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In this study, we used the remotely-sensed data from the Moderate Resolution Imaging Spectrometer
(MODIS), meteorological and eddy flux data and an artificial neural networks (ANNs) technique to develop a
daily evapotranspiration (ET) product for the period of 2004–2005 for the conterminous U.S. We then
estimated and analyzed the regional water-use efficiency (WUE) based on the developed ET and MODIS
gross primary production (GPP) for the region. We first trained the ANNs to predict evapotranspiration
fraction (EF) based on the data at 28 AmeriFlux sites between 2003 and 2005. Five remotely-sensed variables
including land surface temperature (LST), normalized difference vegetation index (NDVI), normalized
difference water index (NDWI), leaf area index (LAI) and photosynthetically active radiation (PAR) and
ground-measured air temperature and wind velocity were used. The daily ET was calculated by multiplying
net radiation flux derived from remote sensing products with EF. We then evaluated the model performance
by comparing modeled ET with the data at 24 AmeriFlux sites in 2006. We found that the ANNs predicted
daily ET well (R2=0.52–0.86). The ANNs were applied to predict the spatial and temporal distributions of
daily ET for the conterminous U.S. in 2004 and 2005. The ecosystem WUE for the conterminous U.S. from
2004 to 2005 was calculated using MODIS GPP products (MOD17) and the estimated ET. We found that all
ecosystems' WUE-drought relationships showed a two-stage pattern. Specifically, WUE increased when the
intensity of drought was moderate; WUE tended to decrease under severe drought. These findings are
consistent with the observations that WUE does not monotonously increase in response to water stress. Our
study suggests a new water-use efficiency mechanism should be considered in ecosystem modeling. In
addition, this study provides a high spatial and temporal resolution ET dataset, an important product for
climate change and hydrological cycling studies for the MODIS era.
l rights reserved.
© 2010 Elsevier Inc. All rights reserved.
1. Introduction

The linkage between carbon (C) uptake andwater cycling has been
widely recognized (Running and Coughlan, 1988; Baldocchi and
Harley, 1995; Baldocchi and Wilson, 2001). It is also recognized that
plants tradeoff between water loss and C gain in photosynthesis
through regulation of stomatal conductance (e.g., Collatz et al., 1991;
Whitehead, 1998; Tenhunen et al., 1990). Therefore, water-use
efficiency (WUE), defined in this study as the ratio between gross
primary productivity (GPP) and evapotranspiration (ET), is an
important index to study the survival, productivity and fitness of
plants (Osmond et al., 1982). Moreover, the information on
spatiotemporal patterns of ecosystemWUE can be useful to analyzing
plant species distribution (Holdridge, 1947; Woodward, 1987; Hogg,
1994) and ecosystem carbon cycling (Schapendonk et al., 1997;
Centritto et al., 2002). Traditionally, it is believed that WUE will be
increased under water stress and drought condition due to a
reduction in stomatal conductance. Moreover, this regulation of
stomatal behavior is widely adopted in ecosystem models (Running
and Hunt, 1993; Hunt et al., 1996). However, several studies showed
that this mechanism might not hold especially under severe drought
conditions (Reichstein et al., 2002, 2003; Medrano et al., 2009). Thus,
a better knowledge of variability ofWUE under drought condition is of
importance to agricultural sector and climate change study of water,
carbon, and energy cycling. To date, variations in WUE have been
extensively studied at the individual leaf scale (Collatz et al., 1991;
Jarvis, 1995; Medrano et al., 2009). However, most of them were
focused on the changes under normal precipitation or moderate
drought condition (Rammbal et al., 2003; Baldocchi, 1997; Williams
et al., 1998), less focused on severe drought condition (e.g., Reichstein
et al., 2002, 2007).

This study has two objectives: (1) to estimate ET for the
conterminous U.S. (2) to analyze WUE responses to different level
drought. We first quantified ET at a daily time step and a 4 km×4 km
spatial resolution for the conterminous U.S. by using artificial neural
networks (ANNs). We then used MODIS gross primary production
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(GPP) and ET to calculate WUE. Specifically, we trained ANNs using
AmeriFlux data and site-specific MODIS explanatory variables
(AmeriFlux; Baldocchi et al., 2001). The ANNs performance on the
site level was then verified using eddy flux data. TheWUE response to
drought was analyzed on the selected regions where there are large
contrasts in terms of drought condition.

