating plants or flooded forests as transported and dispersed by AEM3D could be done.

4.1.2.  Biogeochemical Models of Fluxes and Processes

4.1.2.1.  Diffusive Methane Flux

Emission of methane by diffusive flux depends on the concentration gradient near the air-water interface and on 
the gas transfer velocity that depends on turbulence as a function of heating, cooling and wind speed. The revised 
version of ALBM uses a formulation of the gas transfer velocity that uses ε, an improvement especially relevant 
to warm water conditions (MacIntyre et al., 2019, 2021). Previous versions of ALBM used empirically derived 
relations with wind speed (Riera et  al.,  1999) or wind speed and thermal conditions in the lake (Heiskanen 
et al., 2015) derived with data from northern lakes. These formulations do not represent the enhanced turbulence 
observed under strong near-surface stratification in tropical lakes and other warm waters.

4.1.2.2.  Ebullition

The release of methane via bubbles depends on processes in the sediments and overlying water. Given the impor-
tance and wide variation in ebullition reported for Amazon floodplain lakes (Barbosa et al., 2021), the mixed 
success in simulating these fluxes raises concerns regarding the processes modeled or not included. Once meth-
ane concentrations in the pore water reaches saturation, bubbles are initiated. Porosity of the sediments, based 
on a study of two Amazon lakes by Devol et al. (1984), was included. However, release of bubbles may also 
be influenced by variations in hydrostatic pressure caused by decreases in atmospheric pressure or water level, 
by bottom-shear owed to currents or waves, or possibly by disturbances from fish or benthic invertebrates (as 
summarized in Barbosa et al., 2021). These processes are not represented in the current model. Tang et al. (2010) 
illustrated effects of variations in water level and atmospheric pressure on ebullition in modifications of a 
process-based wetland model. Barbosa et al. (2021) show an exponentially increasing rate of ebullition as water 
levels fall at increasing rates with data for Lake Janauacá.

The rising and dissolution of bubbles through the water column are based on equations developed for oceans, as 
described by Tan et al. (2015). A suite of physical processes including how hydrostatic pressure influences rise 
rates, bubble expansion and exchange with water in relation to pressure differences and surface tension, could be 
added, though doing so requires new parameterizations and assumptions. An alternative approach is provided by 
McGinnis et al. (2006) and Langenegger et al. (2019).

4.1.2.3.  Methane Production

Several factors influence the production of methane, including temperature, supply and metabolic availability of 
organic matter, redox conditions and microbial activity (Bridgham et al., 2013; Grasset et al., 2021; D’Ambrosio 
& Harrison,  2022). ALBM used temperatures based on measurements and thermal simulations, and Q10 for 
relevant processes were obtained from the literature or calibrated. The type and fraction of sediment utilized for 
methane production in Amazon lakes is not known and was not differentiated by the model. Furthermore, the 
nature of microbial communities and their influence on methane production are not known for Amazon lakes.

Using chambers deployed over sediments with water slowly circulating within the chamber, Smith-Morrill (1987) 
measured methane fluxes from sediments under anoxic water in Lake Calado, an Amazon floodplain lake simi-
lar to Lake Janauacá, of ∼30–50  mmol CH4 m −2  d −1. This flux is indicative of methanogenesis in the sedi-
ments, though not actual rates of methanogenesis. Given the variations of sediments on Amazon floodplains, 
further studies will likely reveal different methane production rates associated with different sediments (Guyot 
et al., 2007; Hedges et al., 1986; Martinelli et al., 2003; Moreira-Turcq et al., 2013; Smith et al., 2003). However, 
as reviewed by D’Ambrosio and Harrison (2022), a wide range of approaches, including sediment incubations, 
benthic chambers, and models, have been utilized to estimate methane and production and sediment fluxes, all 
of which have limitations.

