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1  |  INTRODUC TION

Methane (CH4) is the second most important heat trapping gas after 
carbon dioxide (Saunois et al., 2020; Stavert et al., 2022) and was re-
sponsible for ~0.5°C of anthropogenic global warming in the 2010s 
relative to the late 19th century (IPCC, 2021). Understanding and 
quantifying the global CH4 budget is important for climate mitigation 
due to the relatively short atmospheric lifetime (12.4 years, Balcombe 
et al. (2018)) and strong radiative forcing (Allen et al., 2018; Neubauer 
& Patrick Megonigal, 2015) of CH4. The global mean CH4 concen-
tration in the atmosphere has increased from about 1775 parts per 
billion (ppb) in 2016 to 1890 ppb in 2020, more than two- and- a- half 

times preindustrial levels (Jackson et al., 2020; Lan et al., 2023; 
Nisbet et al., 2019). The annual growth rate of atmospheric CH4 esti-
mated in 2021 was a record high since 1984 (18.05 ± 0.38 ppb year−1, 
Lan et al., 2023), and almost three times higher than the average 
annual growth rate of 6.4 ppb year−1 during 2007 to 2015 (Poulter 
et al., 2017). Importantly, global CH4 concentrations have continued 
to rise over the past decade, consistently with the SSP5- 8.5 pro-
jections (Shared Socioeconomic Pathways) which yield a radiative 
forcing of 8.5 W m−2 in 2100 (Saunois, Jackson, et al., 2016; Saunois 
et al., 2020). The soaring atmospheric CH4 concentration in 2020 is 
likely attributed to the warmer and wetter conditions over wetlands 
with decreased tropospheric concentration of the hydroxyl radical 
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Abstract
The recent rise in atmospheric methane (CH4) concentrations accelerates climate 
change and offsets mitigation efforts. Although wetlands are the largest natural CH4 
source, estimates of global wetland CH4 emissions vary widely among approaches 
taken by bottom- up (BU) process- based biogeochemical models and top- down (TD) 
atmospheric inversion methods. Here, we integrate in situ measurements, multi- 
model ensembles, and a machine learning upscaling product into the International 
Land Model Benchmarking system to examine the relationship between wetland CH4 
emission estimates and model performance. We find that using better- performing 
models identified by observational constraints reduces the spread of wetland CH4 
emission estimates by 62% and 39% for BU-  and TD- based approaches, respectively. 
However, global BU and TD CH4 emission estimate discrepancies increased by about 
15% (from 31 to 36 TgCH4 year−1) when the top 20% models were used, although 
we consider this result moderately uncertain given the unevenly distributed global 
observations. Our analyses demonstrate that model performance ranking is subject 
to benchmark selection due to large inter- site variability, highlighting the importance 
of expanding coverage of benchmark sites to diverse environmental conditions. We 
encourage future development of wetland CH4 models to move beyond static bench-
marking and focus on evaluating site- specific and ecosystem- specific variabilities in-
ferred from observations.

K E Y W O R D S
benchmarking, bottom- up models, eddy covariance, methane emissions, observational 
constraints, top- down models, wetland modeling

 13652486, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16755 by Purdue U

niversity L
ibraries, W

iley O
nline L

ibrary on [01/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

mailto:ckychang@lbl.gov
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(OH, which is the main sink of atmospheric CH4 concentration; Peng 
et al., 2022).

With regards to the global CH4 budget, bottom- up (BU)-  and top- 
down (TD)- based global CH4 emission estimates both increased from 
2000– 2009 to 2008– 2017 (BU: 547 (524– 560) to 576 (550– 594) 
TgCH4 year−1; TD: 703 (566– 842) to 737 (594– 881) TgCH4 year−1), 
and the mismatch between BU and TD estimates has remained large 
over the past decades (Kirschke et al., 2013; Saunois et al., 2020; 
Saunois, Bousquet, et al., 2016). For natural wetland CH4 emissions, 
the BU estimates rely on process- based biogeochemical models that 
parameterize CH4 production and emission rates, and the TD esti-
mates are based on atmospheric inverse modeling that do not pres-
ent CH4 production processes. The discrepancies between global 
CH4 emission estimates inferred from BU and TD approaches are 
most likely driven by double counting CH4 emission sources and ex-
trapolating local measurements (Stavert et al., 2022). Such discrep-
ancies make it difficult to accurately quantify the global CH4 budget 
and obscure the estimated global warming potential attributed to 
changes in atmospheric CH4 concentrations. Wetlands, which ac-
count for the largest CH4 emissions in the global budget (20%– 31% 
of global CH4 emissions), also have the largest absolute and relative 
differences between TD and BU estimates (about 32 TgCH4 year−1, 
TD minus BU), even with recent advances in CH4 observations and 
simulations (Saunois et al., 2020).

