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Abstract: Large fires are a major disturbance in Canadian forests and exert significant effects on both the climate system
and ecosystems. During the last century, extremely large fires accounted for the majority of Canadian burned area. By mak-
ing an instaneous change over a vast area of ecosystems, extreme fires often have significant social, economic, and ecologi-
cal consequences. Since extreme values of fire size always situate in the upper tail of a cumulative probability distribution,
the mean and variance alone are not sufficient to fully characterize those extreme events. To characterize the large fire be-
haviors in the upper tail, the authors in this study applied three extreme value distribution functions: (i) the generalized ex-
treme value (GEV) distribution, (ii) the generalized Pareto distribution (GPD), and (iii) the GEV distribution with a Poisson
point process (PP) representation to fit the Canadian historical fire data of the period 1959–2010. The analysis was con-
ducted with the whole data set and different portions of the data set according to ignition sources (lightning-caused or hu-
man-caused) and ecozone classification. It is found that (i) all three extreme statistical models perform well to characterize
extreme fire events, but the GPD and PP models need extra care to fit the nonstationary fire data, (ii) anthropogenic and
natural extreme fires have significantly different extreme statistics, and (iii) fires in different ecozones exhibit very different
characteristics in the view of statistics. Further, estimated fire return levels are comparable with observations in terms of the
magnitude and frequency of an extreme event. These statistics of extreme values provide valuable information for future
quantification of large fire risks and forest management in the region.

Résumé : Les grands feux constituent une perturbation majeure dans les forêts canadiennes et ont des effets importants tant
sur le système climatique que sur les écosystèmes. Au cours du dernier siècle, la majorité des superficies brûlées au Canada
l’ont été lors de feux extrêmement importants. En provoquant des changements instantanés sur de vastes superficies des éco-
systèmes, les feux extrêmes ont souvent d’importantes conséquences sociales, économiques et écologiques. Étant donné que
les valeurs extrêmes de la dimension des feux se situent toujours à l’extrémité supérieure d’une distribution de probabilité
cumulative, la moyenne et la variance seules ne suffisent pas pour caractériser pleinement ces événements extrêmes. Pour
caractériser le comportement des grands feux dans l’extrémité supérieure de la distribution, les auteurs de cette étude ont ap-
pliqué trois fonctions de distribution de valeurs extrêmes : (i) la distribution généralisée de valeurs extrêmes (DGVE), (ii) la
distribution Pareto généralisée (DPG) et (iii) la DGVE avec une représentation par le processus ponctuel de Poisson (PP)
pour décrire les données canadiennes de l’historique des feux durant la période 1959 à 2010. L’analyse a été réalisée avec
le jeu de données au complet et avec différentes portions selon la source d’allumage (feu causé par la foudre ou par
l’homme) et la classification de l’écozone. On constate que (i) les trois modèles de statistiques extrêmes sont capables de
bien caractériser les épisodes de feu extrême mais les modèles DPG et PP nécessitent une attention particulière pour ajuster
les données de feu évolutif, (ii) les feux extrêmes d’origine humaine et naturelle ont des statistiques extrêmes significative-
ment différentes et (iii) compte tenu des statistiques, les caractéristiques des feux sont très différentes selon l’écozone. De
plus, les niveaux estimés de retour du feu sont comparables aux observations en termes d’ampleur et de fréquence d’un évé-
nement extrême. Ces statistiques de valeurs extrêmes fournissent une information précieuse pour la quantification future des
risques de grand feu et pour l’aménagement forestier dans la région.

[Traduit par la Rédaction]

Introduction

Large fires (≥2 km2) are the most important disturbances
and account for approximately 97% of the total burned area
of Canadian forests, although they only represent 3% of the
total fire occurrences (Stocks et al. 2002). Previous studies
have shown that burned areas significantly increased in the
last four decades (e.g., Podur et al. 2002; Gillett et al. 2004;

Kasischke and Turetsky 2006; Xiao and Zhuang 2007) and
this trend will continue in the 21st century under the future
warming condition (e.g., ACIA 2004; Flannigan et al. 2005;
Zhuang et al. 2006). Extreme fire events often cause high
economic and human costs (Alvarado et al. 1998) and land-
scape heterogeneity resulting from extreme fires can contrib-
ute to habitat diversity of boreal landscapes (Burton et al.
2008) as well. An adequate characterization of extreme fires
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is crucial to fire prediction and management (Flannigan et al.
1998; Stocks et al. 1998, 2001; Wotton et al. 2003; Beverly
and Martell 2005).
Analyses using the mean and variance of fire sizes or fre-

quency (e.g., Kushla and Ripple 1997) are not sufficient to
investigate the uncertainty of fire distribution because a sin-
gle extreme event might dramatically disrupt the central ten-
dency of the fire occurrence distribution (Alvarado et al.
1998). To date, very few analyses have focused on the upper
tail of fire size distribution, which is occupied by extreme
fire events. Previous studies (e.g., Malamud et al. 2005; Jiang
et al. 2009) suggested that heavy-tailed distributions are suit-
able for characterizing large fire behaviors. However, because
extreme fire events are rare, the shape of the tail is often not
well characterized (Malamud et al. 2005). Several studies (e.
g., Cumming 2001; Reed and McKelvey 2002; Schoenberg et
al. 2003) provided some methods to estimate the upper quan-
tiles (extreme values). For example, estimates for upper quan-
tiles might be obtained from quantile regression (Koenker
2005) without specifying a parametric distribution. Back-
transformation methods like generalized additive models for
location, scale, and shape are also available for estimating
upper quantiles (Rigby and Stasinopoulos 2005).
In this study, we applied the extreme value theory (EVT)

