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Abstract Aerosols affect downward solar radiation, impacting the terrestrial ecosystem carbon dynamics
and energy budget. Here we apply a coupled modeling framework of a terrestrial ecosystem model and an
atmospheric radiative transfer model to evaluate aerosol direct radiative effects on the surface heat fluxes of
global terrestrial ecosystems during 2003–2010. We find that aerosol loadings decrease the mean latent heat
flux by 2.4Wm�2 (or evapotranspiration by 28mm) and sensible heat flux by 16Wm�2. As a result, global mean
soil moisture and water evaporative fraction have increased by 0.5% and 4%, respectively. Spatially, aerosol
effects are significant in tropical forests and temperate broadleaf evergreen forests. This study is among the first
quantifications of aerosols’ effects on the heat fluxes of the global terrestrial ecosystems. The study further
suggests that both direct and indirect aerosol radiative effects through aerosol-cloud interactions should be
considered to quantify the energy budget of the global terrestrial ecosystems.

1. Introduction

The energy budget at the earth surface (with negligible storage by the canopy) is balanced by net radiation
(Rn), latent heat flux (LE), sensible heat flux (SH), and ground heat flux (G) [Wang and Dickinson, 2012].
Atmospheric aerosols have various levels of effects on the surface radiation and energy budget depending
on their characteristics [Wang et al., 2009] and vertical distributions [Knapp et al., 2002; Sakaeda et al., 2011].
The microclimate in the terrestrial biosphere can be greatly influenced by the aerosol-induced changes in the
solar radiation [Gu et al., 2003; Mercado et al., 2009]. Further, large aerosols’ direct radiative effects on plant
productivity have been suggested in numerous studies [Roderick et al., 2001; Gu et al., 2003; Niyogi et al., 2004;
Oliveira et al., 2007; Chen and Zhuang, 2014]. On the one hand, aerosols can reduce the total downward solar
radiation, negatively impacting plant productivity. On the other hand, aerosols can increase the diffuse
radiation that reaches the land surface, enhancing the plant carbon uptake [e.g., Gu et al., 2003].

Plant carbon uptake and heat flux of ecosystems are closely related through photosynthesis [Law et al., 2002;
Niyogi et al., 2009; Beer et al., 2010]. Some observational experiments have been attempted to study the
aerosols’ direct effects on the land surface energy flux at site levels [Wang et al., 2008; Steiner et al., 2013;
Murthy et al., 2014], regional scales [Biggs et al., 2008], and even global scales [Roderick and Farquhar, 2002]. To
date, modeling studies have focused their analyses on the aerosol effects on energy fluxes at local and
regional scales [e.g., Quaas et al., 2004;Miller et al., 2004; Hohenegger and Vidale, 2005; Steiner and Chameides,
2005; Huang et al., 2007;Mallet et al., 2009; Pere et al., 2011]. These studies have shown that aerosols generally
reduce the SH and LE, and the different responses to aerosol loadings depend on the canopy structure
and leaf amount. However, there are few studies focusing on the aerosols’ direct effects on the energy flux at
the global scale. Although some global circulation models (GCMs) have been used to examine the aerosols’
impact on current and future climate [Douville et al., 2002; Feichter et al., 2004; Hohenegger and Vidale., 2005],
the aerosol data used are less accurate with coarse spatial resolution compared to continuous satellite
measurements (e.g., the Moderate-Resolution Imaging Spectroradiometer, MODIS) [Chen and Zhuang, 2014].
In addition, since land surface energy balance involves both biophysical and biogeochemical processes,
process-based models are needed to adequately analyze the aerosols’ effects on the energy fluxes.

Here we conduct a global-scale study to understand the aerosols’ radiative effects on terrestrial ecosystem
heat fluxes using a process-basedmodeling approach. We first apply an atmospheric radiative transfer model
[Chen et al., 2014] that uses MODIS-based global aerosol properties. We then integrate the model with a
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terrestrial ecosystemmodel (the integrated Terrestrial ecosystemmodel, iTem; Chen, 2013; Chen and Zhuang,
2014) to estimate aerosol direct radiative effects on the energy fluxes of the global terrestrial ecosystems. The
affected sensible heat and latent heat fluxes are finally analyzed.

