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a b s t r a c t

Marked point processes are widely used stochastic models for rep-
resenting a finite number of natural hazard events located in space
and time and their data often associate event measurements (i.e.
marks) with event locations (i.e. points). An interesting statisti-
cal problem of marked point processes is to measure and estimate
the localized dependence between points and marks. To solve this
problem, an approach of local odds ratio is proposed, where the lo-
cal odds ratio is defined by the localized ratio of the relative risk
for an event to have a small mark to the relative risk to have a large
mark. To establish the approach, the article presents definition, es-
timation, and statistical properties. To justify the usefulness of the
approach, the article presents two particular examples in natural
hazards: a forest wildfire study and an earthquake study. It finds
that values of local odds ratios are mostly likely low in one subarea
but high in another subarea, which indicates that events with large
mark values are mostly likely to appear in the former subarea but
less likely to appear in the latter subarea. It is expected that the pro-
posed approachwill bewidely applicable in natural hazard studies.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Marked point processes (MPPs) are commonly used stochastic models, which have been widely
applied to data involved both the spatial (including spatiotemporal) coordinates of events and their
corresponding measurements. Methods of MPPs are often used to model a number of natural hazards
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located in space and time. There are many successful applications of MPPs in literature. These include
MPP modeling and prediction of earthquakes (Holden et al., 2003; Ogata, 1988; Ogata and Katsura,
1993; Vere-Jones, 1995), where each earthquake is represented by a magnitude and a space–time
coordinate. The three-dimensional space coordinate contains the longitude, latitude and depth of
earthquake occurrences. MPPs for forest wildfires have been discussed by Peng et al. (2005), where
eachwildfire is represented by its area burned and space–time coordinate. The two-dimensional space
coordinate contains the longitude and latitude of wildfire occurrences.

The approach of the localized dependence between points and marks relies on a strict mathemat-
ical definition of MPPs, which will be introduced in the next section. In a simplified version, one can
describe an MPP with an artificial order such that data can be represented by N = {(Si,Mi) : i =

1, . . . , n}, where n is the total number of events, Si are the locations of points, and Mi are the corre-
sponding marks. Specific geostatistical methods including variogram analysis, various kinds of krig-
ing, and geostatistical simulation techniques may be used to model an MPP (Cressie, 1993), but these
methods rely on the fundamental assumption that point locations appear independently of marks
because the definition of correlation functions used in a geostatistical method often ignores point
distributions (Diggle et al., 2003). Since the independence assumption between points and marks is
often unrealistic in applications, these methods may not be used if points andmarks are highly corre-
lated. For instance, the relative positions of trees in a forest have repercussions on their size owing to
their competition for light or nutrient (Schlather et al., 2004), indicating that tree sizes and locations
of trees may not be independent. Forest wildfire activities exhibit power-law relationships between
frequency and burned area (Malamud et al., 2005), indicating that the burned area and the locations
of forest wildfires may not be independent either.

It is especially convenient inmodeling, estimation, and prediction in anMPP ifmarks and points are
independent. Many commonly used Hawkesmodels, such as the epidemic-type aftershock sequences
(EATS) model (Ogata, 1998), may exhibit the independence between marks and points (Schoenberg,
2004). In the spatstat (Baddeley and Turner, 2005) and PtProcess (Harte, 2010) packages in R several
useful methods based on MPPs under the assumption of independence are available (McElroy and
Politis, 2007; Poliltis and Sherman, 2001). If the independence assumption is violated, then intensity-
dependent models may also be useful (Ho and Stoyan, 2008; Malinowski et al., 2012; Myllymäki
and Penttinen, 2009). However, these methods cannot be used to describe the localized dependence
between points and marks because the relationship between points and marks is often modeled
globally. For example, the mark (magnitude) distribution in earthquake activities locally depends on
their geographical locations which cannot be accounted for by an intensity-dependent model. The
mark (area burned) distribution in forest wildfire activities locally depends on forest densities which
cannot either be accounted for by an intensity-dependentmodel. Therefore, it is important to develop
a statistical approach to modeling the local dependence between points and marks.

To account for the dependence between marks and points, we modify the approach of the odds
ratio for contingency tables (Agresti, 2002) to an approach of local dependence between points and
marks of MPPs. We call it the approach of the local odds ratio, where the local odds ratio is a measure
of the strength of the local dependence between points and marks. In the approach, we note that
the odds ratio is one of the most important measures of row–column dependence in a contingency
table and it is also an important index in binomial or Poisson regression. Unlike other measures of
dependence in the contingency table (such as the relative risk), the odds ratio treats rows and columns
symmetrically. Its value does not change when the orientation of the table reverses so that the rows
become the columns and the columns become the rows. Therefore, the odds ratio is invariant under
the transpose transformation. To define the localized odds ratio, we modify the classical definition of
the odds ratio. We expect that the modified local odds ratio can be theoretically derived at any given
location in the whole study area. Based on values of the local odds ratio, one can compare the local
risks with the global risks for large mark events. In addition, one can compare local risks between
two specific locations. Values of local odds ratio are useful to identify a subarea with high risks of
large events. Examples include a method to identify a subarea of high risk of large earthquakes in
earthquake studies or a subarea of high risks of large fires in forest wildfire studies. Because large
events are more important than small events in the natural hazard studies, the local odds ratio may
be used as a standard measure for the risk analysis of large events in these studies.
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Thepaper is organized as follows. Section 2 reviews the concept ofMPPs andprovides the statistical
definition of the local odds ratio. Section 3 provides estimation of the local odds ratio aswell as a proof
of the consistency of the estimator. Section 4 provides a simulation study to evaluate the performance
of the estimator. Section 5 applies the approach to a forest wildfire dataset and an earthquake dataset.
Section 6 provides a discussion.

2. Method

To establish the approach, we briefly review the definition of MPPs in spatial statistics and the
definition of odds ratio in contingency tables. Based on the reviews, we provide the definition of
the local odds ratio. Existence and uniqueness of the local odds ratio in the definition as well as its
statistical properties are examined.