to analyze extremely large fires with parametric models that
could be further used to predict fire behaviors (e.g., fire size
and frequency) with a consideration of spatial and temporal
covariates (e.g., climate and fuel load) that affect fire behav-
iors (Cumming 2001). The EVT has been used to model eco-
logical disturbances (Alvarado et al. 1998; Katz et al. 2005).
Here, we used the generalized extreme value (GEV) distribu-
tion, the generalized Pareto distribution (GPD), and the GEV
distribution via the Poisson point process (PP) approach
(Coles 2001) to fit the time series of Canadian fire size data
set from 1959 to 2010. The EVT focuses on the upper tail of
the fire size distribution that is occupied by very large fires.
For the large but not necessarily extremely large fire events
(e.g., 0.90–0.95 quantiles), other approaches (e.g., the
power–law frequency–area model: Malamud et al. 2005;
Jiang et al. 2009) have proven to be sufficient to model these
large fire events.
Since characterizing extremely large fires induced from

various ignition sources is important for fire prediction
(Nash and Johnson 1996; Dey and Guyette 2000; Guyette et
al. 2002; Krawchuk et al. 2006; Jiang et al. 2009; Krawchuk
and Cumming 2009), we separately modeled the anthropo-
genic and natural extreme fires and compared their statistics
of the extreme values. In addition, since fire behaviors could
be influenced by different factors, such as weather condi-
tions, vegetation cover. and topography, we conducted two
separate extreme value analyses on extreme fires that oc-
curred in the two largest Canadian ecozones: the Boreal
Shield ecozone and the Taiga Shield ecozone. These two eco-
zones have different vegetation cover, topography, density of

rivers and lakes, and intensity of fire suppressions, all of
which could exert significant effects on fire behavior (Cum-
ming 2001). The majority of large fires also occurred in
these two ecozones in the period 1959–2010.
Next, based on the developed extreme statistical models,

the m-year fire return level defined as the burned area that is
expected to exceed a threshold once in a region, on average,
during the m-year period was estimated. The implication of
the characterization of these extreme fires and the estimated
fire return levels to fire prediction and management is dis-
cussed.

Data preparation

The Canadian National Fire Database (CNFDB) of the
Canadian Forest Service was used to investigate the extreme
fire statistics. The CNFDB is a collection of forest fire loca-
tions and fire perimeters data provided by Canadian fire man-
agement agencies including provinces, territories, and Parks
Canada (Burton et al. 2008; Canadian Forest Service 2010).
Around 300 000 fires are recorded in the CNFDB for the pe-
riod from 1959 to 2010 including the Large Fire Database
(1959–1999) (Stocks et al. 2002). Limitations of the CNFDB
include (i) fire locations are approximated, (ii) data complete-
ness and quality vary depending on mapping techniques,
source agencies, and fire years, and (iii) data collected in
more recent years may be more reliable. There is a large in-
terannual variability in both the number of fires and area
burned in Canada (Fig. 1).
We processed the fire data by summing up all fires started

on the same day to produce the daily time series for our anal-
ysis. This overcomes some geographic biases. The fire start
date was used as the signature of the daily fire event, but it
does not mean that all of the area burned happened in a sin-
gle day. Instead, the ignitions that occurred on the same day
result in a certain fire size, even an extremely large one. The
justification for using the daily sums approach is still debat-
able; we thus also processed the data set into monthly time
series by summing up fire sizes in the same month. After
processing, there are in total 18 993 daily-organized events
and 624 monthly-organized events for the EVT analysis at
two different temporal scales.

Methods

The statistical theory of extreme events
In this study, three extreme value models were used to

model the large fires as extreme events: (i) the GEV distribu-
tion, (ii) the GPD, and (iii) the GEV distribution with a PP
representation. Details about these three models are presented
in Coles (2001).
The cumulative density function (CDF) of the GEV distri-

bution is

½1� GðzÞ ¼
exp � 1þ x

z� m

s

� �h i�1=x
� �

1þ x
z� m

s

� �
> 0; x 6¼ 0

exp �exp � z� m

s

� �h i
x ¼ 0

8>><
>>:
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where m represents a location, s is a scale, and x is a shape
parameter. The shape of the GEV distribution assumes three
possible types based on the value of x: (i) x = 0, a light-
tailed (or Gumbel) distribution, (ii) x > 0, a heavy-tailed (or
Fréchet) distribution, and (iii) x < 0, a bounded (or Weibull)
distribution.
The GPD is recommended (e.g., Davison and Smith 1990)

to describe excesses of a high threshold u, Y = X–u of which
the CDF is

½2� HðyÞ ¼
1� 1þ xy

s�

� ��1=x

1þ xy

s� > 0; x 6¼ 0

1� exp � y

s�
� �

x ¼ 0

8>>><
>>>:

where y > 0, scale s* > 0, and x is the shape parameter. Si-
milar to the GEV distribution, the shape parameter deter-
mines three possible types: (i) x = 0, a light-tailed (or
exponential) distribution, (ii) x > 0, a heavy-tailed (or Pareto)
distribution, and (iii) x < 0, a bounded (or beta) distribution.