Accurate wetland CH4 emission estimates are hindered by 
high spatial and temporal variability associated with coupled hy-
drological, biological, and climatic drivers at the site- level scale 
(Chang et al., 2019; Grant et al., 2019; Hemes et al., 2018; Morin 
et al., 2017), and upscaling patchy measurements and wetland areal 
extent at the global scale (Melton et al., 2013; Poulter et al., 2017; 
Zhang et al., 2021). Insufficient global representation of CH4 obser-
vations and incomplete understanding of CH4 production, oxidation, 
and transport processes limit the ability to evaluate and improve 
global wetland CH4 emission estimates. Currently, the model spread 
of wetland CH4 emission within estimation approaches (BU: 80 
TgCH4 year−1; TD: 41 TgCH4 year−1) is comparable to the discrep-
ancy between ensemble BU and TD approaches (32 TgCH4 year−1, 
TD minus BU; Saunois et al., 2020), complicating the interpretation 
of different BU and TD CH4 emission estimates.

Both BU and TD approaches are faced with several challenges 
to improve their estimates of wetland CH4 emissions. Issues known 
to be important for BU wetland CH4 emission estimates include 
(1) incomplete process representation of CH4 biogeochemistry, (2) 
substantial structural and parameter uncertainty in biogeochemical 
models, and (3) insufficient measurements to evaluate model perfor-
mance (Bohn et al., 2015; Chadburn et al., 2020; Chang et al., 2020; 
Melton et al., 2013; Riley et al., 2011; Wania et al., 2013). TD wet-
land CH4 emission estimates are sensitive to uncertainties in (1) 
CH4 concentration data used in the inversion framework, (2) atmo-
spheric chemistry and transport, and (3) prior emission estimates 
(Houweling et al., 2017; Inoue et al., 2016; Maasakkers et al., 2021). 
Wetland CH4 model intercomparison projects were conducted to 
assess the predictability of wetland CH4 emissions and areas, aiming 

to reduce emission uncertainties and guide future CH4 model de-
velopment. For example, the intercomparison of wetland CH4 emis-
sions models over West Siberia (WETCHIMP- WSL) found that CH4 
model performance is primarily affected by the reliability of soil 
thermal and hydrological representations instead of the underlying 
biogeochemical schemes (Bohn et al., 2015). More recently, a study 
has demonstrated the potential of imposing satellite- informed CH4 
emission constraints to refine BU wetland CH4 emission estimates, 
although the emission range inferred from the highest- performance 
BU models remains wide (117– 189 TgCH4 year−1; Ma et al., 2021).

Global compilations of in situ flux measurements could provide 
key observational constraints for wetland CH4 biogeochemistry 
(Delwiche et al., 2021; Knox et al., 2019). The recently released 
FLUXNET- CH4 community product includes eddy covariance CH4 
flux measurements across multiple wetland ecosystem types. 
These site- level measurements have been applied to demonstrate 
environmental controls on emergent CH4 dynamics across diurnal 
to seasonal timescales (Chang et al., 2021; Knox et al., 2021) that 
help guide process- based biogeochemical model development. Yet, 
the FLUXNET- CH4 measurements have not been leveraged to thor-
oughly benchmark BU and TD models and their estimates of global 
CH4 emissions.

Here, we use a model down- selection approach, based on con-
straints inferred from observations and simulations, to evaluate 
whether BU and TD wetland CH4 emission estimates can be rec-
onciled with model performance ranking. Specifically, we evaluate 
whether the modeled global wetland CH4 emissions converge into 
the common range estimated by BU-  and TD- based approaches 
(159– 182 TgCH4 year−1) with better- performing models identified 
with the FLUXNET- CH4 measurements. We test the hypothesis 
that filtering based on model performance reduces wetland CH4 
emission prediction range and uncertainty. We also used machine 
learning- based global wetland CH4 emission estimates to evaluate 
model benchmarking sensitivity to constraints inferred from dif-
ferent geographical regions. BU and TD models are compared to 
reference datasets at two geographic scales: at sites from an obser-
vational network, and at the global scale covering the entire world 
land area. In this way, we explore ways to refine ensemble global 
wetland CH4 emission estimates, acknowledging the limitations in 
currently available reference datasets. Model benchmarking metrics 
calculated by the International Land Model Benchmarking (ILAMB) 
system (Collier et al., 2018) are used to assess model performance 
across ecosystem and global scales.

2  |  METHODS AND DATA

2.1  |  FLUXNET- CH4 community product

The FLUXNET- CH4 community product was initiated by the 
Global Carbon Project in coordination with regional flux net-
works, including AmeriFlux, the European Fluxes Database, and the 
Integrated Carbon Observation System Ecosystem Thematic Centre 
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4  |    CHANG et al.