4.1.2.4.  Methane Oxidation Under oxic Conditions

Simulated rates of methane oxidation varied among seasons and between the main lake and embayment (Table S4 
in Supporting Information S1). These results are considerably lower, with a few exceptions, than measurements 
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of methane oxidation in oxic water of the main lake and embayment in Lake Janauacá during rising, high, falling 
and low water levels reported by Barbosa et al. (2018). In that study, CH4 oxidation was measured as the CH4 
concentration decline over time following the procedure proposed by Utsumi et al. (1998). Volumetric CH4 oxida-
tion rates ranged from 0.4 to 11 mmol CH4 m −3 d −1, averaging 2.8 mmol CH4 m −3 d −1 in the embayment and 
from 0.1 to 5 mmol CH4 m −3 d −1, averaging 1.8 mmol CH4 m −3 d −1in the main lake. Rates were higher near the 
oxycline. Depth-integrated rates averaged 9.1 mmol CH4 m −2 d −1 in the embayment and 15.7 mmol CH4 m −2 d −1 
in the main lake, which often had a deeper oxic zone.

Methane concentrations, dissolved oxygen and temperature are included in the algorithm used for methane oxida-
tion. The range of values used to bound the calibration of Omax are from Barbosa et al. (2018), and the calibrated 
values range over an order of magnitude (Tables 3 and 4). The fixed values of the Michaelis-Menten constants (

𝐴𝐴 𝐴𝐴𝑂𝑂2
 and 𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶4

 ) are from Seger's (1998) literature review and a calibrated value derived for a study of boreal lakes 
(Guo et al., 2020); these may need further modification for the conditions in tropical floodplain lakes. For exam-
ple, methane oxidation rates decreased by 25%–60% as 𝐴𝐴 𝐴𝐴𝑂𝑂2

 varied from 50,000 to 150,000; the fixed value used 
was 78,000.

Barbosa et al. (2018) found a positive relation between volumetric rates of methane oxidation (Mox, expressed 
as mg  C  m −3  d −1) and initial dissolved CH4 concentrations ([CH4], expressed as μmol  L −1). An incorrect 
equation is shown in Barbosa et al. (2018) for this relation; the correct equation is Mox = 65.8 [CH4] −1.4. 
Thottathil et al. (2019) developed a model of the kinetics of CH4 oxidation based on temperature, CH4 concen-
trations and non-linear effect of DO concentrations, expressed by an equation in general and with the fitted 
parameters specific to a set of northern lakes. The applicability of this relation to other types of lakes has yet 
to be tested.

Further complexity is indicated by the observations of Morana et al. (2020) that methanotrophy was decreased as 
sunlight increased in tropical African lakes.

4.1.2.5.  Processes Influencing DO Concentrations

Methane production and oxidation are influenced by DO concentrations, which result from processes supplying 
or consuming DO, including algal photosynthesis, methane oxidation, water-column respiration and SOD plus 
exchange with the atmosphere. Several modifications were made to the algorithms modeling DO changes in 
ALBM to suit conditions in tropical floodplain lakes. One difference from previous versions of ALBM is the 
use of chlorophyll-a concentrations and expressing processes per Chla. Instead of modeling growth and losses of 
small-sized (e.g., cyanobacteria) and large-sized (e.g., diatoms) phytoplankton, measured Chla concentrations are 
an input, and chlorophyll-specific rates of photosynthesis and community respiration are incorporated into the 
model and calibrated with field data. In addition, SOD was added given the warm temperatures, shallow water 
and organic-rich sediments in tropical floodplain lakes.

Simulated rates of photosynthesis varied among seasons and between the main lake and embayment (Table S5 
in Supporting Information S1). These results are generally lower than measurements in Lake Janauacá and in 
several similar lakes. Amaral et al. (2018) reported rates of planktonic photosynthesis in Lake Janauacá from 67 
to 2,950 mmol O2 m −2 d −1 spanning the period from September 2015 to May 2016 in the main lake and embay-
ment. Forsberg et al. (2017) reported areal photosynthetic rates of 95 ± 65 (±SD, n = 90; range 4.7–361) mmol 
O2 m −2d −1 for Amazon floodplain lakes influenced by sediment and nutrient-rich rivers.

Simulated rates of photosynthesis are based on simplified equations and parameter values from several sources. 
Phmax values are within the range reported by Forsberg et al. (2017). The light inhibition and limitation coeffi-
cients (K1 and K2) are based on laboratory incubations at a series of temperatures and light levels of phytoplank-
ton and are unlikely to be appropriate for the phytoplankton in Amazon floodplain lakes.