The PP representation provides a formal theoretical justifi-
cation for the peak over threshold (POT) method of fitting
the GEV distribution (Katz et al. 2005). As mentioned in
Katz et al. (2005), the PP representation is a two-dimensional
nonhomogeneous Poisson process that combines the Poisson
process (parameter l) for the times of exceedance of the high
threshold and the GPD (parameters s* and x) for the excesses
over the threshold (Leadbetter et al. 1983; Smith 1989; Davi-
son and Smith 1990). The relationship between parameters l
and s* and the GEV distribution parameters m, s, and x is
described as

½3� ln l ¼ � 1

x
ln 1þ x

u� m

s

� �h i

s� ¼ s þ xðu� mÞ
The two distributions (GPD and PP) have an identical shape
parameter x.
In practice, there are two issues in fitting the GPD and PP

models to extreme fire events. The first issue is the depend-
ence of extremes. The classical EVT only applies to inde-

Fig. 1. Ecozone boundaries and geographical distribution of fires (≥2 km2) across Canada from 1959 to 2010. The greyscale polygons (co-
lored online) represent the burned areas. The chart in the upper right corner shows statistics extracted from the Canadian National Fire Data-
base (CNFDB). The burned areas may be overlapped by one another.
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pendently and identically distributed data. However, large fire
events may show clusters of observations in the tail and the
potential correlation among threshold excesses could lead to
unrealistically tight confidence intervals. In fact, the CNFDB
is best described as a nonstationary time series with unknown
dependence structure. Unfortunately, there is no general
theory to deal with this nonstationary process. Nevertheless,
as demonstrated in Coles (2001), the standard extreme value
models could be used as basic templates that can be en-
hanced by statistical modeling.
To deal with the problem of dependent threshold excesses,

the most widely adopted method is declustering. Following
Coles (2001), we declustered the data set to obtain a set of
exceedances that are approximately independent. First, we
specified a threshold u and considered a cluster to be active
until r consecutive values fall below u. Here, we defined u
equal to the 0.99 quantile of fire data. As noted in Coles
(2001), there is a trade-off for the choice of r between bias
and variance: too small a value will lead to the problem of
independence being unrealistic for nearby clusters; too large
a value will lead to a concatenation of clusters that could rea-
sonably have been considered as independent and therefore to
a loss of valuable data. To obtain the estimated optimal r
(run length), we estimated the extremal index following Ferro
and Segers (2003). The extremal index is an indicator of how
much clustering of exceedances of a threshold occurs in the
limit of the distribution. If the extremal index is equal to or
larger than 1, then it suggests no dependence at extreme lev-
els; otherwise, if it is less than 1, there is some dependency
in the limit.
The second issue is the choice of threshold for the POT

method. Both the GPD and PP approaches require choosing
a high threshold. However, the threshold selection is still an
unsolved problem, but some diagnostic tools exist (Coles
2001) that assess features of the model fit for a range of po-
tential thresholds. The threshold was determined through a
trade-off between the reliability of the asymptotic approxima-
tion versus the variance of estimators. On the one hand, the
threshold should be high enough to guarantee that the distri-
bution of exceedances is in the domain of attraction of the
generalized Pareto family; on the other hand, the selected
threshold ensures that the number of exceedances is not too
few to guarantee accurate estimates of parameters. A sensitiv-
ity test was conducted to investigate how parameter estimates
are sensitive to a range of thresholds.
The return level Zp, associated with the return period 1/p,

is equivalent to the (1 – p)th quantile of the corresponding
CDF. For the GEV distribution, it can be calculated by in-
verting eq. 1:

½4� zp ¼
m� s

x
1� ½�logð1� pÞ��x

� 	
for x 6¼ 0

m� s log½�logð1� pÞ� for x ¼ 0

8<
:

It states that the annual maximum burned area in any particu-
lar year is expected to exceed this threshold with probability
p, or in other words, this return level is expected to be ex-
ceeded on average once every 1/p years. For instance, p =
0.02 corresponds to a 50-year return period.
For GPD, the return level Zp was determined by inverting

eq. 2:

½5� zp ¼

s�

x
p�x � 1

 �

s� ln
1

p

� �
8>>><
>>>:

It should be noted that the probability p here is adjusted to
take into account the probability of an exceedance of the
threshold (Coles 2001).
The Nelder–Mead method was applied to obtain the maxi-

mum likelihood estimation of each parameter in all three
types of distributions, i.e., GEV, GPD, and PP. Advantages
of the maximum likelihood estimation method have been il-
lustrated in previous studies, including the flexibility it offers
(Naveau et al. 2005), the easiness of incorporation of covari-
ates (Coles and Dixon 1999), and its stability of parameter
estimation (Brabson and Palutikof 2000). A quantile–quantile
(q–q) plot was produced as a diagnostic check for the fitting
of each distribution. In a q–q plot, less deviation from the 1:1
central tendency indicates a better fitting of the modeled out-
puts to observations. In a perfect case, all points lie in the 1:1
central tendency line, meaning that the model can exactly
simulate the observations. Since the number of observations
decreases when the burned area increases, the ability of the
q–q plot to evaluate goodness-of-fit in the upper tails is re-
duced. However, the q–q plot is still a useful tool for check-
ing if a model fitting is reasonable.
The free MATLAB package EVIM (Gençay et al. 2001)

and package R version 2.12.1 and the “extRemes” package
for R were used for statistical analyses (R Development Core
Team 2009; Gilleland et al. 2009).