(ICOS- ETC), to better constrain global CH4 emission estimates. The 
database compiled eddy covariance and supporting measurements 
from 81 sites (including 42 freshwater wetlands, 6 coastal wetlands, 
and 7 rice paddies) encompassing boreal, temperate, subtropical, 
and tropical regions. Database descriptions, including site character-
istics, data standardization, gap- filling, and partitioning, have been 
detailed previously in Delwiche et al. (2021) and Knox et al. (2019).

In this study, we used daily mean air temperature, precipitation, and 
CH4 emissions compiled at the 42 freshwater wetland sites (Table S1) 
available in the FLUXNET- CH4 database (CC- BY- 4.0), comprising 169 
site- years spanning from 2006 to 2018 (Figure S1). To evaluate monthly 
model predictions (Sections 2.2 and 2.3), we aggregated daily CH4 flux 
measurements gap- filled using the artificial neural network (ANN) 
method described in Delwiche et al. (2021; FCH4_F_ANN_mean) to 
the monthly resolution of most BU and TD models.

We note here that the measurement uncertainties associated 
with the high temporal variability (Hemes et al., 2018) and large spa-
tial heterogeneity (Rey- Sanchez et al., 2022) of wetland CH4 emis-
sions could affect the interpretation of model- data benchmarking 
results. For example, the scale mismatch between eddy covariance 
flux footprints (~0.001 to 10 km2; Chu et al., 2021) and global wet-
land CH4 models (~100 km2) challenges the robustness of model 
performance evaluation. Using gap- filled data to enhance the spa-
tial and temporal data coverage for model- data benchmarking could 
also introduce noises to the true observational signals, although such 
uncertainties can be quantified and reduced Delwiche et al. (2021). 
While the accuracy of eddy covariance measurements is limited by 
measurement uncertainties, site- level measurements are currently 
the only observational constraints on emission patterns across diel 
to annual timescales that provide benchmarks for the temporal dy-
namics represented in wetland CH4 models.

2.2  |  Bottom- up biogeochemical models

In this work, we collected global simulations of wetland CH4 emission 
estimates from 14 process- based biogeochemical models (Table S2; 
Figure S2). BU models were run under a common protocol described 
in Saunois et al. (2020), driven by climate forcing provided by CRU- JRA 
reanalysis data (Harris, 2019) from 1901 to 2017. For our site- level anal-
yses, we evaluate the modeled CH4 emission density per wetland area 
against observed wetland CH4 emissions. For our global- scale analy-
ses, gridded CH4 emission density estimates (mgCH4 m−2 day−1, for 
each gridcell area) were weighted by the Wetland Area and Dynamics 
for Methane Modeling (WAD2M) wetland area and dynamics dataset 
(wetland area per gridcell area; Zhang et al., 2021) to prescribe consist-
ent wetland area dynamics across models.

2.3  |  Top- down atmospheric inversion models

TD atmospheric inversion models calculate surface- to- atmosphere 
fluxes by linking atmospheric trace gas observations, an atmospheric 

chemistry transport model, and prior constraints on the flux esti-
mates (Houweling et al., 2017). The 22 inversion runs (Table S3; 
Figure S2) of gridded CH4 emission estimates reported in the latest 
global CH4 budget (2000– 2017; Saunois et al., 2020) were used in 
this evaluation. These 22 TD estimates are based on nine atmos-
pheric inversion systems using global Eulerian transport models 
(Saunois et al., 2020). Each inversion system provided one, two, or 
four gridded CH4 emission estimates for the period 2000– 2017, 
driven by different atmospheric CH4 observations (surface meas-
urements and/or satellite retrievals) and prior emission distribu-
tions. Gridded CH4 emission estimates were further designated into 
five source categories: wetlands, natural non- wetland sources, ag-
riculture and waste, biomass burning and biofuels, and fossil fuel. 
Gridded wetland CH4 emission estimates were obtained from (1) 
optimized posterior fluxes if an inversion had solved CH4 emissions 
per source category, or (2) prior contribution of fluxes scaled by the 
ratio of total posterior emissions to total prior emissions if an in-
version only solved for total emissions (or for categories other than 
the five categories described above; Kirschke et al., 2013; Saunois 
et al., 2020).

The prior constraints on wetland CH4 emission estimates used 
in each TD inversion system are summarized in Table S3, and de-
tailed descriptions of the 22 inversion runs can be found in Saunois 
et al. (2020). At the site scale, we used FLUXNET- CH4 measure-
ments to evaluate wetland CH4 emissions inferred from individual 
TD inversion estimates, assuming eddy covariance observations rep-
resent gridcell wetland biogeochemistry. For the global- scale analy-
sis, the wetland CH4 emission density per gridcell area outputted by 
TD models was weighted by the WAD2M wetland area and dynam-
ics dataset (Zhang et al., 2021) to evaluate TD- based CH4 emission 
density per wetland area against other datasets.