Simulated rates of planktonic respiration varied among seasons and between the main lake and embayment 
(Table S6 in Supporting Information S1). Some results are similar and others different from measurements in 
Lake Janauacá reported by Amaral et al. (2018) and for several similar lakes surveyed by Forsberg et al. (2017). 
For example, Amaral et al. (2018) reported rates of aerobic plankton respiration in Lake Janauacá of 97 mmol 
O2 m −3 d −1 in the lake and 56 mmol O2 m −3 d −1 in the embayment. For Amazon floodplain lakes influenced 
by sediment and nutrient-rich rivers Forsberg et  al.  (2017) reported volumetric respiration rates of 48 ± 30 
(±SD, n = 97; range 7.5–210) mmol O2 m −3d −1 and areal rates of 193 ± 118 (±SD, n = 95; range 14–525) 
mmol O2 m −2d −1. Additional estimates of water-column respiration reported by Vidal et  al.  (2015) in five 
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Amazon floodplain lakes ranged from ∼0.5 to 1.5 mmol O2 m −3 h −1 during high water and from 0.6 to 4.3 mmol 
O2 m −3 h −1 during low water; as 24-hr totals, these rates are similar to those by Forsberg et al. (2017) and Amaral 
et al. (2018).

Sediment oxygen demand depends on the nature of the sediments and whether the overlying water is anoxic or 
oxic. The sediments of Amazon floodplain lakes sequester some organic carbon and release CO2 and CH4 to 
the overlying as a portion of the sedimented carbon is metabolized (Melack & Engle, 2010). As an indication 
of microbial activity in sediments, a simple model of diagenesis for two small Amazon lakes estimated 6 and 
24 mmol m −2 d −1 of carbon being oxidized (Devol et al., 1984). Using submerged chambers in an Amazon flood-
plain lake similar to Lake Janauacá, Smith-Morrill  (1987) measured dissolved oxygen uptake during periods 
when the near-bottom waters were aerobic of ∼50 mmol m −2 d −1. For comparison, ks values from Stefan and 
Fang (1994; Table 2), converted to mmol m −2 d −1, are 47 and 310. Simulated SOD values are expressed per m −3 
as an effect on the overlying water, as noted in the Results.

During all simulated periods daily total DO fluxes were from the atmospheric into the water. As examples 
for the periods illustrated in Figures 6 and 7, fluxes into the embayment were 53 mmol m −2 d −1 (Jun 2015) 
and 160  mmol  m −2  d −1 (Jan 2016), and fluxes into the main lake were 166  mmol  m −2  d −1 (Jun 2015) and 
10 mmol m −2 d −1 (Oct 2015). During low water in October 2015, Chla concentrations were higher (58 μg L −1) 
than other periods, resulting in elevated photosynthesis during day (Table S5 in Supporting Information S1) with 
periods of DO fluxes from the lake to the atmosphere, reducing the total daily flux into the lake. DO input from 
the atmosphere is often higher than photosynthetic DO production and is an important term among the terms 
influencing DO concentrations.

4.1.2.6.  Diel Variations

Diel cycles of stratification and mixing influence the fluxes of methane by changing the vertical distribution 
of dissolved methane and oxygen and gas exchange across the air-water interface. Diel patterns of stratifi-
cation and mixing are characteristic of shallow tropical waters, and are conspicuous in Lake Janauacá for 
temperatures, dissolved oxygen and methane (Figures 6 and 7, Figures S2, S3, S6, S7 in Supporting Infor-
mation S1). Measurements in Lake Janauacá indicate that near-surface CH4 concentrations, fluxes and gas 
exchange velocities were variable over 24-hr periods (Barbosa et al., 2020). Values were higher during the 
day, but a statistically significant difference between day and night was only found for diffusive fluxes in 
the embayment. This result is consistent with the day-night differences in wind speed, that were statistically 
significantly higher during the day. Visual inspection of Figures  4 and  5, Figures S1 and S9 in Support-
ing Information S1 is suggestive of day-night differences for some periods, and also considerable temporal 
variability per hour. We did not perform extended simulations to allow a quantitative analysis of day-night 
proportions.