Modeling extreme fire events
For the whole and each portion of the data set, we firstly

fitted the GEV distribution to the annual maxima of fire sizes
of which the interannual variation is substantially large, e.g.,
in the whole Canadian data set (Fig. 2). Then, we fitted the
GPD and PP distributions to the declustered data set with
burned areas exceeding a predefined threshold u.
Using the extremal index to get the optimized run length

and the 99% quantile as the original threshold, we declus-
tered the whole data set and each data subset. For example,
by assuming that exceedances belong to the same cluster if
they are separated by less than 17 (run length) values below
a given threshold u, we declustered the whole data set. After
declustering, the extremal index is larger than 1, meaning
that the filtered exceedances are independent. A data set
with 65 effective exceedances was obtained, which accounts
for approximately 21% of the total burned area in Canada
during the period 1959–2010. Then, based on the sensitivity
test of parameters and quantile changes among a range of
thresholds, we determined the threshold for the GPD and PP
models.
Similarly, we determined a threshold u = 130 km2 to de-

cluster the human-caused fires and we obtained 87 effective
exceedances that account for 41% of the total human-caused
burned areas. For lightning-caused fires, we defined
1050 km2 as the threshold to obtain 64 filtered exceedances
that account for 22% of the total lightning-caused burned
areas. In our regional analysis, we defined a threshold u =
350 km2 for the Boreal Shield and 187 km2 for the Taiga

Jiang and Zhuang 1839
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Shield and we obtained 75 and 64 effective exceedances, re-
spectively. In the Boreal Shield, the effective exceedances re-
sulted in 31% of the total burned area, while in the Taiga
Shield, the exceedances accounted for 36% of the total
burned area. In each declustered data set, all exceedances are
statistically independent (i.e., extremal indexes are all larger
than 1). Finally, we fitted the GPD and PP models to each
of the declustered data sets.
A similar processing method was applied to the monthly

data set but used a different definition of threshold. For the
monthly data set, since there are only 624 data points, a 99%
quantile threshold would lead to only six exceedances for the
POT method. Thus, we used the 52 largest burned area fire
data points as the exceedances (e.g., 5159 km2 for the whole
Canadian monthly data set shown in Fig. 2b). After declus-
tering, we obtained 32, 37, 30, 30, and 35 effective exceed-
ances for the Canadian fire, human-caused fire, lightning-

caused fire, Boreal Shield fire, and Taiga Shield fire data
set, respectively.

Results and discussion

The organized daily and monthly fire events show some
commonalities in the extreme value statistics, i.e., fire size
distributions are all heavy tailed (Tables 1 and 2). All three
extreme distributions are well fitted to both daily and
monthly fire events with reasonable confidence intervals.
However, since the monthly extreme value analysis used
much fewer data points, the standard errors or confidence in-
tervals of estimates are relatively higher and wider than those
in the daily extreme value analysis (Tables 1 and 2). Because
most of fire prediction models (e.g., FWI system: Van Wagner
1987) are at a daily step, results of our extreme value analysis
on daily-organized fire events could be easily compared with

(a)

(b)

Fig. 2. Time series of Canadian (a) daily- and (b) monthly-summed burned areas from 1959 to 2010. In each panel, the horizontal line re-
presents the threshold used in the peak over threshold method for the whole Canadian fire data set.
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Table 1. Maximum likelihood estimates of the parameters and corresponding fire return levels with standard errors (or confidence intervals) for the GEV, GPD, and PP models fitted to
the time series of daily-organized fire records (km2) from 1959 to 2010.

Whole data set Anthropogenic fires Lightning fires Boreal Shield Taiga Shield

Parameter Estimate
1 SE (or
95% CI) Estimate

1 SE (or
95% CI) Estimate

1 SE (or
95% CI) Estimate

1 SE (or
95% CI) Estimate

1 SE (or
95% CI)

GEV
Location m 1491.1 208.8 275.0 47.9 1313.4 202.3 766.0 133.7 270.0 55.6
Scale s 1220.4 192.5 279.1 54.4 1133.4 194.0 752.9 122.2 326.4 62.7
Shape x 0.449 0.179 0.800 0.207 0.532 0.207 0.434 0.198 0.792 0.204
52-year return level 14713 (8295,

32242)
8086 (6516,

14171)
16529 (8410,

40266)
8638 (0, 19657) 9205 (0, 25444)

GPD
Scale s* 1254.1 284.4 261.0 55.6 1047.7 243.3 942.0 183.2 413.8 83.3
Shape x 0.321 0.194 0.570 0.194 0.435 0.203 0.144 0.157 0.467 0.168
52-year return level 12124 (4073,

20176)
5500 (347, 10652) 13323 (2984,

23662)
5999 (3022,

8975)
5466 (1359, 9573)

PP
Location m 1393.6 178.1 286.1 47.1 1277.4 151.6 704.4 130.3 277.2 59.6
Scale s 1347.4 272.7 350.0 61.6 1146.2 244.6 993.6 156.8 455.8 88.6
Shape x 0.321 0.194 0.570 0.194 0.435 0.203 0.144 0.157 0.467 0.168
52-year return level 12078 (4086,

20070)
5477 (353, 10602) 13263 (3003,

23524)
5980 (3024,

8937)
5445 (1359, 9531)

Largest observation 12467 5325 12467 6347 11685

Note: For each ecozone, we analyzed the combination of anthropogenic and natural fire data sets. The 95% confidence intervals for the 52-year return level were calculated using a profile likelihood method.
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Table 2. Maximum likelihood estimates of the parameters and corresponding fire return levels with standard errors (or confidence intervals) for the GEV, GPD, and PP models fitted to
the time series of monthly-organized fire records (km2) from 1959 to 2010.