2.4  |  Machine learning- based global wetland CH4 
emission upscaling

Machine learning (ML) techniques have been used to extrapolate 
ecosystem- scale wetland CH4 measurements into global- scale 
wetland CH4 emission distributions. In this study, we draw from 
a recently developed machine learning global wetland CH4 emis-
sions dataset (UPCH4 dataset; McNicol et al., Submitted) inferred 
from eddy covariance measurements collected at 43 freshwater 
wetland sites across the globe. The locations of the 43 freshwa-
ter wetland sites are presented in Figure 1f, encompassing the 
42 freshwater wetland sites used in this study and the Scotty 
Creek Landscape (CA- SCC) in Canada that was not categorized as 
freshwater wetland in Delwiche et al. (2021). The UPCH4 data-
set reports annual global wetland CH4 emission estimates of 
146 ± 43 TgCH4 year−1 for 2001– 2018, which is within the range 
of values inferred from the latest BU and TD estimates reported 
in (Saunois et al., 2020). The UPCH4 dataset was generated by 
training a random- forest model with predictors from  climatic 
variables (e.g., air temperature), biometeorological variables  
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(e.g., biosphere- atmosphere fluxes), land cover properties  
(e.g., vegetation type and phenology), and soil properties  
(e.g., soil type) synthesized from FLUXNET- CH4 in situ measure-
ments and remote sensing products (McNicol et al., Submitted). 
Like the BU-  and TD- based global emission estimates, the wet-
land CH4 emission density per gridcell area reported in the UPCH4 
dataset was converted to wetland CH4 emission density per wet-
land area with the WAD2M wetland area and dynamics dataset 
(Zhang et al., 2021). We compared the wetland CH4 emission 
patterns prescribed by the UPCH4 dataset against other existing 
datasets, and assessed the potential of using UPCH4 data to refine 
BU-  and TD- based wetland CH4 emission estimates.

2.5  |  The ILAMB system

We employed the ILAMB framework to evaluate the present state 
of global wetland CH4 modeling based on site- level FLUXNET- CH4 
observations and global gridded simulation products. ILAMB is an 
open- source model benchmarking software package that performs 
comprehensive model assessment (e.g., period mean, bias, seasonal 

cycle) across a wide range of observations and generates graphical 
diagnostics (e.g., spatial contour maps and Taylor diagrams; Collier 
et al., 2018). The ILAMB software package has been adopted by 
model development and intercomparison projects to keep track 
of land model performance among models and model versions 
(Lawrence et al., 2019).

We use ILAMB for benchmarking models at both the site and 
global scales. ILAMB produces overall scores consisting of normal-
ized values synthesizing model performance across a range of di-
mensions with respect to a given dataset, ranging from zero (worst) 
to one (best). The site- level ILAMB overall scores presented in this 
study consist of model evaluations of bias, root- mean- square error 
(RMSE), and seasonal cycles conducted at individual wetland sites, 
and the global- scale ILAMB overall scores also evaluates the mod-
eled spatial distributions (Collier et al., 2018). The ILAMB overall 
scores inferred from individual reference datasets were paired with 
model- specific global wetland CH4 emission estimates to assess the 
potential of reducing prediction spreads with better- performing 
models. Importantly, the model performance scores reported in this 
study are subjective to the selected reference datasets and should 
thus not be interpreted as a model ranking (Seiler et al., 2021).

F I G U R E  1  Global wetland CH4 emission estimates inferred from bottom- up (BU) biogeochemical models, top- down (TD) atmospheric 
inversion models, and a machine learning model (UPCH4; ML). The latitudinal distribution of model- specific annual mean wetland CH4 
emission estimates during the 2008– 2017 period (a). Solid lines and shaded areas represent the mean and range of wetland CH4 emission 
estimates from individual model groups, respectively. The distribution of annual mean wetland CH4 emission estimates among all model- 
years from 2008 to 2017 (b). The open circle, bottom edge, and top edge of the black box in each violin plot indicate the 50th, 25th, and 
75th percentiles of the inferred global wetland CH4 emission estimates, respectively. The wetland CH4 emission maps inferred from the 
BU and TD models (c), the BU models (d), the TD models (e), and the machine learning model (UPCH4; f) during the 2008– 2017 period. The 
FLUXNET- CH4 freshwater wetland sites used in this study are denoted as blue open circles in (f).
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6  |    CHANG et al.

2.6  |  Experimental design

We implemented the ILAMB framework (Collier et al., 2018) to 
evaluate site- level and global- scale wetland CH4 emission esti-
mates inferred from 14 BU biogeochemical models (Table S2), nine 
TD models (22 inversions, Table S3), and one ML model. Gridded 
outputs collected from different model products were remapped 
onto the same 1 degree by 1 degree (for model evaluation) and 
0.25 degree by 0.25 degree (for global wetland CH4 emission 
calculation) global gridcells using the NetCDF Operators (NCO; 
Zender, 2008).