2.1. Definitions of MPPs

The definition of MPPs is well-established and can be found in many textbooks (e.g. in Daley and
Vere-Jones (2003) and Karr (1991)). Overall, an MPP is a pure point process defined on the product
space of points and marks, but the concept has its own life in applications. Let S and M be complete
separable metric spaces. Let S and M be the collections of Borel sets in S and M, respectively. An
MPP N with points in S and marks in M is a point process on S × M with the additional property
that the underlying point process Ns is itself a point process and for any bounded A ∈ S there is
Ns(A) = N(A × M) < ∞, where N(A × B) is the number of points in A × B for A ∈ S and B ∈ M ,
respectively. Denote n = N(S × M) and assume n is finite. Then, n is a discrete random variable.
In modeling the occurrence of ecological or geological events when depth is not involved, we may
have S = Rd with d = 2 if time is not considered or d = 3 if time is considered. In addition, three-
dimensional point patterns may also occur in space (Stein et al., 2011) and in this case we have d = 3
if time is not considered or d = 4 if time is considered. It has been pointed out that the distribution
of N can be uniquely determined by the joint distribution of {N(Ai × Bj) : i = 1, . . . , I; j = 1, . . . , J}
for any partition {A1, . . . , AI} ∈ S of S and {B1, . . . , BJ} ∈ M of M. Based on the distribution of N ,
we can define the kth order intensity function of N (if it exists) as

λk[(s1,m1), . . . , (sk,mk)] = lim
|dsi×dmi|→0,i=1,...,k


E[N(ds1 × dm1) · · ·N(dsk × dmk)]

|ds1 × dm1| · · · |dsk × dmk|


, (1)

where (si,mi) are distinct pairs of points and marks in S × M, dsi × dmi is an infinitesimal region
containing (si,mi) ∈ S × M, and |dsi × dmi| is the Lebesgue measure of dsi × dmi.

For convenience, we denote λ(s,m) = λ1[(s,m)] and always assume that the k-th order intensity
functions of N exists for k ≤ 4 in the rest of the paper. With this assumption, the moments up to four
of N(A × B) exists. The formulae of the moments of MPPs can be easily derived by formulae of pure
spatial point process, which are available in many articles (e.g. in Moller andWaagepetersen (2007)).
Here, we only display some of those that are useful in the paper.

Let the mean measure of N be denoted by

µ(A × B) =


A


B
λ(s,m)dmds

and the second-order moment measure be denoted by

µ(2)(A1 × B1, A2 × B2) =


A1


B1


A2


B2
λ2[(s1,m1), (s2,m2)]dm2ds2dm1ds1.

Then, the mean structure of N is

E[N(A × B)] = µ(A × B) (2)
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Table 1
Notation for probabilities in a 2 × 2
contingency table.

Row Column Total
1 2

1 π11 π12 π1+
2 π21 π22 π2+

Total π+1 π+2 1

and the covariance structure of N is

Cov[N(A1 × B1),N(A2 × B2)]

= µ(2)(A1 × B1, A2 × B2)+ µ[(A1 ∩ A2)× (B1 ∩ B2)] − µ(A1 × B1)µ(A2 × B2)

=


A1


B1


A2


B2

{λ2[(s1,m1), (s2,m2)] − λ(s1,m1)λ(s2,m2)}dm2ds2dm1ds1

+µ[(A1 ∩ A2)× (B1 ∩ B2)]. (3)

In order to characterize the dependence betweenpoints andmarks in the product space after adjusting
the effect of the first-order intensity function, it is useful to consider the pair correlation function

g[(s1,m1), (s2,m2)] =
λ2[(s1,m1), (s2,m2)]

λ(s1,m1)λ(s2,m2)
(4)

if λ(s1,m1) and λ(s2,m2) are positive. If N is a marked Poisson process, then g[(s1,m1), (s2,m2)] is
always equal to one at any s1, s2 ∈ S and m1,m2 ∈ M. Otherwise, N either contains attractions
or repulsions among events. Based on the pair correlation function, the covariance structure of N
becomes

Cov[N(A1 × B1),N(A2 × B2)]

=


A1


B1


A2


B2

{g[(s1,m1), (s2,m2)] − 1}λ(s1,m1)λ(s2,m2)dm2ds2dm1ds1

+µ[(A1 ∩ A2)× (B1 ∩ B2)]. (5)

2.2. Reviews of odds ratio

The classical definition of odds ratio can be found inmany textbooks (e.g. page 44 inAgresti (2002)).
The definition is usually based on a 2 × 2 contingency table. Suppose the 2 × 2 contingency table is
expressed by rows and columns as the one displayed in Table 1,whereπij is the probability for an event
to fall in cell (i, j), πi+ is the probability for an event to fall in the ith row, and π+j is the probability
for an event to fall in the jth column, where i, j = 1, 2. Note that π1|1 = π11/π1+ is the conditional
probability for an event to fall in the first column conditioning on the event to fall in the first row, and
π1|2 = π21/π2+ is the conditional probability for an event to fall in the first column conditioning on
the event to fall in the second row. The relative risk is defined as

r1 =
π1|1

π1|2
=
π11(π21 + π22)

π21(π11 + π12)
. (6)

Similarly, the relative risk for the second column is r2 = [π12(π21 + π22)]/[π22(π11 + π12)].
In Table 1, the odds for the first row is defined asΩ1 = π11/π12 and the odds for the second row

is defined asΩ2 = π21/π22. The odds ratio is defined by the ratios ofΩ1 andΩ2 as

θ =
Ω1

Ω2
=
π11π22

π12π21
=

r1
r2
. (7)

The odds ratio can equal any nonnegative number. The condition θ = 1 corresponds to indepen-
dence of rows and columns. If 1 < θ < ∞, the first column in row one is more likely to occur than
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the first column in row two; otherwise the first column in row one is less likely to occur than the first
column in row two. Values of θ farther from 1.0 in a direction represent stronger dependence. If one
value is the reverse of the other, then they represent the same strength of dependence but in opposite
directions.

Because the probability table is not available in practice, the sample odds ratio is used to describe
the dependence between rows and columns in Table 1. Let nij be the observed count in cell (i, j). Then,
the sample odds ratio is

θ̂ =
n11n22

n12n21
.

The sample odds ratio is an estimator of odds ratio, which goes to θ in probability as the sample size
goes to infinity.