Whole data set Anthropogenic fires Lightning fires Boreal Shield Taiga Shield

Parameter Estimate
1 SE (or
95% CI) Estimate

1 SE (or
95% CI) Estimate

1 SE (or
95% CI) Estimate

1 SE (or
95% CI) Estimate

1 SE (or
95% CI)

GEV
Location m 4582.9 615.0 564.4 89.5 3903.2 582.6 2119.9 375.6 554.1 114.0
Scale s 3733.8 576.8 538.4 94.5 3546.8 565.9 2170.3 347.1 673.3 127.9
Shape x 0.470 0.151 0.668 0.180 0.530 0.162 0.363 0.191 0.782 0.200
52-year return level 47304 (27109,

99547)
10981 (0, 27272) 51219 (27454,

114451)
21153 (14583,

46757)
18469 (7640,

28777)
GPD
Scale s* 5943.6 1875.2 811.1 236.6 6915.2 2286.5 2530.5 619.6 741.4 252.7
Shape x 0.308 0.274 0.473 0.252 0.224 0.275 0.219 0.187 0.812 0.326
52-year return level 41443 (26451,

75098)
8273 (4681,

14807)
39461 (26163,

73234)
16347 (11321,

26469)
15889 (6723,

31018)
PP
Location m 2316.3 1441.5 380.5 143.6 934.3 2086.9 1519.2 433.7 527.4 135.8
Scale s 5068.6.5 2339.0 681.9 248.2 6066.2 3168.6 2364.7 677.4 525.1 239.7
Shape x 0.309 0.287 0.472 0.252 0.224 0.303 0.218 0.187 0.812 0.326
52-year return level 41329 (12087,

70571)
8227 (1257,

15198)
39301 (14009,

64593)
16282 (7769,

24795)
15771 (4719,

36260)
Largest observation 45888 8450 45450 22425 22181

Note: For each ecozone, we analyzed the combination of anthropogenic and natural fire data sets. The 95% confidence intervals for the 52-year return level were calculated using a profile likelihood method.
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results from other models and potentially benefit forest man-
agement. In this study, we analyzed both the daily and
monthly data sets, but we focused on presenting the results
of daily extreme value analysis.
Three extreme statistical distributions were reasonably fit-

ted to either the annual maximum fire sizes (GEV distribu-
tion) or fire sizes that exceeded certain thresholds (GPD and
PP). All fittings are heavy tailed (x > 0), which agrees with
Moritz’s (1997) findings for a Californian fire analysis. Esti-
mates of GEV distribution parameters (Table 1) indicate that
the annual maxima of Canadian daily fire sizes are highly ep-
isodic (Fig. 2a). Similar findings were found for the four data
subset analyses. Generally, both the magnitude and the varia-
bility of annual maximum lightning fires are larger than those
of human-caused fires. Although the Boreal Shield ecozone
experienced a higher magnitude of annual maximum fire
size, its interannual variability is not as high as that of the
Taiga Shield ecozone. However, because the annual maxima
method only used 52 values in this case, the uncertainty of
these estimates is considerably large.

Comparison among three extreme fire statistical methods
Since the GEV method used different data sources from

those used in the GPD and PP methods, there is no need to
compare their parameters directly, except the fire return lev-
els. Among three methods, the GPD and PP methods are pre-
ferred. A main reason is that the GEV approach only takes
into account one single value (annual maxima) per block
(year), therefore neglecting a majority of available data (Katz
et al. 2005; Blanchet et al. 2009). Directly fitting the GEV
distribution to annual maxima over a short time period cov-
ered very few values, and in our case, only 52 values were
accounted for. This could lead to a large uncertainty, espe-
cially when more than one extreme event exists in a block
(year). In contrast, because the GPD and PP models use
more available data, estimates are thus expected to be more
accurate. Furthermore, forest managers are always interested
in the occurrence of extremely large fires exceeding a certain
threshold, not just the annual maximum fire sizes. Compared
with the GEV approach, the return levels derived from the
GPD and PP methods are more comparable with observations
for either the whole Canadian fire data set or the four data
subsets of ecozones or ignition sources. However, for using
monthly data sets, GEV might be a priority method, since
the number of exceedances of the monthly data points is
only 52 in our study.
The premise to use a Poisson process is that the described

events are independently and identically distributed. Since
previous studies have shown that the medium and large fires
are independently and identically distributed events (Mala-
mud et al. 2005), a Poisson process could be used to repre-
sent the large fire events. Because the GPD and PP
distributions are effectively equivalent (eq. 3), any inference
made by the PP model could equivalently be made using the
GPD method (Blanchet et al. 2009). It is generally consid-
ered better to model with the PP method because its parame-
ter uncertainty is estimated simultaneously rather than
orthogonally in the GPD (Coles 2001). However, due to its
relative simplicity and the level of accuracy desired in this
study, the GPD is preferred. In fact, the return levels derived
from GPD and PP fittings are very close to each other (Ta-

bles 1 and 2). Thus, we mainly presented the results from
the GPD fittings. We found that the GPD is reasonable in
characterizing the exceedances in both the daily and monthly
analyses (Fig. 3).
However, there are two major sources of uncertainty to our