In Section 2, we summarize themethods of ET estimation based on
remote sensing data. Section 3 describes the ANN method and
required data, including a description of the AmeriFlux observations
and the selection of explanatory variables. Section 4 verifies the ANNs
at eddy flux tower sites. Section 5 describes the way to determine
daily ET andWUE at a 4-km resolution for the conterminous U.S. from
2004 to 2005. Spatiotemporal patterns of and the relationship
between WUE and drought are then analyzed.

2. Summary of satellite-based ET estimation

Although Kustas and Norman (1996) pointed out that remote
sensing is the only method for efficiently estimating ET at a regional or
continental scale, remotely-sensed ET estimation is far fromsatisfactory.
ET is a complex process that is related to many variables, which cannot
be detected directly by remote sensing techniques. However, ET can be
indirectly estimated using remote sensing data by: (1) calculating ET as
a residual of surface energy balance, where other energy components
are estimated from satellites' measurements. The idea has been
implemented in the Surface Energy Balance Algorithm for Land
(SEBAL; Bastiaanssen et al., 1998a,b), the Surface EnergyBalance System
(SEBS; Su, 2002), and the resistance surface energy balance (RSEB;
Kalma and Jupp, 1990); (2) applying physical models, such as the
Penman–Monteith equation (Penman, 1948; Monteith, 1964; Zhang
et al, 2008; Leuning et al, 2008), which use remote sensing data as
forcing inputs or (3) using empirical methods that relate observable
variables of satellites to ET.

For the first method, the estimate is based on the surface net
radiation, which could be partitioned into three parts:

Rn = G + H + λE ð1Þ

H = ρ*Cρ*
Ts−Ta
Ra

ð2Þ

whereH (W/m2), and λE (W/m2) are the fluxes of sensible heat, latent
heat, respectively, Rn (W/m2) is net radiation, G (W/m2) is soil heat
flux; Ts (K), Ta (K) are the aerodynamic surface and air temperature;
Ra the aerodynamic resistance (s m−1), determine the transfer of heat
and water vapor from the evaporating surface into the air above the
canopy, λ (J/kg) is the latent heat of vaporization, ρ (kg/m3) is air
density, and Cρ (J/kg/K) is the specific heat capacity of air.

From Eq. (1), latent heat flux (ET) is thus the residual by subtracting
soil heat and sensible heat fluxes from net radiation Rn. Many studies
have provided methods to calculate H and G (Gao et al., 2008; Cleugh
and Dunin, 1995; Hall et al., 1992; Kalma and Jupp, 1990). Although this
residual approach is theoretically sound, its performance in practical
applications suffered from strong assumptions needed to estimate H
and G, which were well discussed by Cleugh et al. (2007).

Using the Penman–Monteith (Penman, 1948; Monteith, 1964)
(hereafter P–M) theory is the second method to estimate ET (e.g.,
Zhuang et al., 2003

λE =
sA + ρ*Cρ*Da = Ra

� �

s + r 1 + Rs = Rað Þ ð3Þ

where s is the slope of the curve relating saturation water vapor
pressure to temperature; A is available energy (Rn−G) which is the
sum of latent heat and sensible heat; Da is the water vapor pressure
deficit of the air; and Ra, Rs are the aerodynamic resistance and surface
resistance (s m−1), respectively. Rs describes the resistance of vapor
flow through stomata openings and soil surface. The biggest challenge
with the P–M method is to estimate the surface resistance when the
method is applied on a large scale. Specially, the approximation
processes in estimating Ra Rs and Da reduce its theoretical integrity.