4.2.  Challenges and Limitations of Models

4.2.1.  Structural and Numerical Modeling Issues

As noted by Arhonditsis et al. (2008) and others, because ecological processes can be described by a variety of 
mathematical relations, and given the uncertainty underlying model structures and data, a single set of parameter 
values, applicable generally, is not a reasonable expectation, that is, the model equifinality. Instead, evalua-
tion of possible inputs, model structures and parameter values on simulated results is necessary (e.g., Tang & 
Zhuang, 2008). The sensitivity analyses included demonstrate the relative importance of simulated processes. 
The ranges of values considered for calibration are based on literature values and, in a few cases, results for 
Amazon floodplains. Moreover, given the large seasonal variations in environmental conditions, calibrations 
were done for different hydrological periods, instead of assuming constant values. Although our model simu-
lations reproduce well the observations at our study sites, extrapolating the set of parameters obtained to other 
Amazon lakes and floodplains remains a challenge. A spatially explicit based model parameterization (e.g., 
Chen & Zhuang, 2012) might be needed given the heterogeneous Amazonia landscapes. Also, because the cali-
brated parameters are part of functional relations or rates that are derived from fairly complicated biological 
measurements, to fully account for the effects of the uncertainties of the observational and experimental data, 
would require incorporation of insufficiently known quantitative and qualitative uncertainties into the Bayesian 
calibration.
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4.2.2.  Methane Fluxes and Related Processes

Seasonal diffusive methane fluxes were simulated well in comparison to field measurements, though short-term 
temporal variability was represented less well. The veracity of simulated ebullition is less clear given the paucity 
of comparative field data and the episodic nature of ebullition. Simulated methane oxidation rates were often 
considerably lower than measured rates which suggests revised coefficients or algorithms are needed. Methano-
genesis in sediments is a complex process influenced by biological and chemical conditions with few measure-
ments of in situ rates available for comparison. Hence, the simple parameterization used will depend on further 
studies for improvement. Three-dimensional results from hydrodynamic modeling, such as advective exchanges 
with fringing habitats and spatial differences in mixed layer depths and turbulence, could enhance the estimates 
of methane concentrations and fluxes. Further evaluation of the algorithms used in AEM3D to estimate TKE, and 
the use of TKE in gas exchange and mixing calculations are recommended.

Several biogeochemical aspects of methane production and consumption are not included in the model. The 
production of CH4 via the CO2 reduction pathway or acetoclastic methanogenesis and associated differences 
in isotopic fractionation, and the composition of microbial communities active in methane processes are not 
represented. Methane production in oxic waters has been detected (e.g., Grossart et al., 2011), with several mech-
anisms supporting the process suggested (Bartosiewicz et  al.,  2022). However, as is evident in the exchange 
between Günthel et al. (2021) and Peeters and Hofmann (2021), even in well studied lakes, the magnitude of oxic 
methane production requires further study that combines analyses of physical and biological processes. Although 
stable isotope tracer experiments in five tropical African lakes indicated an association of oxic CH4 production 
and phytoplankton metabolism, CH4 emissions to the atmosphere were predominantly supported by CH4 gener-
ated in sediments and physically transported to near-surface waters (Morana et al., 2020). Anaerobic oxidation of 
methane (AOM) can occur in marine and freshwater sediments and depends on availability of terminal electron 
acceptors such as sulfate, nitrate, iron, manganese and organic acids (Knittel & Boetius, 2009; Reed et al., 2017; 
Roland et al., 2021). For example, Martinez-Cruz et al. (2018) measured potential rates of AOM based on incu-
bations of sediment slurries spiked with  13CH4 from arctic, temperate and tropical lakes. The importance of AOM 
in lakes and reservoirs is uncertain and depends on several interacting chemical, physical and microbial processes 
not well constrained with available data. In sediments of Amazon floodplain lakes, concentrations of potential 
terminal electron acceptors in lake and pore waters are low (Furch, 1997), though AOM could be occurring.

4.2.3.  Regionalization in Time and Space

Key challenges to regionalization of methane fluxes in the Amazon basin are the large seasonal variation in 
inundated areas and habitats, the wide variety of aquatic ecosystems throughout the Amazon basin, and the 
variability in methane fluxes in time and space (Melack et  al.,  2022). Models, such as those discussed here, 
offer one approach to regionalization of methane fluxes. To do so would entail seasonal and annual simulations 
that require modification of the hydrodynamic and biogeochemical models to run efficiently for longer times 
and with different inputs than in the versions presented. Downscaled reanalysis meteorological products can 
be utilized. Remote sensing estimates of inundation at multiple temporal and spatial scales are now available 
(Fassoni-Andrade et al., 2021; Fleischmann et al., 2021; Parrens et al., 2019). Incorporation of hydrological and 
hydraulic models of inundation are also essential, and several such models are available and have been applied 
successfully to the Amazon basin (Ji et al., 2019; Paiva et al., 2013; Rudorff et al., 2014).