2.3. Definition of local odds ratio

We use the idea of the odds ratio to define the local dependence between points and marks. To
construct a 2 × 2 contingency table, we compare mark values greater than or equal to m0 with mark
values less than m0, where m0 is a pre-selected threshold which relies on the particular interest in
applications. For example, an earthquake with magnitude greater than or equal to 6.0 is considered
as a large earthquake and a forest wildfire with area burned greater than 2 km2 is considered as a
large fire. We may choose m0 = 6 in earthquake studies and m0 = 2 km2 in forest wildfire studies,
which indicates that the relative risk of large earthquakes or large forest wildfires is compared with
the relative risks of small earthquakes or small forest wildfires.

Suppose the domain of marks is an open sub-interval of real numbers, which is denoted by
M = (m,m). Let Us be a neighborhood of s ∈ S and U s be its complementary set. Denote d(Us)
as the diameter of Us, which is defined by d(Us) = max{ρ(s, s′) : s, s′ ∈ Us} for a distance ρ.
For a pre-selected m0 ∈ (m,m), let n11 = N({s ∈ Us,m < m0}), n12 = N({s ∈ Us,m ≥ m0}),
n21 = N({s ∉ Us,m < m0}), and n22 = N({s ∉ Us,m ≥ m0}). Then, E(n11) =


Us

 m0
m λ(s,m)dmds,

E(n12) =

Us

 m
m0
λ(s,m)dmds, E(n21) =


Us

 m0
m λ(s,m)dmds, and E(n22) =


Us

 m
m0
λ(s,m)dmds.

Denote πij = E(nij)/E(n). Then, π11, π12, π21, and π22 can be used to define an contingency table as
we have displayed in Table 1. An odds ratio is derived as

θm0(Us) =
π11π22

π12π21
=

E(n11)E(n22)

E(n21)E(n12)

=


Us

 m0
m λ(s,m)dmds

 
Us

 m
m0
λ(s,m)dmds




Us

 m
m0
λ(s,m)dmds

 
Us

 m0
m λ(s,m)dmds

 . (8)

The local odds ratio between marks below and abovem0 at s is defined as

θm0(s) = lim
d(Us)→0

θm0(Us) =
ψ11(s,m0)ψ22(m0)

ψ12(s,m0)ψ21(m0)
, (9)

where ψ11(s,m0) =
 m0
m λ(s,m)dm, ψ12(s,m0) =

 m
m0
λ(s,m)dm, ψ21(m0) =


S

 m0
m λ(s,m)dmds,

and ψ22(m0) =


S

 m
m0
λ(s,m)dmds. It is clear that the value of θm0(s) depends on both m0 and s.

Theorem 1. The local odds ratio θm0(s) is well-defined and is positive and continuous in all s ∈ S and
m0 ∈ M if λ(s,m) satisfies all of the following conditions:

(A1) λ(s,m) > 0 for all s ∈ S and m ∈ M;
(A2) λ(s,m) is continuous in all s ∈ S and m ∈ M;
(A3)


S


M
λ(s,m)dmds < ∞.
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Proof. Conclusion can be directly drawn because under the assumption of the theorem we have

lim
d(Us)→0

1
|Us|


Us


B
λ(s,m)dmds =


B
λ(s,m)dm

and

lim
d(Us)→0


Us


B
λ(s,m)dmds =


S


B
λ(s,m)dmds

and both are positive, finite, and continuous in s and m0. Choosing B = (m,m0) and B = [m0,m)
above and applying them to Eq. (8), we have the conclusion of the theorem. �

The local odds ratio has good interpretations. According to the definition given by (9), it is clear
that

ψ21(m0)

ψ22(m0)
=


S

 m0
m λ(s,m)dmds

S

 m
m0
λ(s,m)dmds

represents the odds between small marks and large marks in the whole study area. The ratio

ψ11(s,m0)

ψ12(s,m0)
=

 m0
m λ(s,m)dm m
m0
λ(s,m)dm

represents the localized odds between small marks and large marks at s. The ratio

ψ11(s,m0)

ψ21(m0)
=

 m0
m λ(s,m)dm

S

 m0
m λ(s,m)dmds

represents the relative risk between s and the global average for small marks. The ratio

ψ12(s,m0)

ψ22(m0)
=

 m
m0
λ(s,m)dm

S

 m
m0
λ(s,m)dmds

represents the relative risk between s and the global average for largemarks. Thus, θm0(s) is either the
ratio of local odds to the global odds or the ratio of the relative risks between small events and large
events. If θm0(s) is small, then large events are more likely to occur around s. The value of θs(m0) > 1
for a particular s corresponds to the case that small events are more likely to appear around s than
the global level. The value of θs(m0) < 1 corresponds to the case that large events are more likely to
appear around s than the global level. In addition, the value of θm0(s)/θm0(s

′) can be used to compare
the relative risks for large events between two specific locations. If the value is less than one, large
events are more likely to occur around s than s′; otherwise, small events are more likely to occur.
Therefore, values of θm0(s) in the whole study area S can be used to describe how likely to see a small
(or a large) event at the local level conditioning on the occurrence of an event at that site.

Theorem 2. Assume Conditions (A1)–(A3) in Theorem 1 hold. A necessary condition for points andmarks
to be independent is θm0(s) = 1 for all s ∈ S and m0 ∈ M. If N is a marked Poisson process, then the
condition is also sufficient.

Proof. According to Schoenberg (2004), there exists f1(s) and f2(m) such that λ(s,m) = f1(s)f2(m) if
points and marks are independent. Therefore, the condition that θm0(s) = 1 for all s ∈ S andm0 ∈ M
is a necessary condition for points and marks to be independent. Now consider the case that N is a
marked Poisson process with θm0(s) = 1 for all s ∈ S and m0 ∈ M. Let

h1(m0) =


S

 m0
m λ(s,m)dmds

S

 m
m λ(s,m)dmds



26 T. Zhang, Q. Zhuang / Spatial Statistics 9 (2014) 20–37

and

h2(s) =

 m

m
λ(s,m)dm.

Then h1(m0) is only a function ofm0 and h2(s) is only a function of s. Therefore m
m0
λ(s,m)dm m0

m λ(s,m)dm
=


S

 m
m0
λ(s,m)dmds

S

 m0
m λ(s,m)dmds

⇒

 m
m0
λ(s,m)dm m0

m λ(s,m)dm
+ 1 =


S

 m
m0
λ(s,m)dmds

S

 m0
m λ(s,m)dmds

+ 1

⇒

 m
m λ(s,m)dm m0
m λ(s,m)dm

=


S

 m
m λ(s,m)dmds

S

 m0
m λ(s,m)dmds

⇒

 m0

m
λ(s,m)dm = h1(m0)h2(s).