The third method is to use empirical approach to correlate remotely-
sensed surface variables to ET.Much evidence shows that a scatter plot of
remotely sensed surface temperature and normalized difference vegeta-
tion index (NDVI) is bounded by a triangle (Carlson et al., 1994, 1995a,b;
Gillies and Carlson, 1995; Gilloes et al., 1997). Water availability is
assumednot to be the limiting factor on the cold edge of the triangle; thus
thepotential ET is equal to actual ET. The actual ET is almost zero along the
warmedge. This approachmaybeapplicable for operational estimationof
regionalET. Theassumption that theeffect ofwindspeedandhumidityon
the surface evaporation can be reflected in the derived radiometric
surface temperature may hamper its precision on very large scales (Jiang
and Islam, 2001). Fisher et al (2008) translated Priestley–Taylor estimates
of potential evapotranspiration into rates of actual evapotranspiration by
introducing remotely-sensed parameters.

Here, we combined some of the advantages of these techniques
with an artificial neural networks (ANNs) learning approach and eddy
flux and satellite data to develop an ET product for the conterminous
U.S. Nonlinear relationships between chosen explanatory variables
and ET were first trained using the AmeriFlux data. ET for the
conterminous U.S. was then derived from the networks driven by
remotely-sensed and meteorological data for developing and analyz-
ing WUE for the conterminous U.S.

3. Method and data

3.1. Method

3.1.1. Neural networks for calculating evapotranspiration fraction (EF)
ET varies diurnally. It is a challenge to estimate ET using satellite

observations, which are instantaneous measures. Here we calculated
ET based on EF that is an almost constant during daytime hours
(Shuttleworth et al., 1989; Sugita and Brutsaert, 1991; Crago, 1996;
Crago and Brutsaert, 1996). EF, the ratio of latent heat to available
energy, depends on land cover types (Crago and Brutsaert, 1996
Specifically, the EF was calculated as:

EF =
ET
A

ð4Þ

We assumed that instantaneous EF is nearly constant during a day.
The daily ET was then calculated from daily net radiation and
instantaneous EF as:

ET =
86400*EF*Rn

λ
ð5Þ

where λ is the latent heat of vaporization (J kg−1).
The neural network technique is widely used for nonlinear

functions approximation. In this study, the multilayer networks
using the error back propagation algorithm (MLP-BP) (Haykin,
1998) were used to train the ANNs for EF. The first step in MLP-BP
is to calculate the difference between the predicted and measured EF
by propagating selected explanatory variables from network input to
output. The errors are then propagated backward through the
network to adjust weights in networks. These forward and backward
propagations can be iterated till the residual error threshold (average
squared error b1×10−5) is achieved. Normally, back-propagation
uses a steepest descentmethod on error surfaces to adjust theweights
to minimize the difference between the predicted and expected
output, while it has the risk of being trapped in a local minimum. To
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avoid the local optimal problem, a momentum term (Rumelhart et al.,
1986) to the weight change was added in obtaining ANNs of EF.

3.1.2. Explanatory variable selection
At a leaf level, ET or evapotranspiration is affected by stomatal

conductance, which is regulated by radiation intensity, vapor pressure
deficit (VPD), soil water content and CO2 concentrations, while
regional ET is mainly affected by canopy structure, vegetation
abundance and phenology, soil moisture, and energy on the top of
the canopy and land surface.

The required VPD data were estimated based on satellite land
surface temperature (LST) (Granger, 2000):

VPD = 0:668e* LSTð Þ−0:015*Tltm−0:278 ð6Þ

where e* (LST) is daily saturation vapor pressure, LST is radiative
surface temperature from satellite data and Tltm is long-termmean air
temperature.