estimates using the GPD and PP models. The first source of
uncertainty is related to the fixed threshold. In declustering,
we applied the 99% quantile as the threshold to filter the
data. The 99% quantile is a sufficiently high value that was
determined based on the trade-off between bias and variance.
A sensitivity test was then conducted to investigate how pa-
rameter estimates are sensitive to a range of thresholds
(Fig. 4). Because the 99% quantile corresponds to fairly sta-
ble scale and shape parameters, we employed it as the thresh-
old for the POT approach. The estimated return levels (e.g.,
Fig. 5 for the whole data set) are stable despite the subjective
choice of threshold. Although some models are able to auto-
matically account for the uncertainty due to threshold selec-
tion (e.g., Behrens et al. 2004; Tancredi et al. 2006), they
still require some subjective assessment for the threshold
choice. In this study, to quantify the uncertainty with a fixed
threshold, we estimated the uncertainty range of the CDF for
the fitted GPD model (Fig. 6). In future efforts, the threshold
could be modeled as a time-varying variable to handle cova-
riates (e.g., climates) for all GPD parameters (Tancredi et al.
2006).
The second source of uncertainty is the dependence be-

tween exceedances. The Canadian fire records (1959–2010)
are best described as a nonstationary time series with some
unknown dependence structure. However, there is no general
theory established for this nonstationary process or providing
likelihood to incorporate the cluster-induced dependence in
the extremes. Although some previous studies provide meth-
ods to explicitly model the dependence structure using time
series or covariates for model parameters, e.g., the GARCH
model (Engle 2001), the model specification and threshold
determination are still an unsolved problem (Pauli and Coles
2001; Bali and Weinbaum 2007; Zhao et al. 2011).
Nevertheless, as demonstrated in Coles (2001), the stand-

ard extreme value models (e.g., GPD) are still applicable in
the presence of dependence. To deal with the dependence be-
tween threshold excesses, we declustered the fire data using
the extremal index as the indicator of how much clustering
of exceedances of a threshold occurs in the limit of the distri-
bution. Before declustering, we find that all extremal indexes
are less than 0.5, which means that there is some dependence
in the limit. After declustering, all extremal indexes are equal
to or larger than 1, which suggests that the declustered data
points are independent. However, the deficiency of decluster-
ing is that we lost some useful information because the num-
ber of available data points decreases much after
declustering. Consequently, the degrees of freedom decrease
in calculating the confidence intervals.
Naturally, the extreme fire events could be related to other

variables, referred to as a covariate (Coles 2001). For in-
stance, the fire size could be substantially influenced by the
wind speed. However, to explicitly model the dependence
structure of extreme fire events is still an unsolved problem
so far. Further efforts could model any combination of ex-
treme fire model parameters as a function of time or other
covariates (e.g., climate).
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Statistics of Canadian extreme fires
Based on the 65 effective exceedances, estimates for the

two GPD parameters are 1254.1 km2 (s*) and 0.321 (x) with

a significant negative correlation (r = –0.71). This signifi-
cant negative correlation exists in all analyses with different
data sets. The scale parameter s*, which controls the spread

(a)

(b)

Fig. 3. Cumulative density functions of the estimated GPD models and the (a) daily- and (b) monthly-summed burned area exceedances over
the predefined threshold u. The estimated models are plotted as curves and the actual data as circles. The x-axis is on a logarithmic scale.
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of the distribution, is not high given that all of the data points
used are larger than 1103 km2, while a GPD quantile is linear
in s*. This implies that the characterization of extreme values
is significantly governed by the shape parameter x in which
the GPD quantile is nonlinear. Similar to other extreme fire
studies (e.g., Moritz 1997 for California), the heavy tail is
evident. A relatively small shape parameter (less than 0.5)
implies that the extreme fire events have finite variance. In
other words, there is definitely a finite upper bound on fire
sizes. The maximum area of connected combustible forest
patches or fire-stopping weather events (e.g., heavy rainfall)
could be the limit. Consequently, this would contribute to a
right-censored distribution of fire sizes.
The Gumbel case cannot be estimated because it is a sin-

gle point in a continuous parameter space, so we tested
against the null hypothesis that the shape parameter is ac-
tually zero (i.e., the exponential case, hence a light tail be-
havior). A likelihood ratio test (5% level) for x = 0 does not
accept the exponential hypothesis and the p value is less than
0.001. In analysis of data subsets, similar likelihood ratio
tests all reject the Gumbel case. An almost linear q–q plot
(Fig. 7) indicates that the assumption for using the GPD is
reasonable. In addition, Fig. 5 shows that estimated return
levels are stable across a range of thresholds, which indicates
that the fitted GPD model performs well in predicting the
most extreme fire size within a specified return period, de-
spite the uncertainty in the threshold selection.
Using the estimated parameters, we calculated the m-year

return levels (Fig. 8) at the tail with a 95% confidence inter-

val. We found that as the return periods increase, the increas-
ing rate of return levels decreases, although the confidence
interval becomes wider. One possible reason is that the envi-
ronmental barriers (e.g., mountain, lake, wetlands) could be
an important limitation for the spread of extreme fire events.
For example, topographic barriers may slow the growth rates
of large fires in the mountainous regions because fires would
spread up into higher elevation areas, which are likely to be
drier and with sparser vegetation, slowing the rate of growth
and the fire would go out when a fire front reached a ridge
(Reed and McKelvey 2002).