Though several wetland models have been applied to Amazon wetlands, these are not well designed for the 
conditions on floodplains. For example, the Joint UK Land Environment Simulator (JULES) (Clark et al., 2011), 
the Lund-Potsdam-Jena model (LPJ-WSL; Zhang et  al., 2016), LPX-Bern model (Ringeval et  al., 2014), and 
WetCHARTs (Bloom et al., 2017), do not explicitly include methanogenesis, methane oxidation, mixing through 
the water, ebullition, or air-water exchange. In these models, grid-average methane fluxes are controlled by 
soil temperature and carbon availability or heterotrophic respiration. Walter and Heimann (2000), TEM-MDM 
(Zhuang et al., 2004), JPL-WHyMe (Wania et al., 2010) and CLM4Me (Riley et al., 2011) model diffusive emis-
sion as molecular diffusion through soil layers.

Optical and trophic conditions vary considerably among Amazon floodplain lakes (Melack et al., 2009, 2021). 
Hence, simulations of methane fluxes from lakes throughout the region will require modifying parameter 
values and inputs from those used for Lake Janauacá. In addition to incorporation of data from field studies, 
remote sensing offers approaches for estimating chlorophyll, suspended sediment and dissolved organic matter 
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concentrations, though the optically complex waters add analytical difficulty and uncertainty (Fassoni-Andrade 
& Paiva, 2019; Novo et al., 2006; Sayers et al., 2015; Silva et al., 2019).

Another difficulty is the variable mosaic of habitats, including open water, flooded forests, and floating herbaceous 
plants, as inundation changes through the year (Hess et al., 2015; Melack & Hess, 2010). Floodplain bathymetry is an 
essential aspect of the occurrence and variations in these habitats, and remote sensing techniques can be used to esti-
mate bathymetry (Fassoni-Andrade et al., 2020). A more complete model needs to incorporate temporal changes in 
habitat areas and water levels and lateral exchanges between interconnected habitats to calculate methane emissions. 
Furthermore, environmental conditions and processes influencing methane fluxes differ among open water and inun-
dated vegetated areas as shown by fluxes from water surfaces in floating herbaceous plants and flooded forests meas-
ured by Barbosa et al. (2020) and from tree trunks by Pangala et al. (2017) and Gauci et al. (2021). However, modeling 
plant-mediated transport is premature given the lack of a mechanistic understanding of the processes, large diversity 
of plants and highly variable fluxes, though clearly needed as relevant information becomes available. Additionally, 
as water levels fall, large areas shift to unflooded land with extensive areas of woody and herbaceous vegetation and 
exposed sediments. Models of methane uptake or release by soils and possibly via plants under these conditions could 
be adapted from terrestrial models such as TEM (Liu et al., 2020; Tang et al., 2010; Zhuang et al., 2013). Therefore, 
a comprehensive model of methane fluxes associated with Amazon floodplains requires further model developments.

Appendix A:  Terms and Names of Modeled and Physical Variables, and Parameters 
and Coefficients
Terms and names of modeled and physical variables, and parameters and coefficients are listed for fixed values 
(*) and # calibrated (#) values. Units are shown as usually reported, not at time-step of simulations.

Term Name, units
P	 Methanogenesis in sediment, 𝐴𝐴 𝐴𝐴molm

−2
s
−1

𝐴𝐴 𝐴𝐴𝐴𝐴 	 #Carbon mineralization rate, 𝐴𝐴 𝐴𝐴molm
−2
s
−1

αz	 #Coefficient of decrease in P with sediment depth, unitless
PQ10	 #Q10 factor for P, unitless

𝐴𝐴 𝐴𝐴𝑠𝑠 	 Sediment temperature, 𝐴𝐴
◦

C

𝐴𝐴 𝐴𝐴𝑝𝑝0 	 *Reference temperature for P, 𝐴𝐴
◦

C

zs	 Depth in sediment, m
𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶4𝑠𝑠

 	 Methane concentration in sediment, μmol L −1

𝐴𝐴 𝐴𝐴ms 	 *Molecular diffusivity in sediment, 𝐴𝐴 m
2
s
−1

𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶4
 	 Percentage of methane in bubbles, %