The site- scale assessment was performed by evaluating wet-
land CH4 emissions inferred from BU, TD, and ML models at 
gridcells containing FLUXNET- CH4 wetland sites whenever the 
measurements were available. We grouped the FLUXNET- CH4 
sites by their location and ecosystem type to assess the sensitiv-
ity of model performance score to the selection of benchmark-
ing dataset. The resulting eight sets of observational constraints 
are (1) measurements collected from all sites across the globe (42 
sites), (2) measurements collected from north of 30°N (34 sites), 
(3) measurements collected from south of 30°N (8 sites), (4) mea-
surements collected from bog sites across the globe (8 sites), (5) 
measurements collected from fen sites across the globe (8 sites), 
(6) measurements collected from marsh sites across the globe (10 
sites), (7) measurements collected from swamp sites across the 
globe (6 sites), and (8) measurements collected from wet tundra 
sites across the globe (11 sites).

The global- scale assessment was performed by evaluating 
BU-  and TD- based model outputs against the global gridded 
UPCH4 dataset during the 2008 to 2017 period when wetland 
CH4 emission estimates are available for most of the BU and TD 
models analyzed in this study. As described in Section 2.4, the 
UPCH4 dataset employed machine learning methods to extrap-
olate ecosystem- scale wetland CH4 emission observations into 
global- scale emission predictions, which is currently the only 
gridded wetland CH4 emission estimates inferred from observed 
functional relationships. We note here that the robustness of the 
global- scale assessment is subject to the reliability of the UPCH4 
dataset, which should be interpreted as a sensitivity test to mea-
surement extrapolation.

Model performance was estimated by calculating model- specific 
ILAMB overall scores for each wetland CH4 emission reference 
dataset. The relationship between model performance and global 
wetland CH4 emission estimates was examined by analyzing the pre-
diction ranges inferred from the top 50%, 40%, 30%, and 20% BU 
and TD models determined by the cumulative distribution function 
of their ILAMB overall scores.

We note that the BU and TD global wetland CH4 emission esti-
mates calculated in this study are not identical to those reported in 
Saunois et al. (2020) due to differences in model collection and data 
processing (e.g., remapping scheme, land area map, and spatial reso-
lution). We also note a unit conversion error (model outputs reported 
in TgC year−1 but read in as TgCH4 year−1) for the TRIPLEX- GHG 

model, whose global wetland CH4 emission estimates should be 136 
TgCH4 year−1 instead of the 102 TgCH4 year−1 reported in Saunois 
et al. (2020).

3  |  RESULTS AND DISCUSSION

3.1  |  Present state of global wetland CH4 modeling

Comparison at the global scale show the latitudinal distributions 
of wetland CH4 emissions inferred from BU and TD models both 
suggest that tropical wetlands dominate global wetland CH4 emis-
sion estimates (Figure 1a). This dominant tropical emission pat-
tern does not exist in the ML model estimates, a discrepancy likely 
driven by the low wetland CH4 emissions recorded in the few ex-
isting tropical wetland eddy covariance measurements (Figure 2a). 
There are 140, 187, and 10 model- years during the 2008 to 2017 
period in BU, TD, and ML models, respectively, and the modeled 
mean annual global wetland CH4 emission estimates are highest in 
the TD models and lowest in the ML model (Figure 1b). The wide 
range of predictions inferred from BU models covers most of the 
TD-  and ML- based estimates, demonstrating the need to evalu-
ate the relationship between model performance and modeled 
global wetland CH4 emission estimates. The multi- model ensem-
ble means inferred from BU and TD models (Figures 1c– e) have 
similar global distribution patterns, with higher emissions in South 
America and lower emissions in the Sahel and Australia than those 
from the ML model (Figure 1f).

Our site- level evaluation conducted at the 42 FLUXNET- CH4 
sites shows that wetland CH4 emissions estimated by TD models 
are on average larger (with relatively wider prediction ranges) than 
those inferred from observations except for regions within 36° to 
40°N (Figure 2a). The median wetland CH4 emission estimates in-
ferred from BU models are comparable to observations, although 
the prediction ranges vary substantially across latitudes. Wetland 
CH4 emission estimates extracted from the UPCH4 dataset align 
closely with observations, since the same set of measurements 
were used to train the ML model. While site- level measurements 
may not represent all wetland types and conditions in the cor-
responding model gridcell, these observations provide valuable 
benchmarks for BU and TD model developments. In particular, 
the wide ranges of wetland CH4 emission estimates inferred from 
individual model gridcells highlight the need to refine the large 
inter- model variability not driven by wetland area estimates or 
climate forcing uncertainties. Overall, at these sites, observed 
wetland CH4 emission density (mgCH4 m−2 day−1) is overestimated 
by all the examined model groups (Figure 2b). The TD models es-
timate the highest mean wetland CH4 emission density over the 
42 sites (107 mgCH4 m−2 day−1), followed by the BU (63 mgCH4 
m−2 day−1) and ML models (46 mgCH4 m−2 day−1). We note that 
the comparisons presented here are heavily biased toward high- 
latitude measurements where FLUXNET- CH4 sites are relatively 
denser, and therefore may not accurately represent global wetland 
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    |  7CHANG et al.