Statistics of anthropogenic and natural extreme fires
The fitted GPD for lightning fires has larger scale (s* =

1047.7 km2) and lower shape (x = 0.435) parameters com-
pared with those for human-caused fires (s* = 261.0 km2,
x = 0.570). Due to the significant correlation between s*
and x, we investigated return levels instead to check the ex-
tremely large fire behaviors. The agreement in Fig. 9a be-
tween observations and our estimates suggests that the fitted
GPD model works well.
We found that the estimated m-year return level of light-

ning-caused fires is always larger than that of human-caused
fires, which suggests that lightning ignitions tend to cause
more severe large fires. A two-sample t test supports that
this difference is statistically significant. This difference
could be the result, at least in part, of forest suppression. In
particular, a high proportion of lightning fires tends to occur
in remote areas and these regions are usually designated as

Fig. 4. Maximum likelihood estimates with uncertainty ranges of the modified scale and shape parameters in a GPD fitting to the exceedances
in the whole Canadian fire data set over a range of thresholds. The uncertainty range is determined by ±1 SD. The vertical line shows the
threshold (1103 km2) that we used.
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“lower priority” zones that receive little or no fire suppres-
sion, since fires occurring there generally have little or no
significant detrimental impact on public safety and forest val-

ues (Stocks et al. 2001). Very few fires in these regions are
human-caused, as is shown in the map by Stocks et al.
(2002) and Fig. 1. Because these remote regions do not have

Fig. 5. Estimated return levels (quantiles) at a range of thresholds for the whole Canadian fire data set. The middle line shows the estimated
value and the upper and lower lines represent the upper and lower bounds of the 95% confidence interval. The vertical lines shows the
threshold (1103 km2) that we used.

Fig. 6. Uncertainty range of the CDF for a range of quantiles with a fixed threshold in the GPD models. The upper and lower lines represent
the upper and lower bounds of the 95% confidence interval.
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aggressive fire suppression, the majority of fires are allowed
to perform their natural functioning (Stocks et al. 2002) and
therefore could reach an extremely large fire size. In addition,
extreme fire weather (i.e., unusually high temperature with
low rainfall) and fire-prone ecosystems (Stocks et al. 2002)
in remote regions also make it easy for a fire to extend to an
extremely large size. In contrast, human-caused fires occur in
more populated areas and are usually reported more quickly
and suppressed. Canada has effective fire suppression in
populated areas and along the road network to limit the total
burned area. For instance, Canada has an aggressive fire pol-
icy in the dense population regions near the Canada–US bor-
der where human-caused fires account for high percentages
of fires. In these regions, anthropogenic fires can hardly
achieve large sizes. Our findings are consistent with those of
previous studies. Comparing fire sizes relative to levels of
protection indicates that, on average, fires in the largely un-
protected regions of the boreal zone are much larger than
fires in intensively protected regions (Stocks 1991; Ward and
Tithecott 1993; Stocks et al. 2001).
Based on the results presented above, we concluded that

anthropogenic fires and natural fires exhibit substantially dif-
ferent statistics of extreme fire events, while they show some
commonalities of extreme fire behaviors. The q–q plots for
the fitted GPDs (Fig. 5) of both types of fire are approxi-
mately linear, meaning that the assumptions for using the
GPD for both types of fire are reasonable. Although the de-
parture increases as the burned area increases, the fitted val-
ues still show reasonable agreement with the observed

values. Because lightning fires dominate the Canadian large
fire behaviors (Stocks et al. 2002), the statistics of lightning-
caused extreme fires are very similar to those of the whole
data set.

Statistics for extreme fires in the Boreal Shield and Taiga
Shield ecozones
The Boreal Shield and Taiga Shield ecozones both experi-

enced a number of extreme fire events during the 52-year pe-
riod. Due to different fire weather and fire regimes, the
Boreal Shield ecozone could be subdivided into two divi-
sions, west and east, separated by the Hudson Plains eco-
zone. The west subecozone has a strong continental climate
and major fire activity, especially in the northern area. In the
east subecozone, the fire climate is not as extreme as in the
west division and fire suppression is aggressive. Due to sim-
ilar reasons, the Taiga Shield ecozone could also be divided
into east and west subecozones separated by the Hudson Bay.
The two parts have similar features, while the east subeco-
zone has a mild continental climate and it generally has less
severe fire weather conditions (FAO 2002).
Estimates of parameters represent substantially different

statistics of extreme fires between these two ecozones. As a
diagnostic check, q–q plots for the fitted GPDs (Fig. 5) are
almost linear, indicating that the assumed form of distribution
is reasonable for the Boreal Shield ecozone. However, for the
Taiga Shield ecozone, the q–q plots show that the GPD
model performs poorly in estimating the most extreme fires.
A higher scale parameter for Boreal Shield large fires

Fig. 7. Quantile–quantile plots for the GPD fit to daily-organized burned area for (a) the whole of Canada, (b) human-caused and (c) light-
ning-caused fires, and fires in (d) the Boreal Shield ecozone and (e) the Taiga Shield ecozone. Systematic departures from the slope-1 line
(dark line) suggest that the models are lacking good fit. The light line is the linear regression of the estimates against the observations with
the 95% confidence interval for new observations (lines above and below).
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(942.0 km2) implies a higher spread than that for Taiga
Shield fires (413.8 km2). However, similar to the human-
caused fires, a higher shape x of Taiga Shield fires (0.467
versus 0.144) could sufficiently increase the probabilities of
large fires, especially the extremely large ones. Due to the de-
pendence between parameters, we further investigated the re-
turn levels between fires in the two different ecozones. We
found that the return level of Boreal Shield fires is always
larger than that of Taiga Shield fires at the same return pe-
riod. However, this difference decreases as the return period
increases (Fig. 9b).
A smaller spread of extremely large fires is due to the