Differentiate the above equation on both sides with respect tom0. Then, we have

λ(s,m0) = h′

1(m0)h2(s),

which implies that points and marks are independent if N is a marked Poisson process (Schoenberg,
2004). �

Remark. Because λ(s,m) = f1(s)f2(m) is only a necessary condition of independence, we cannot
conclude points and marks are independent if θm0(s) = 1 for all s ∈ S and m0 ∈ M in a general
MPP. However, if one can show λ(s,m) cannot always be written into f1(s)f2(m), then it is enough
to conclude points and marks are not independent. Recently, a few methods have been proposed to
assess the independence between points and marks. These include tests for stationarity and isotropy
of MPPs using variograms (Schlather et al., 2004), a nonparametric kernel-based test to assess the
separability of the first-order intensity function (Schoenberg, 2004), and a χ2-based test to assess the
interaction between points and marks in N when Ns is stationary and isotropic (Guan and Afshartous,
2007). Using these methods, we are able to test whether θm0(s) = 1 for all s ∈ S and m0 ∈ M.

3. Estimation

We propose a nonparametric method to estimate θc(s). It is modified from the well-known kernel
density estimation method which has been extensively used in nonparametric statistics. To apply the
kernel method, we have to choose a kernel function K(s) on Rd and a pre-selected bandwidth h > 0,
where the kernel function satisfies

Rd
K(s)ds = 1.

As long as K(s) and h are decided, we need to estimateψ11(s,m0),ψ12(s,m0),ψ21(m0), andψ22(m0)
in Eq. (9). We propose a two-step method to estimate these functions. In the first step, we estimate
ψ11(s,m0) and ψ12(s,m0). We note that they represent intensity functions for points at s according
tom < m0 andm ≥ m0, respectively. Therefore, we have the estimator of ψ11(s,m0) as

ψ̂11(s,m0) =
1
hd

n
i=1

K

s − si

h


I(mi < m0)

and the estimator of ψ12(s,m0) as

ψ̂12(s,m0) =
1
hd

n
i=1

K

s − si

h


I(mi ≥ m0).

In the second step, we estimate ψ21(m0) and ψ22(m0). We note that ψ21(m0) and ψ22(m0) represent
cumulative measures for points in the whole study area according to m < m0 and m ≥ m0,
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respectively. Although they do not depend on s, we consider the impact of ψ̂11(s,m0) and ψ̂12(s,m0)
on estimation of θm0(s) and propose the estimator of ψ21(m0) as

ψ̂21(m0) =

n
i=1

I(mi < m0)−

n
i=1

K

s − si

h


I(mi < m0) (10)

and the estimator of ψ22(m0) as

ψ̂22(m0) =

n
i=1

I(mi ≥ m0)−

n
i=1

K

s − si

h


I(mi ≥ m0). (11)

We adopt the above two estimators because the second term on the right side of (10) or (11) is used
in estimation of ψ11(s,m0) or ψ12(s,m0), which should be adjusted in estimation of ψ21(m0) and
ψ22(m0). As the second term approaches to 0 in probability according to Theorem 3 given below, such
an adjustment does not affect the large-sample property of an estimator of θm0(s), which is given by

θ̂m0(s) =
ψ̂11(s,m0)ψ̂22(m0)

ψ̂21(m0)ψ̂12(s,m0)
. (12)

The consistency of θ̂m0(s) is considered under the condition that κ → ∞, where

κ =


S


M

λ(s,m)dmds

is the expected number of events in thewhole study area.We denote
P

→ as convergence in probability
as κ → ∞. We say θ̂m0(s) is a consistent estimator of θm0(s) if θ̂m0(s)

P
→ θm0(s) at everym0 ∈ M and

s ∈ S.
As the consistency of θ̂m0(s) is derived under the condition that κ → ∞, we need to assume

that the intensity functions of N depends on κ . For convenience, we write λ as λκ for the first-order
intensity function, λk as λk,κ for the kth-order intensity function, and g as gκ for pair correlation
function. To simplify our proof, we write λk(s,m) = 0 if s ∉ S. To prove the consistency of θ̂m0(s), we
need the following regularity conditions:
(C1) The kernel function K(s) is nonnegative in an open neighborhood of origin. It is continuous at

any s if K(s) > 0, and decreasing in any direction as smoves away from the origin.
(C2) The bandwidth satisfies h → 0 and κhd

→ ∞ as κ → ∞.
(C3) S is an open bounded measurable subset of Rd and M is an open finite sub-interval of R.
(C4) λ0(s,m) = limκ→∞ κ

−1λκ(s,m) positively exists and is continuous in s and m.
(C5) There exists an H1(s,m) such that κ−1λκ(s,m) ≤ H1(s,m)with

S


M

H1(s,m)dmds < ∞

for every s ∈ S and m ∈ M.
(C6) limκ→∞ gκ [(s1,m1), (s2,m2)] = 1 if (s1,m1) ≠ (s2,m2).
(C7) There is an H2[(s1,m1), (s2,m2)] such that |gκ [(s1,m1), (s2,m2)] − 1| ≤ H2[(s1,m1), (s2,m2)]

with 
S


M


S


M

H2[(s1,m), (s2,m)]H1(s1,m1)H1(s2,m2)dm2ds2dm1ds1 < ∞

for every s1, s2 ∈ S and m1,m2 ∈ M.

Lemma 1. Let Us = {s′ : ∥s − s′∥ ≤ h} and assume Conditions (A1)–(A3) hold. If Condi-
tions (C2)–(C5) also hold, then

lim
κ→∞

θm0(Us) = lim
κ→∞

θm0(s) =

 m0
m λ0(s,m)dm


S

 m
m0
λ0(s,m)dmds m

m0
λ0(s,m)dm


S

 m0
m λ0(s,m)dmds

.
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Proof. Condition (C2) implies that |Us| goes to s as κ → ∞. Condition (C5) implies the Dominated
Convergence Theorem. Then, we have

lim
κ→∞

1
κ|Us|

E(n11) = lim
κ→∞

1
κ|Us|

 m0

m


Us

λκ(s′,m)ds′dm

=

 m0

m
lim
κ→∞

1
|Us|


Us

λκ(s′,m)
κ

ds′dm

=

 m0

m
λ0(s,m)dm.