2. Method
2.1. The Modeling Framework

The modeling framework includes a two-broadband atmospheric radiative transfer model, which provides the
estimation of the direct-beam and diffusive radiation in both visible and near-infrared light using the
MODIS-based atmospheric profile parameters. The model is a combination of a clear-sky solar radiation model
and a cloud transmittance model. It considers the major atmospheric radiative transfer processes such as
Rayleigh scattering, well-mixed gas absorption, ozone and water vapor scattering, and aerosol extinction. The
model does not simulate aerosol effects of each wavelength and directional scattering. Instead, it uses two
Ångström turbidity coefficients and band-averaged aerosol optical depth, and it is carefully parameterized with
a spectral radiation model to calculate the broadband aerosol transmittances. The use of MODIS-measured
atmospheric parameters allows the model to provide accurate quantification of the downward solar radiation
considering aerosols’ effects. Themodeling framework also includes the integrated Terrestrial ecosystemmodel
(iTem) to quantify the changes of land surface energy fluxes of the global terrestrial ecosystems due to the
aerosol direct radiative effects. The algorithms of key biophysical and biogeochemical processes in iTem are
mainly developed based on the process-based Land Surface Model 1.0 (LSM 1.0) [Bonan, 1996] and the
Terrestrial Ecosystem Model (TEM) [McGuire et al., 1992; Raich et al., 1991; Zhuang et al., 2003]. In iTem, the

Figure 1. Comparison of global annual mean SH (first row), LE (second row) (Units: Wm�2), and SM1 (third row) (Units: m3/m3) in S0 (first column) and S1 (second column)
from 2003 to 2010. The difference (third column) is calculated as S0 minus S1.
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canopy is modeled with a one-layer, two-big-leaf approach [Dai et al., 2004], which diagnoses energy budget,
leaf temperature, and photosynthesis separately for sunlit and shaded leaves. Canopy light penetration
depends on the position of the sun and the area of sunlit and shaded leaves, which is based on leaf angle and
the vegetation-specific canopy leaf distribution. The shaded leaves are assumed to only receive diffuse
radiation including both sky diffuse radiation and the diffuse radiation produced by scattering of the direct-
beam radiation. In contrast, the sunlit leaves receive both direct and diffuse radiation. Heat transfer,
evapotranspiration, and photosynthesis are then simulated separately in sunlit and shaded leaves responding
to the different radiation regimes to estimate energy and mass (e.g., carbon and water) budget. More technical
details of iTem are documented in Chen [2013].

2.2. Modeling Experiments and Forcing Data

We use iTem to assess the aerosol direct effects on global surface energy fluxes with two sets of simulations.
The first simulation (S0) uses transient solar radiation data estimated with the atmospheric radiative transfer
model considering the aerosol loadings (The aerosols level is shown in Figure S1 in the supporting
information).The second one (S1) uses the atmospheric radiative model estimated solar radiation data
without considering the aerosol loadings. We focus our analysis on the simulated heat fluxes including latent
heat flux (LE) and sensible heat flux (SH) as well as the first-layer soil moisture (SM1), which play an important
role in water cycle and energy budget of terrestrial ecosystems.

iTem is applied at a spatial resolution of a 1° by 1° (longitude× latitude) for the global land area except the
Antarctic. The model is run at a 3-hourly time step for the period 2003–2010. Forcing data including the
MODIS atmospheric products for driving the atmospheric radiative transfer model, the initial conditions, soil
properties, and the plant distribution as well as the meteorological data are from Chen and Zhuang [2014].

3. Results and Discussion

Over the period of 2003–2010, the S0 estimates LE and SH of the global terrestrial ecosystems are 43.60 and
79.57Wm�2 (approximately 18×1022 and 34×1022 J yr�1), respectively. The LE simulation results agree with
estimates of 65.00Wm�2 [Jung et al., 2011], 37.34Wm�2 [Yao et al., 2014], 38.50Wm�2 [Trenberth et al., 2009],
and 37–59Wm�2 [Jiménez et al., 2011]. The estimated SH is larger than 27.00Wm�2 reported by
Trenberth et al. [2009], 41.00Wm�2 by Jung et al. [2011], and 18–57Wm�2 by Jiménez et al. [2011].
Without considering aerosol loadings, the S1 estimates higher LE and SH, which is 46.00 and 95.26Wm�2,
respectively. Due to the aerosol-induced change of LE, the global annual mean SM1 is 0.5% higher than
that of S0. The above comparison suggests that the aerosols’ direct radiative effects have a negative
impact on the global heat fluxes and slightly increase soil moisture.

Over the period 2003–2010, the negative aerosol effects on terrestrial ecosystem LE and SH take place in vast
areas of Central Africa, South, East Asia, and Amazon basin (Figure 1), reaching �40 and �100Wm�2,
respectively. The high aerosol loadings in these regions [Chen et al., 2014] reduce the incoming solar

Figure 2. Aerosol-induced changes of heat fluxes ((a) LE and (b) SH) at different leaf area index levels. The change is the
difference between annual mean values of these variables of the S0 and S1 estimates.
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radiation, cool land surface (Figure S2 in the supporting information) and soils, therefore inhibiting surface
water transpiration and increasing SM1 by 2 ~ 5% in these areas. The temporal and spatial patterns of LE
and SH differences in two simulations are associated with leaf area index (LAI). The aerosol-induced changes
of LE and SH are positively correlated with LAI, which is consistent with previous studies (Figure 2; Niyogi et al.,
2004; Matsui et al., 2008).The surface energy fluxes coupled with plant photosynthesis are highly influenced