CH4 emission patterns. Furthermore, models may not accurately 
represent site- level mean wetland CH4 emissions over the 2008 to 
2017 period (Figure S3).

3.2  |  Accuracy of wetland CH4 modeling

We quantified the performance of the BU, TD, and ML models 
by evaluating their bias, RMSE, and seasonal cycles against global 
FLUXNET- CH4 measurements through ILAMB (Figure 3). The 
ILAMB overall scores integrate the bias, RMSE, and seasonal cycles 
benchmarking results into a single metric that quantitatively syn-
thesizes model performance (Figure S5). Our results show that (1) 
models with finer grids do not necessarily show an improved model 
performance (comparable performance inferred from 0.25° and 1° 
outputs from the ML model); (2) the performance of BU models may 
not be determined by the complexity of the biogeochemical process 
representations; and (3) the performance of TD models is sensitive 
to the associated atmospheric CH4 observation (e.g., CarbonTracker 
Europe- CH4 performs better with the GOSAT product; Figure 3a). 
Overall, ML models have the highest ILAMB overall scores against 

FLUXNET- CH4 measurements, likely because the same set of meas-
urements were used during ML model development.

While the ILAMB overall score synthesizes the comparison of 
multiple model performance measures, the underlying calculation 
of model performance scores may smooth out the differences be-
tween observations and simulations. For example, the variability 
of ILAMB overall scores (Figure 3a) is much weaker than the vari-
ability of the modeled wetland CH4 emission density across all sites 
(Figure 2a). Developing a normalization scheme that provides dis-
cernible model performance labels could improve the interpretation 
of model scores provided by model- data intercomparison packages 
like ILAMB. While the current ILAMB scoring normalization contrib-
utes to the low standard deviation of ILAMB overall scores within 
the same model group, the distribution of ILAMB overall scores sug-
gests that BU models generally perform better than TD models at 
these 42 freshwater wetland sites (Figure 3b).

The BU and TD models were categorized into the top 50%, 
top 40%, top 30%, and top 20% model performance groups by 
the cumulative distribution function of their ILAMB overall scores, 
effectively capturing models that better represent site- level mea-
surements (Figure S6). For both BU and TD models, the range of 

F I G U R E  2  Site- level comparison of observed and simulated wetland CH4 emission density. The site- specific mean wetland CH4 emissions 
per m2 of wetland inferred from observations (black crosses), BU biogeochemical models (blue triangles), TD atmospheric inversion models 
(red triangles), and the UPCH4 dataset (yellow squares) over the years when daily gap- filled wetland CH4 emission density (FCH4_F_ANN_
mean) were available in the FLUXNET- CH4 database (a). Symbols and shaded areas represent the median and range across the BU (blue) 
and TD (red) models, respectively. The TD model results were not shown at US- Ivo (68.49°N) due to unrealistically large emission estimates 
(Figure S4). Sites are sorted by latitudes and only latitudes where sites are located are labeled. The mean and standard deviation across the 
42 FLUXNET- CH4 freshwater wetland sites, calculated from site measurements, BU model ensemble, and TD model ensemble (b).
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8  |    CHANG et al.

modeled global wetland CH4 emission estimates becomes narrower 
with the use of the top 50% (or better) models (Figure 4a). Using the 
top 20% models reduces the prediction spread of wetland CH4 emis-
sion estimates by 62% and 39% for BU-  and TD- based approaches, 
respectively. Nevertheless, the ensemble means of global wetland 
CH4 emission estimates based on model meritocracy (i.e., the top 
20%– 50% models) were comparable to those from model democ-
racy (i.e., all models), as their differences (the top 20%– 50% models 
vs. all models) were <3% for both BU and TD models. The discrepan-
cies between BU-  and TD- based multi- model mean global wetland 
CH4 emission estimates increased by 5 TgCH4 year−1 when the top 
20% models were used. When model performance was evaluated 
using the UPCH4 dataset, both the prediction spread within BU and 
TD models and the discrepancies between BU-  and TD- based multi- 
model mean global wetland CH4 emission estimates were reduced 
(Figure 4b). These results demonstrate that while applying model 
meritocracy has the potential to reduce the spread of wetland CH4 
emission estimates within individual model groups, the refined es-
timates are sensitive to the selection of reference dataset. Future 
research should attempt to integrate new benchmarks that can elu-
cidate TD priors and inversion approaches or BU model functional 

responses, for example, CH4 emission sensitivity to temperature 
(Chang et al., 2021) and water table depth (Goodrich et al., 2015), 
to further evaluate the potential of applying a model meritocracy to 
global wetland CH4 emission estimation.