Using the same method for n12, n21, and n22, we have

lim
κ→∞

1
κ|Us|

E(n12) =

 m

m0

λ0(s,m)dm,

lim
κ→∞

1
κ
E(n21) =


S

 m0

m
λ0(s,m)dm

and

lim
κ→∞

1
κ
E(n22) =


S

 m

m0

λ0(s,m)dm,

which is enough to draw the conclusion. �

According to Lemma 1, Conditions (C2)–(C5) are assumptions of the existence of the limits of
θm0(Us) and θm0(s). With Conditions (C1), (C6), and (C7), the consistency of θ̂m0(s) is derived. In our
justification, we find that these conditions are reasonable and weak. They are satisfied at least by a
marked Poisson process because it has gk[(s1,m1), (s2,m2)] = 1 for all s1, s2 ∈ S and m1,m2 ∈ M.
If N is not a marked Poisson process but it satisfies some additional assumptions (such as the strong
mixing condition given by Ivanoff (1982)) as κ → ∞, then Conditions (C6) and (C7) also hold.

Theorem 3. If Conditions (A1)–(A3) and (C1)–(C7) hold, then θ̂m0(s)− θm0(s)
P

→ 0 at every s ∈ S and
m0 ∈ M as κ → ∞.

Proof. To show the conclusion, we need to derive the mean and variance formulae of ψ̂11(s,m0),
ψ̂12(s,m0), ψ̂21(s,m0), and ψ̂22(s,m0). To derive the formulae, we can use the idea for intensity
functions of counting processes on real numbers (Ramlau-Hansen, 1983). As all of the derivations are
similar, we only display the detail for ψ̂11(s,m0) as follows. Simply extending the idea of the proof in
Proportion 3.2.1 in Ramlau-Hansen (1983) from R to Rd, we have

E

1
κ
ψ̂11(s,m0)


=


Rd

 m0

m
K(s′)

λκ(s − hs′,m)
κ

dmds′

and

V

1
κ
ψ̂11(s,m0)


=


Rd

 m0

m


Rd

 m0

m
K(s′)K(s′′){gk[(s − hs′,m′), (s − hs′′,m′′)] − 1}

×
λk(s − hs′,m′)

κ

λk(s − hs′′,m′′)

κ
dm′′ds′′dm′ds′

+
1
κhd


Rd

 m0

m
K 2(s′)

λκ(s − hs′,m)
κ

dmds′.

Note that Conditions (C5) and (C7) imply the Dominated Convergence Theorem. The first term in the
variance expression above goes to 0 as κ → ∞ if Condition (C6) hold. Note that Condition (C1) implies
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K(s′) is bounded. The second term goes to 0 as κ → ∞ if Conditions (C1) and (C5) hold. Note that
Condition (C1) also implies the integrand in mean expression above goes to λ0(s,m) for any fixed
s′ ∈ S. With Conditions (C4) and (C5), we have

1
κ
ψ̂11(s,m0)

P
→


Rd

 m0

m
K(s′)λ0(s,m)dmds′ =

 m0

m
λ0(s,m)dm.

Similarly, we can show

1
κ
ψ̂12(s,m0)

P
→

 m

m0

λ0(s,m)dm.

These two equations also imply the second term in (10) or (11) goes to zero in probability. Therefore,
it is enough to focus on the first term in (10) or (11). Using the same method, we have

1
κ
ψ̂21(m0)

P
→


Rd

 m0

m
λ0(s,m)dmds

and

1
κ
ψ̂22(m0)

P
→


Rd

 m

m0

λ0(s,m)dmds.

Using the Continuous Mapping Theorem, we have θ̂m0(s)− θm0(s)
P

→ 0 at everym0 and s. �

In applications, we may choose K(s) as a Gaussian kernel or uniform kernel. The Gaussian kernel
is defined by

KG(s) =
1

(2π)
d
2
e−

∥s∥2
2

and a consistent estimator is derived using Eq. (12) if Conditions (C2)–(C7) hold. A uniform kernel is
defined by

Ku(s) =


1/π, if ∥s∥ < 1,
0, otherwise.

According to the uniform kernel, there are ψ̂11(s,m0) = n11/hd
= #{(si,mi) : ∥s − si∥ < h,mi <

m0}/hd, ψ̂12(s,m0) = n12/hd
= #{(si,mi) : ∥s − si∥ < h,mi ≥ m0}/hd, ψ̂21(s,m0) = n21 =

#{(si,mi) : ∥s − si∥ ≥ h,mi < m0}, and ψ̂22(s,m0) = n22 = #{(si,mi) : ∥s − si∥ ≥ h,mi ≥ m0}.
Then,

θ̂m0(s) =
ψ̂11(s,m0)ψ̂22(m0)

ψ̂21(m0)ψ̂12(s,m0)
=

n11n22

n12n21
. (13)

According to Theorem 3, θ̂m0 is a consistent estimator if Conditions (C2)–(C7) hold. In the following
sections, we numerically study the performance of the kernel estimator of θm0(s) given by (12) based
on the Gaussian kernel and the uniform kernel, respectively.

4. Simulation

We simulated realizations fromboth amarked Poisson process andmarked Poisson cluster process
on the unit disk on R2 such that S = {(sx, sy) : s2x + s2y ≤ 1}. We chose these processes because of
their popularity inmodeling ecological and environmental data. In order to generate amarked Poisson
process or a marked Poisson cluster process, we first generate the underlying Poisson point process
or Poisson cluster process Ns and then generated the corresponding marks based on conditional
distributions at given points.
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For both processes, the first-order intensity function of Ns was defined as

λa(s) =


κae−a∥s∥2/[π(1 − e−a)], if a > 0,
κ/π, if a = 0,

(14)

provided ∥s∥ ≤ 1, where κ was pre-selected constant. We chose the above model because it yielded
E[Ns(S)] = κ , which made the point density as

fa(s) = λa(s)/κ.
To successfully generate the underlying Ns, for marked Poisson process, we generated homogeneous
Poisson process on S with the intensity function equal to λ̃a(s) = λa(s)a/(1 − e−a). As long as
points were derived, each point was then thinned with the retained probability equal to e−a∥s∥ which
produced a Poisson point Ns with intensity λa(s). For the marked Poisson cluster process, we first
generated homogeneous parent processwith intensity function equal to λ̃a(s)/k. As long as the parent
process was derived, we generated the offspring process according to the rule of Poisson cluster
process (Diggle et al., 2003): the number of offspring points corresponding to each parent point
followed a Poisson distribution with mean k and the position of each offspring relative to its parent
was defined as a radial symmetric Gaussian random variable with standard deviation σ . We chose
σ = 0.02. After that, each offspring was then thinned according to the samemethod that we used for
the marked Poisson process. Therefore in both cases, we had the first-order intensity function of Ns
equal to λa(s) given by Eq. (14). As long as points were derived, we generated marks independently
from N(ν, 1) distribution with

ν = ν(s) = η(1 − ∥s∥), η ≥ 0. (15)
It was clear that both stationary and nonstationary Ns could be generated respectively according to
Eqs. (14) and (15): a stationary Ns was derived if a = 0 and a nonstationary Ns was derived if a ≠ 0.
As long as points were derived, we had θm0(s) = 1 for anym0 and s if and only if η = 0.