Es	 Ebullition, mmol m −2 d −1

αe	 #Saturation level of sediment methane concentration, unitless fraction
𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶4𝑤𝑤

 	 Methane concentration in water column, μmol L −1

t	 Time, s
𝐴𝐴 𝐴𝐴𝑧𝑧 	 Eddy diffusivity, 𝐴𝐴 m

2
s
−1

𝐴𝐴 𝐴𝐴𝑚𝑚 	 *Molecular diffusivity. 𝐴𝐴 m
2
s
−1

𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶4𝑤𝑤
 	 Gas exchange with bubbles, 𝐴𝐴 𝐴𝐴molm

−3
s
−1

Fmet	 Diffusive methane flux at water-air interface, μ mol m −2 h −1

z	 Depth in water, m
𝐴𝐴 𝐴𝐴 	 Dissipation rate of turbulent kinetic energy, m 2 s −3

N	 Brunt-Vaisala frequency, s −1

𝐴𝐴 𝐴𝐴 	 Density of water, kg m −3

O	 Aerobic methane oxidation, 𝐴𝐴 𝐴𝐴molm
−3
s
−1

Omax	 #Methane oxidation potential, μmolm −3s −1

OQ10	 *Q10 factor for O, unitless
𝐴𝐴 𝐴𝐴𝑤𝑤 	 Water temperature, 𝐴𝐴

◦

C

𝐴𝐴 𝐴𝐴𝑂𝑂0 	 *Reference temperature for O, 𝐴𝐴
◦

C

𝐴𝐴 𝐴𝐴𝑂𝑂2
 	 *Michaelis-Menten constant for O, 𝐴𝐴 𝐴𝐴molm

−3

𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶4
 	 *Michaelis-Menten constant for O, 𝐴𝐴 𝐴𝐴molm

−3
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𝐴𝐴 𝐴𝐴𝑂𝑂2
 	 Concentration of dissolved oxygen in water column, mg L −1

𝐴𝐴 𝐴𝐴𝐴 	 Oxygen production by photosynthesis, mg L −1

𝐴𝐴 𝐴𝐴 	 Community respiration, mg L −1

𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 	 Sediment oxygen demand, mg m −2 h −1

Foxg	 Oxygen exchange at air-water interface, mg m −2 h −1

𝐴𝐴 𝐴𝐴𝐴max 	 #Chla-specific light-saturation rate of photosynthesis, 𝐴𝐴 mgO2(mg Chla)−1s−1

θp	 *Temperature coefficient for photosynthesis, unitless
I	 Incident irradiance, μmol photons m −2 s −1

𝐴𝐴 𝐴𝐴Chla 	 Chla concentration, mg Chla m −3

𝐴𝐴 𝐴𝐴1 	 *Light inhibition coefficient, 𝐴𝐴 molm
−2
s
−1

𝐴𝐴 𝐴𝐴2 	 *Light limitation coefficients, 𝐴𝐴 molm
−2
s
−1

𝐴𝐴 𝐴𝐴𝑟𝑟 	 #Chla-specific respiration rate at 30°C, 𝐴𝐴 mgO2(mg Chla)−1s−1

θr	 *Temperature coefficient for respiration, unitless
ks	 #Sediment oxygen demand at 20°C, mgO2m −2s −1

θs	 *Temperature coefficient for SOD, unitless
A	 Sediment area, m 2

F	 Diffusive gas flux at the air-water interface, μmol m −2 h −1

𝐴𝐴 𝐴𝐴600 	 Gas transfer velocity normalized to 𝐴𝐴 CO2 at 20°C, cm h −1

𝐴𝐴 𝐴𝐴𝑤𝑤 	 Near-surface gas concentration, μmol L −1

𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒 	 Near-surface concentration in equilibrium with atmosphere, μmol L −1

𝐴𝐴 𝐴𝐴 	 Kinematic viscosity, m 2 s −1

Sc	 Schmidt number, unitless

Data Availability Statement
Measurements and simulated results presented are available from the KNB data repository operated by NCEAS 
at https://doi.org/10.5063/F1833QFM (Guo et al., 2023). The revised ALBM code is available from the Purdue 
Research Repository at https://doi.org/10.4231/4WN4-S032 (Guo & Zhuang, 2023).
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