Table 1. Comparison of Annual Mean Heat Fluxes (LE and SH) and Surface Soil Moisture (SM1) During 2003–2010 for
Each Vegetation Typea

Vegetation Type

LE (Wm�2) SH (Wm�2) SM1 (m3/m3)

S0 S1 S0 S1 S0 S1

Alpine tundra and polar deserts �0.07 �0.01 �1.04 �0.66 5.91 5.91
Wet tundra �0.76 0.09 0.56 2.41 18.76 18.58
Boreal forest 2.95 3.21 2.69 4.33 5.41 5.32
Temperate coniferous forest 0.07 1.19 8.92 11.37 10.29 10.13
Temperate deciduous forest 13.57 13.88 16.73 21.49 9.50 9.36
Grasslands 10.32 10.81 7.12 9.36 10.19 9.89
Xeric shrublands 8.19 9.37 3.38 4.78 11.46 10.96
Tropical forests 38.58 38.75 53.35 87.84 6.93 6.03
Xeric woodland 18.24 18.30 7.56 12.37 15.96 14.92
Temperate broadleaved �51.33 �47.53 131.40 135.33 9.73 9.55
Evergreen forest
Mediterranean shrublands 16.40 16.98 9.64 12.89 24.94 24.58

aNegative LE values mean that the water transforms from gas to liquid phase, and negative SH represents the heat
conduction from the atmosphere to land surface.

Figure 3. Comparison of zonal mean seasonal (a) SH, (b) LE, and (c) EF averaged over the study period in S0 and S1. The
difference is calculated as S0 minus S1.
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by aerosol loadings in high-LAI ecosystems. The main differences between the two simulations occurred in
tropical and subtropical ecosystems (Table 1), in which aerosols show the greatest impact on SH in tropical
forests (with the relative difference ((S0� S1) / S1) of 39.3%) and LE in temperate broadleaved evergreen
forests (with the relative difference ((S0� S1) / S1) of 7.9%).

The aerosols’ effects on SH and LE show strong seasonal variations (Figures 3a and 3b). As for LE, the
difference between the two simulations mainly occurs in lower latitudes (20 °S ~ 20 °N), with the strongest
effect in summer season at each hemisphere. The seasonal patterns of aerosols’ effects on LE are generally
consistent with ones of LAI or plant productivity in these regions. By contrast, the aerosols’ effects on SH are
mostly negative in fall at Southern Hemisphere and in spring and summer at Northern Hemisphere, which
cannot be explained by the seasonal variation of LAI. We use the evaporative fraction (EF) (LE / [LE + SH]) to
examine the influence of aerosols on partitioning of the latitudinal energy fluxes (Figure 3c). EF is considered to
be a constant during daytime hours [Wang et al., 2008; Gentine et al., 2011]. The EF in S0 is generally 4% higher
than that in S1, and their differences are more obvious in Northern Hemisphere (0 °N~60 °N). This positive
impact of aerosols’ direct effects on EF agrees with the results based on site-level continuous ground
measurements across the southern Great Plains from Wang et al. [2008], indicating that the relative
contributions of the turbulent energy fluxes to surface energy budget were larger under aerosol loadings.

Our study is among the first to quantify the aerosols’ effects on terrestrial surface energy fluxes at the global
scale. The simulations agree with previous studies, indicating that aerosols decrease land surface heat fluxes
and increase soil moisture. Regions with dense vegetation are more likely influenced by aerosol loadings.
However, this study only considers the aerosols’ direct radiative effects, but not the indirect effects caused by
cloud-aerosol interactions [Twomey, 1977; Costantino and Bréon, 2010]. In addition, some aerosols may act as
a source of nutrient for plants through atmospheric deposition of particulates to the Earth’s surface
[Mahowald et al., 2005; Magnani et al., 2007; Carslaw et al., 2010], affecting plant growth, in turn, affecting
energy fluxes of ecosystems. These effects have not been considered in this study either. Finally, this study
has not differentiated aerosol types in quantifying their radiative effects. However, aerosol species varying
across the globe could have different effects on earth surface energy fluxes and climate [Menon et al., 2002;
Martin et al., 2010; Zhang et al., 2009].

4. Conclusion

A modeling framework of a terrestrial ecosystem model and an atmospheric radiative transfer model is used
to evaluate aerosols’ direct radiative effects on the heat fluxes of the global terrestrial ecosystems during
2003–2010. Model simulations indicate that aerosol loadings decrease the mean latent heat flux by 2.4Wm�2

(or evapotranspiration by 28mm) and sensible heat flux by 16.0Wm�2. As a result, global mean soil moisture
and the evaporative fraction increased by 0.5% and 4.0%, respectively. Aerosol effects are significant in
tropical and temperate broadleaf evergreen forests. This study is among the first to quantify aerosols’ effects
on the heat fluxes of the global terrestrial ecosystems. Our study further suggests that both direct and
indirect aerosol radiative effects shall be considered in future energy budget quantifications for the global
terrestrial ecosystems.
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