According to the statisticalmodel in our simulation,we hadψ11(s,m0) = Φ[m0−η(1−∥s∥)]λa(s),
ψ12(s,m0) = 1 − Φ[m0 − η(1 − ∥s∥)]λa(s). If a ≠ 0, then

1
κ
ψ21(m0) =

1
1 − e−a

[Φ(m0 − η)− e−aΦ(m0)]

+
ηe

−
a(m0−η)2

η2+2a

(1 − e−a)

η2 + 2a


Φ


η2 + 2a


1 +

η(m0 − η)

η2 + 2a


− Φ


η(m0 − η)
η2 + 2a


and

1
κ
ψ22(m0) =

1
1 − e−a

[(1 − e−a)+ Φ(m0)e−a
− Φ(m0 − η)]

−
ηe

−
a(m0−η)2

η2+2a

(1 − e−a)

η2 + 2a


Φ


η2 + 2a


1 +

η(m0 − η)

η2 + 2a


− Φ


η(m0 − η)
η2 + 2a


.

If a = 0, then
1
κ
ψ21(m0) = Φ(m0)−

1
η2


[1 + (η − m0)

2
][Φ(m0)− Φ(m0 − η)]

+
η − m0
√
2π

e−
(m0−η)2

2 +
m0 − 2η

√
2π

e−
m2
0
2


and

1
κ
ψ22(m0) = [1 − Φ(m0)] +

1
η2


[1 + (η − m0)

2
][Φ(m0)− Φ(m0 − η)]

+
η − m0
√
2π

e−
(m0−η)2

2 +
m0 − 2η

√
2π

e−
m2
0
2


.

Therefore, the value of θm0(s) could be analytically derived.



T. Zhang, Q. Zhuang / Spatial Statistics 9 (2014) 20–37 31

Table 2
Simulated values of MISE between log[θ̂m0 (s)] and log[θm0 (s)] for selected a, η,m0 , and hwith respect to the normal kernel Kn
and the uniform kernel Ku in the marked Poisson and marked Poisson cluster processes, where the bandwidth was chosen as
h = ω/κ1/5 with ω = 1, 2.

m0 a η κ Marked poisson process Marked poisson cluster process
Kn for diff ω Ku for diff ω Kn for diff ω Ku for diff ω
1 2 1 2 1 2 1 2

1 0 0 1000 0.0384 0.0084 0.1774 0.0524 0.0376 0.0083 0.1920 0.0537
5000 0.0136 0.0033 0.0556 0.0160 0.0135 0.0034 0.0585 0.0163

1 1000 0.0555 0.1198 0.1263 0.0612 0.0578 0.1203 0.1461 0.0643
5000 0.0224 0.0726 0.0423 0.0219 0.0228 0.0733 0.0454 0.0228

2 1000 0.1462 0.4414 0.1161 0.1349 0.1587 0.4456 0.1489 0.1473
5000 0.0628 0.2815 0.0418 0.0557 0.0654 0.2831 0.0468 0.0584

1 0 1000 0.0373 0.0084 0.1794 0.0522 0.0383 0.0084 0.1938 0.0545
5000 0.0136 0.0033 0.0560 0.0160 0.0138 0.0035 0.0588 0.0164

1 1000 0.0791 0.1574 0.1389 0.0938 0.0829 0.1585 0.1571 0.0982
5000 0.0423 0.1061 0.0556 0.0452 0.0426 0.1067 0.0579 0.0461

2 1000 0.2280 0.5618 0.1702 0.2450 0.2352 0.5638 0.1989 0.2531
5000 0.1298 0.3872 0.0912 0.1330 0.1301 0.3884 0.0936 0.1355

2 0 0 1000 0.1448 0.0496 0.3842 0.3464 0.1497 0.0525 0.4312 0.3491
5000 0.0791 0.0210 0.3312 0.1114 0.0769 0.0220 0.3237 0.1147

1 1000 0.1452 0.2255 0.3550 0.2028 0.1470 0.2257 0.3686 0.2096
5000 0.0620 0.1383 0.1992 0.0700 0.0627 0.1389 0.2030 0.0709

2 1000 0.2713 0.7904 0.2828 0.2876 0.2811 0.7959 0.3222 0.3094
5000 0.1205 0.5207 0.1365 0.1179 0.1241 0.5236 0.1456 0.1220

1 0 1000 0.1433 0.0513 0.3808 0.3496 0.1502 0.0498 0.4288 0.3423
5000 0.0775 0.0218 0.3294 0.1140 0.0791 0.0220 0.3259 0.1146

1 1000 0.1953 0.3039 0.3878 0.2583 0.2008 0.3046 0.4061 0.2611
5000 0.0971 0.2088 0.2081 0.1098 0.1001 0.2089 0.2116 0.1112

2 1000 0.4436 1.0658 0.3740 0.5045 0.4466 1.0695 0.4128 0.5250
5000 0.2547 0.7665 0.2002 0.2715 0.2583 0.7672 0.2069 0.2748

In addition to the analytical computation of θm0(s), we also numerically computed θ̂m0(s) according
to the Gaussian kernel and the uniform kernel, respectively. We compared the performance of θ̂m0(s)
according to the mean integrated square error (MISE) between the logarithm of θ̂m0(s) and θm0(s)
given by

MISE = E{log[θ̂m0(s)] − log[θm0(s)]}
2

=


∥s∥≤1

{log[θ̂m0(s)] − log[θm0(s)]}
2fa(s)ds.