widely covered wetlands in the Boreal Shield ecozone. In ad-
dition, the Boreal Shield east subecozone has extensive and
successful fire suppression and the fire climate is not as ex-
treme as in the west subecozone. In contrast, the Taiga Shield
ecozone is dominated by coniferous forests and lichen wood-
lands; thus, the barriers due to vegetation coverage are not as
critical as those in the Boreal Shield ecozone. The two subre-
gions of the Taiga Shield ecozone are dominated by lightning
fires and most fires are allowed to burn naturally. Thus, it is
easier for fires to spread to an extremely large size.
For the Boreal Shield ecozone, our estimated m-year return

levels all show good agreement with historical observations.
However, for the Taiga Shield ecozone, when the return pe-
riod is longer than 15 years, the corresponding return levels
show a large difference from the observations (Fig. 9b). For
both ecozones, the large confidence intervals obtained for ex-
treme return levels imply that there is little information with
which to make future predictions with any degree of cer-

tainty. In different ecozones, there is a distinct limit on the
fire size, which functions as an upper cutoff for return levels
of wildfires. For example, topography (i.e., mountain or lake)
or vegetation (i.e., wetlands) barriers could constrain the
most extreme fire size.

Implications of EVT to wildfire study and management
Large fires have played a major role in Canadian boreal

forest dynamics. Although Canadian provincial and territorial
agencies have much improved their fire management systems,
forest fires continue to affect the Canadian forest resource
(Stocks et al. 2001). Extreme fires always lead to substan-
tially social, economic, and ecological consequences and sup-
pression is costly (Beverly and Martell 2005). The large fires
across the southern interior of the province of British Colum-
bia in 2003, including the Okanagan Mountain Park forest
fire that burned parts of the city of Kelowna, is an example
(Woolford et al. 2010). Since extreme fires are responsible
for the majority of burned areas, characterization of these
events is important to better understand fire regimes.
Traditional studies focusing on mean and variance of fire

sizes poorly characterize extreme fire events due to their rare
occurrences. The power–law frequency–area models (e.g.,
Cumming 2001; Malamud et al. 2005; Jiang et al. 2009) are
successful in describing relationships between fire frequency
and burned area for medium and large fires. However, the
shape of the tail at extreme values in fire size distribution is
still unclear. The extreme statistical approaches have proven
to perform better in characterizing the upper tail occupied by
extreme values, thereby providing better estimations of ex-

Fig. 8. Estimated m-year return levels and 95% confidence intervals for the Canadian daily-organized fire data based on the estimated GPD
parameters. At the daily scale, the 1-, 5-, 10-, 15-, 20-, and 30-year return levels correspond to the 99.726, 99.945, 99.973, 99.982, 99.986,
99.991 percentile values. The estimated tail is plotted as a solid line and the actual data as circles. The vertical middle line is the estimated m-
year return level with a lower bound (left line) and upper bound (right line).

1848 Can. J. For. Res. Vol. 41, 2011

Published by NRC Research Press

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
PU

R
D

U
E

 U
N

IV
 L

IB
 T

SS
 o

n 
09

/1
2/

11
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



treme fire return levels, which could be used to evaluate the
potential fire risk in terms of frequency of a specific size.
EVT could be a useful tool for forest managers when assess-
ing fire hazard risk because it provides a flexible and justifi-
able approach for extrapolating the tail distribution.
Previous studies (e.g., Fosberg et al. 1996; Stocks et al.

1998) also presented an increasing trend of extreme fire dan-
ger across Canada under a warming climate. Apart from the
many and diverse issues surrounding the fidelity and record-
ing methods of Canadian fires (1959–2010), we demon-
strated that stationarity is the least likely state of the extreme
fire events. However, there is no developed extreme theory
for this real nonstationary series (Coles 2001). Nevertheless,
the extremal models presented in this study are still able to

be used as a basic template of which parameters could be
further modeled as functions of time series or some covari-
ates (e.g., climate), although how climate change impacts
fire regimes is still unknown (Woolford et al. 2010). Charac-
terizing extreme fire events and quantifying the fire risks as-
sociated with climate changes are needed with the EVT
method. Quantification of extreme fire return levels provides
a way to estimate the risk of extreme fires for a region. This
knowledge and information should be helpful for timber sup-
ply modeling and analyzing the vulnerability of forest-based
communities (Beverly and Martell 2005). The extreme statis-
tics also provide useful information for stakeholders concern-
ing the size of the largest fires and their expected return
levels.

Fig. 9. Empirical return levels and estimated return levels with 95% confidence intervals for (a) human-caused and lightning-caused fires and
(b) Boreal Shield and Taiga Shield fires.
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Conclusions
Large fires are a major disturbance in Canadian forests and

affect both the climate system and ecosystems. To date, it is
still a challenge to predict the large fire size and frequency.
Here, we used three extreme statistical distributions to char-
acterize large fires. All fitted distributions are heavy tailed
(Fréchet or Pareto distribution). Among the three distribu-
tions, GPD and PP both perform more reasonably in describ-
ing the upper tail of the large fire distributions than the GEV
method does. In Canada, the Boreal Shield ecozone has a
higher risk of extreme large fire occurrence than the Taiga
Shield. Human-caused and lightning-caused fires exhibit
very different extreme behaviors and lightning fires dominate
the extreme fire regime in the whole of Canada. Future work
in the identification of daily-organized fire events is greatly
needed for the daily time series analysis of extreme fire
events. The statistical properties of extreme fires described
here should be useful for assessing fire risks associated with
regional factors or ignition sources for fire and landscape
managers. The information of fire return levels derived from
these extreme value distributions should also be valuable for
studying fire dynamics and their impacts on the climate and
ecosystems in this region.
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