3.3  |  Sensitivity to reference datasets

For each model, the large ILAMB overall score sensitivity to refer-
ence dataset selection suggests that model development aiming to 
improve model performance against a given benchmark is subject 
to the availability of existing constraints (Figure 5). Our analyses in-
dicate that model benchmarking results depend on the geographic 
location and ecosystem type represented in the observational con-
straints. For example, different sets of best- performing models 
were identified when benchmarking against sites north or south of 
30°N, except for the ML models derived from both sets of measure-
ments. We also note that the ILAMB overall scores inferred from BU 
models are generally higher than those from TD models at the bog, 
fen, and wet tundra sites, and generally lower at the swamp sites. 
Such benchmarking sensitivities to site representation highlight the 

F I G U R E  3  Present state of global wetland CH4 modeling evaluated by FLUXNET- CH4 measurements at 42 sites. The ILAMB overall 
scores for bottom- up (BU) biogeochemical models, top- down (TD) atmospheric inversion models, and a machine learning (ML) upscaling 
model over the years when FLUXNET- CH4 measurements were available (a). The distribution of ILAMB overall scores inferred for individual 
model groups (b). The open circle, bottom edge, and top edge of the black box in each violin plot indicate the 50th, 25th, and 75th 
percentiles of the inferred ILAMB overall scores, respectively. The number above each violin plot represents the mean ± standard deviation 
of the corresponding ILAMB overall score distribution.
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    |  9CHANG et al.

importance of systematically observing and evaluating wetland bio-
geochemistry across latitudes and ecosystems, especially for wet-
lands south of 30°N that account about 75% of global wetland CH4 
emissions (Saunois et al., 2020).

When evaluated against the global gridded UPCH4 dataset, the 
BU models generally have higher ILAMB overall scores than the 
TD models. Importantly, the higher ILAMB overall scores inferred 
from the BU models may not necessarily indicate better represen-
tation of global wetland CH4 emissions, since independent gridded 
observations are still lacking to evaluate model performance at the 
global scale. Although the representativeness of data- driven models 
is limited by available observational constraints, estimates derived 
from novel model- data integration schemes still provide valuable in-
sights on global wetland CH4 emission estimates due to the lack of a 
globally gridded measurement network. Recognizing limitations em-
bedded in individual reference datasets is needed to refine wetland 
CH4 emission estimates with performance- based model weighting 
(Brunner et al., 2020; Knutti et al., 2017). Additionally, applying 
multiple validated constraints for model evaluation could improve 
the robustness of the inferred model performance, as no single BU 
or TD model can outperform other models across all the examined 
reference datasets. Our results thus encourage future model devel-
opment to employ benchmarking tools like ILAMB to systematically 

evaluate model performance against multiple reference datasets to 
ensure model improvement during each update.

While the FLUXNET- CH4 dataset provides valuable observa-
tional constraints at site- level scales, the current distribution of sites 
makes it challenging to serve as a benchmark for global wetland CH4 
emission estimates. For example, the weak correlation between site- 
level wetland CH4 emission measurements and global- scale wetland 
CH4 emission estimates indicates that the current FLUXNET- CH4 
dataset may not adequately characterize global wetland CH4 emis-
sion estimates (Figure S7). One potential reason inhibiting the use 
of site- level observations to constrain global- scale estimates is the 
incomplete representation of wetland characteristics (e.g., insuf-
ficient measurements of wetlands under diverse environmental 
conditions), which is unlikely to improve in the near future unless 
direct interventions are taken to fill the gaps in the network. The 
representativeness analysis conducted in Delwiche et al. (2021) sug-
gests that the freshwater wetland sites in the current FLUXNET- CH4 
dataset only sparsely cover humid tropical regions, demonstrating 
the need to improve data coverage in tropical and subtropical wet-
lands. Besides assessing goodness of fit against available wetland 
CH4 observations, future model benchmarking studies should con-
sider analyzing observed functional relationships that may be trans-
ferable across sites. For example, evaluating how modeled wetland 

F I G U R E  4  The comparison of global wetland CH4 emission estimates inferred from models with different accuracy groups evaluated by 
site- level FLUXNET- CH4 measurements (a) and the global gridded UPCH4 dataset that upscales FLUXNET- CH4 measurements with machine 
learning techniques (b). The dots, crosses, and shaded area represent the ensemble members, mean, and range of the BU (blue) and TD (red) 
models for each accuracy group, respectively.
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10  |    CHANG et al.