To estimate the MISE, we evenly selected L points {s0i : i = 1, . . . , L} in S and computed

MISE =


L

i=1

fa(s0i)

−1 L
i=1

{log[θ̂m0(s0i)] − log[θm0(s0i)]}
2fa(s0i).

We used MISE to estimate MISE and compared the performance of θm0(s) for selected m0, a, η, and
κ with respect to the Gaussian kernel Kn and the uniform kernel Ku, respectively. According to the
asymptotic property of kernel density estimation (van der Vaart, 1998, page 344), the bandwidth
h was selected to be proportional to κ−1/5 such that the expected number of points in a disk with
radius hwas also approximately proportional to κ−1/5, which yielded an optimalMISE of order κ−4/5.
Therefore, the bandwidth in our simulation had the form of h = ω/κ1/5 for a constant ω.

We simulated 1000 realizations using each set of parameters for the two types of processes. For
each realization, we applied the proposed method to estimate θm0(s) and computed MISE using the
normal kernel Kn and the uniform kernel Ku, respectively. Specifically, we chose s0i as points on a
51 × 51 lattice defined by {(x, y) : x = ±0.04j1, y = ±0.04j2, 0 ≤ j1, j2 ≤ 25}. We excluded those
s0i if ∥s0i∥ > 1, which yielded L = 1961 points in the computation of MISE.

Table 2 displays the simulated values of MISE between log[θ̂m0(s)] and log[θm0(s)] in the marked
Poisson process and marked Poisson cluster process, respectively. It showed that MISE decreased as
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κ increased. This was expected because a larger κ value indicated a more precise estimate of θm0(s).
The values of MISE were significantly affected bym0, η and ω. We compared the performance of MISE
between marked Poisson process and marked Poisson cluster process as well as the values of a and
found that values of MISE were close. Therefore, we concluded that the performance of θ̂m0(s) was
significantly affected by the first-order property but not by the second-order property of Ns. In the
comparison between kernel functions, we found that the performance of Gaussian kernel was better
if ηwas small (i.e. η = 0) butworse if ηwas large (i.e. η = 2). Althoughwe could not general conclude
which kernel function should be better used in applications, wemight conclude that the performance
of uniform kernel was better if point patterns were inhomogeneous. Overall, we concluded that the
influence of m0, η, κ , bandwidth, and kernel functions was substantial but the dependence between
points in Ns was not.

5. Case study

We applied our approach to the Alberta Forest Wildfire data and the Japan Earthquake data. Using
the method proposed by Schoenberg (2004) for testing independence between points and marks, we
found that the independence between points andmarks was rejected in both datasets. The result was
not displayed in this article as it was not the interest in our data analysis. In the Alberta Forest Wildfire
data, we chose m0 = 2 km2 as a forest wildfire is called large if the area burned is greater than or
equal to 2 km2. In the Japan Earthquake data, we chose m0 = 6 because an earthquake is often called
large if the magnitude is greater than or equal to 6. As long as m0 was decided, we used the Gaussian
kernel Kn and the uniform kernel Ku to compute θ̂m0(s). As long as θ̂m0(s)was derived, we used θ̂m0(s)
to interpret the relationship between points and marks. According to the definition of θm0(s), it is
recommended to pay much attention to subregions with low values of θ̂m0(s).

5.1. Alberta forest wildfire data

The Alberta Forest Wildfire data consisted of forest wildfire activities in Alberta, Canada, from 1931
to 2012. The Canadian Alberta Forest Service initiated the modern era of wildfire record keeping in
1931. Over the years, this fire information has been recorded, stored and made available in different
formats. Beginning in 1996, paper copies of wildfire historical information were no longer retained.
Thewildfire historical data were entered at the field level on the Fire Information Resource Evaluation
System (FIRES), which are available at http://www.srd.alberta.ca/Wildfire.

We collected the historical forest wildfire data from 1996 to 2010 from the website. The dataset
contained forest wildfire activities with area burned greater than or equal to 0.01 hectares (Fig. 1).
The largest wildfire occurred in 2002 at 111.77 longitude west and 55.47 latitude north and had an
area burned of 2388.67 km2. To apply the approach, we investigated the dependence between the
fire occurrences and area burned, in which we treated spatial locations of wildfires as points and area
burned as marks.

We estimated the surface of θm0(s) by the kernel method given in Eq. (12). We used the spherical
distance and chose m0 = 2 km2 as the threshold in the method. According to this criterion, we
classified a fire as a large fire if its area burned was greater than or equal to 2 km2. We found that
large fires had around 1.6% of total fire occurrences but over 98% of total burned area, which indicated
that large fires were more important than small fires in the Alberta Forest Wildfire study.

We computed the spherical distance between all of wildfire locations and found that the largest
distance between fireswas around 1200 km in the data.We attempted to derive the estimate of θm0(s)
at every point in the forest area with the Gaussian kernel and the uniform kernel, respectively. To
derive a stable estimate, we investigated multiple choices of h in Eq. (12) and found that h = 100 km
was almost the best one for both kernel functions. Therefore, we used h = 100 km in the computation
of θ̂m0(s). The values of θ̂m0(s)were computed at every point in the study area. Finally, the estimated
surface of local odds ratios was derived.

http://www.srd.alberta.ca/Wildfire
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Fig. 1. Wildfire locations in Alberta forest wildfire data.

Fig. 2. Estimated surface of log[θm0 (s)] between large (m ≥ m0 = 2 km2) and small (m < m0 = 2 km2) fires in the Alberta
forest wildfire data (1996–2010) derived from the uniform kernel with h = 100 km.

The estimated surface of local odds ratios from the uniform kernel is displayed in Fig. 2. Although
the estimated surface from the Gaussian kernelwas similar, we decided only to display the result from
the uniform kernel in this paper because point patterns in the Alberta Forest Wildfire data seemed
inhomogeneous. We found that the values of local odds ratio were mostly small in the North and
mostly large in the South, which indicated that the proportion of large fires in the North were higher
than the proportion of large fires in the South. Therefore, the risk for a forest wildfire to become a large
fire sooner or later in the North was higher than the risk in the South. This is generally consistent with
our earlier findings that the forests in the North were with higher risks than in the South using a
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Fig. 3. Occurrences of earthquakes with magnitude greater than or equal to 3.0 in the Japan Earthquake data (2002–2011).

power-law analysis approach for fire frequency and area burned of Canadian forest ecosystems (Jiang
et al., 2009).