CH4 emission estimates respond to variations in water table dynam-
ics (Goodrich et al., 2015), substrate and microbial dynamics (Chang 
et al., 2021; Mitra et al., 2020), and carbon uptake dynamics (Rinne 
et al., 2018) could provide further constraints without introducing 
additional wetland CH4 observations. In parallel, the development of 
causality- guided (Yuan et al., 2022) and knowledge- guided (Willard 
et al., 2020) ML products also have the potential to improve the de-
scription of global- scale wetland CH4 emission patterns and thereby 
reconcile the prediction spread across models.

3.4  |  A framework toward refining global wetland 
CH4 emissions

Applying observational constraints generally reduces the range of 
global wetland CH4 emission estimates for both BU and TD mod-
els (i.e., narrower prediction spreads within the same model group), 
except for BU estimates inferred from measurements south of 
30°N and TD estimates inferred from wet tundra measurements 
(Figure 6a). Our results suggest that the reduced BU and TD pre-
diction spreads may not be directly attributed to improved model 
performance, because the ILAMB overall score and global wetland 
CH4 emission estimates are largely decoupled for both BU-  and TD- 
based approaches (Figure S8). Such a weak correlation indicates 

that none of the best- available constraints can sufficiently reconcile 
the differences between the ensemble mean of global wetland CH4 
emission estimates inferred from the best- performing BU and TD 
models, emphasizing the need to further develop reference data-
sets capable of adequately linking model performance with global 
emissions.

Nevertheless, global wetland CH4 emission estimates are sen-
sitive to the definition of better- performing models (Figure 4) and 
the selection of benchmarking dataset (Figure 6a). We therefore 
explored the most likely global wetland CH4 emission estimates 
based on the probability density function of estimates inferred from 
the top 20% BU and TD models identified by the eight constraints 
examined in this study (Figure 6b). The most likely global wetland 
CH4 emission estimates are about 143 TgCH4 year−1 and 188 TgCH4 
year−1 for BU-  and TD- based estimates, respectively (Figure 6b). Our 
results show that bootstrapping the top 20% BU and TD model esti-
mates with 1000 resampling narrows the distribution of global wet-
land CH4 emission estimates (Figure 6c), demonstrating the potential 
of reducing BU-  and TD- based prediction spreads with further ob-
servational constraints. While such a probability- based framework 
should be less sensitive to uncertainties embedded in any particu-
lar ensemble member and underlying constraint, the robustness of 
the benchmarking approach relies on the representativeness of the 
measurement samples and the inferred observational constraints. 

F I G U R E  5  Model- specific ILAMB overall scores against the selection of the reference dataset. Columns represent the ILAMB overall 
scores inferred from different sets of reference data, including measurements taken at eight groups of FLUXNET- CH4 sites: across the globe 
(Obs, global), north of 30°N (Obs, >30°N), south of 30°N (Obs, <30°N), bog sites (Obs, bog), fen sites (Obs, fen), marsh sites (Obs, marsh), 
swamp sites (Obs, swamp), and wet tundra sites (Obs, tundra) and the UPCH4 dataset (machine learning). BU and TD models are labeled by 
blue and red on the y- axis, respectively.
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To improve data availability, the framework is built on open- source 
ILAMB software that allows modeling groups to systematically re-
fine global wetland CH4 emission estimates with future advances in 
CH4 observations and simulations.

4  |  CONCLUSIONS

The wide range of global wetland CH4 emission estimates from dif-
ferent model approaches indicates the need to reduce uncertainties 
in current wetland CH4 modeling by integrating reference datasets 
using tools like the open- source software ILAMB system. Our analy-
ses demonstrate the potential of selecting better- performing mod-
els relative to reference data to refine global wetland CH4 emission 
estimates. This approach reduced the prediction spread of BU and 
TD global wetland CH4 emission estimates by 62% and 39%, respec-
tively. However, global BU and TD CH4 emission estimate discrepan-
cies slightly increased (from 31 to 36 TgCH4 year−1) when the top 
20% models were used, although we consider such discrepancies 
sensitive to the wetland characteristics captured in current obser-
vations. Importantly, the interpretation of model performance is 
sensitive to the choice of observational constraints, suggesting that 
static benchmarking with current observations alone may not be 
sufficient enough to guide wetland CH4 model development. Careful 

evaluation of benchmarking metrics and tools is needed to move be-
yond the limitations of model democracy (Hausfather et al., 2022). 
The evaluation framework demonstrated in this study can readily 
accept expanded CH4 observations and improved simulations to 
systematically refine our estimates of global wetland CH4 emission 
budgets.
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