5.2. Japan earthquake data

Many sources of earthquake data are established and available via internet and can be downloaded
for free. Examples include the websites of the United States National Geophysical (USGS) data center
at http://earthquake.usgs.gov/research/data/, the North California Earthquake Data Center (NCEDC)
at http://www.ncedc.org/anss/catalog-search.html, as well as many others. The database contains the
date, longitude, latitude, andmagnitude of earthquakes at the regional or global level from thousands
of years ago to recent years.

We collected the historical earthquake data of the world from the NCEDC website. The collected
dataset contained earthquake activities in the world from January 1, 2002 to December 31, 2011 with
magnitude greater than or equal to 3.0. We extracted earthquakes in Japan and its nearby ocean area
because Japan was considered as the highest risky country for earthquakes in the world. Based on
the data we collected, we found that most earthquakes occurred in an area between latitude 30 to
latitude 45 north and longitude 130 to 150 east (Fig. 3). Therefore, we decided to take this area as
the study region. There were totally 11,423 earthquakes in the dataset. Among those, 130 of them
had magnitude between six and seven, 15 of them had magnitude between seven and eight, and 2
of them had magnitude higher than eight. The largest earthquake occurred in the ocean area close
to the northeastern Japan in March 11, 2011 at 38.30 latitude north and 142.37 longitude east and
had a magnitude of 9.1. The earthquake caused over fifteen thousand human deaths as well as much
more injuries. In addition, it also caused a nuclear accident of the Fukushima Daiichi Nuclear Power
Plant, which induced a huge leak of nuclear radiation affecting hundreds of thousands of residents
and thousands of square kilometer resident area.

We treated the spatial locations of earthquakes as points and magnitude as marks. We estimated
the surface of θm0(s) by the kernel method given in (12). We used the spherical distance and chose
m0 = 6.0 as the threshold in the method. According to this criterion, we classified an earthquake
as large if its magnitude was larger than or equal to 6.0. We derived the estimate of θm0(s) as every
point in the study region. To derive a stable estimate, we investigate the choices of h and found that

http://earthquake.usgs.gov/research/data/
http://www.ncedc.org/anss/catalog-search.html
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Fig. 4. Estimated surface of log[θm0 (s)] between large (m ≥ m0 = 6) and small (m < m0 = 6) earthquakes in the Japan
Earthquake data (2002–2011) derived from the uniform kernel with h = 100 km.

k = 100 kmwas almost the best bandwidth among all the cases thatwe studied.We used h = 100 km
in the computation of θ̂m0(s) at every s in the study region. As estimates of θm0(s) at points more than
100 kmaway fromany large earthquakewere not stable,we excluded those fromour result and finally
we got the estimated surface of local odds ratios.

In the comparison between theGaussian kernel and uniformkernel,we found themain issueswere
almost the same. Therefore, we decided to only display the results from the uniform kernel (Fig. 4).
Another reason for us to focus on the result from the uniform kernel was that point patterns were
inhomogeneous in the Japan Earthquake data. It showed that values of θ̂m0(s)were mostly large in the
whole study region except in a few subregions. One subregion was about a circular area centered at
around 38.5 latitude north and 142 longitude east. It had high occurrence rates of earthquakes and
high proportion of large earthquakes, which was coincident with the largest earthquake, occurred in
March 11, 2011. This region was considered as the most risky area for large earthquakes. Another
subregion was around 42.5 latitude north and 144 longitude east which also had high occurrence
rates and high proportion of large earthquakes. Therefore, it was also considered as a risky area
for large earthquakes. A few subregions (e.g. the two in the Sea of Japan) had low occurrence rates
of earthquakes but high proportion of large earthquakes, which might still be a concern for large
earthquake risks. This was generally consistent with a recent analysis for Japan earthquake hazard
maps (Stein et al., 2012). Therefore, we should be able to conclude that the surface of odds ratios
displayed in Fig. 4 was able to partially describe hazard patterns for large earthquakes.

6. Discussion

We have proposed an approach of local odds ratio to describe and measure the local dependence
between points and marks of MPPs. The approach primarily relies on the definition of the local odds
ratio θm0(s) as well as its estimator θ̂m0(s). In the definition, there is a threshold value m0 for marks
and a location s for points. As θm0(s) is considered for every s in the study area, it is only necessary
to determine the value of m0 in the approach. To decide m0, we recommend to consider the specific
interest in applications such that it can be well explained for events with mark values greater than
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and less thanm0, respectively. Whenm0 is decided, the estimated value θ̂m0(s) at every s in the study
area forms an estimate of the surface of local odds ratios.

According to its definition, the local odds ratio is the ratio of the odds between small and large
events at the local level to the global level. It is also equal to the ratio of the relative risk of small
events to the relative risks of large events. The value of the local odds ratio describes the risk for an
event to finally become large at the local level relative to the global level. The ratio of two local odds
ratios describes the risk of large events between the two specific locations. Therefore, the surface of
local odds ratios may be used as an index measure for the risk of an event to become a large event in
the end conditioning on the observation of an event.

We expect that the proposed approach will find wide applications in natural hazards studies, as
many important issues can be discovered by studying the estimated surface of local odds ratios. For
example, in a forest wildfire study, if the value of local odds ratio is low, then as long as a fire is
observed at the beginning it is more likely for the fire to be large in the end. In an earthquake study,
if the value of local odds ratio is low, then energy accumulated is less likely to be released by many
small earthquakes rather than by a few large earthquakes. Therefore, our approach suggests that risk
studies should pay more attention to the area that has small local odds ratios.

There are a few possible extensions to the approach. First, the local odds ratio defined in this
article only involves the first-order intensity function, which cannot be used to interpret higher-order
dependence between points andmarks. Second, even though we have provided a method to estimate
the local odds ratio, we have not considered any explanatory variables. It will be important to develop
a method that models the local odds ratio by explanatory variables (e.g., in forest fire studies, the
effects of drought condition and fuel loadings). Third, according to the definition, the local odds ratio
only involves the odds between events with mark values higher than and lower than a threshold. It
cannot be directly used to analyze the dependence between points and marks if two or more critical
threshold values are considered. To extend our proposed approach by considering the above issues
will be important to wide applications and deserves further investigations.
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