The normalized difference water index (NDWI) (Gao, 1996;
Ceccato et al., 2001), which is based upon water absorption at
1240 nm, was used to measure vegetation liquid water content. Here
we used the method developed by Gao (1996) to obtain the NDWI
based on remotely sensed reflectance:

NDWI =
pnir−pswir

pnire + pswir
ð7Þ

where Pswir, Pnir are the reflectance at the short wave infrared (swir) and
near infrared (nir) band. The NDWI is strongly correlated with leaf water
content (Jackson et al., 2004) and soil moisture (Fensholt and Sandholt,
2003) over time. “Green” vegetation abundance information can be
directly acquired from remote sensing by NDVI (Huete et al., 1994):

NDVI =
pnir−pred
pnire + pred

ð8Þ

where Pred is the reflectance at the red spectral band. Leaf area index is
used to indicatephenology (Kanget al., 2003)andcalculate evaporationof
the intercepted liquid water. Incident photosynthetically active radiation
(PAR)defined as illuminated solar radiation at the Earth's surface between
400 and 700 nm is used by plants in photosynthesis (Myneni et al., 2002).
Previous studies showed that canopy photosynthesis increases with PAR
(Baldocchi et al., 2003) and transpiration is thus expected to also increase
with PAR.

When water vaporizing, the air above the evaporating surface
becomes gradually saturated with water vapor. If this air is not
continuously replaced with drier air, ET rate will decrease. Water
vapor removal is mainly determined bywind speed and air turbulence
as well as LST.

As explained above, we therefore selected LST, NDWI, NDVI, LAI,
PAR, air temperature, wind velocity, and land cover types as
explanatory variables for estimating EF with the ANN approach.

3.2. Data

To drive the neural network models at site-level and regional
levels, we acquired four types of data: (1) tower-measured EF and
explanatory datasets from AmeriFlux sites for ANNs' training and
testing; (2) spatially-explicit explanatory datasets for the contermi-
nous U.S., (3) datasets for calculating ET based on EF; and (4) MOD17
GPP data for WUE estimation. To apply the ANNs to the conterminous
U.S., all input data were resampled and/or reprojected into the
sinusoidal (SIN) projection at a 4-km resolution.

3.2.1. AmeriFlux data
We obtained the half-hourly EF based on the level 4 latent and

sensible heat data at 28 AmeriFlux sites for the period 2003–2005
from (http://public.ornl.gov/ameriflux) (Fig.1; Table 1). These sites
are distributed across the conterminous U.S, and cover a wide range of
vegetation types (Baldocchi et al., 2001, Baldocchi, 2003). The level 4
product provides half-hourly air temperature, wind velocity and PAR
measurements. To validate the performance of the ANNs, daily ET in
2006 on these towers were also collected. High-quality data were
selected based on the quality assurance (QA) flags data.

All other explanatory variables including NDVI, LST, NDWI, LAI,
and land cover were derived from MODIS data (Justice et al., 2002).
MODIS provides data in 36 spectral bands and with the spatial
resolution of 250 m, 500 m, and 1 km. Because NDVI and NDWI can be
acquired from surface reflectance, we used the following four MODIS
data products (Collection 5): (1) daily 1 km land surface reflectance
(MOD09A1, Vermote and Vermeulen, 1999); (2) daily 1 km land
surface temperature (MOD/MYD11A1, Wan et al., 2002); (3) 8-day,
1 km Leaf Area Index (LAI) (MOD15A2, Myneni et al., 2002); and
(4) 1 km land cover (MOD12Q1, Friedl et al., 2002). Since LAI product
is composited on an 8-day basis, we therefore assigned each 8-day
composite LAI to the corresponding eight-day periods.

At a daily time step,we extracted 7×7 kmregions fromMODIS 1-km
data centered on the flux towers. We averaged the values of each
variable using the pixels with good quality within the area to represent
the values at the flux site. If none of the values within the 7 km×7 km
area was of good quality, the period was assumed having no data. We
categorizedeachsite according to theUniversityofMaryland land-cover
classification system (UMD) (Friedl et al., 2002). To be consistent with
the satellites overpass time (1030 and 1330 local time respectively), the
half-hourly variables fromtheAmeriFlux sites in that timewere selected
to train the ANNs.

3.2.2. Regional data
To apply the ANNs to the conterminous U.S., we obtained

MOD09A1, MOD/MYD11A1, MOD15A2 and MOD12Q1 in 2004 and
2005 from the Earth Observing System (EOS) Data Gateway (http://
edcimswww.cr.usgs.gov/pub/imswelcome/). A total of 14 tiles were
obtained to cover the whole study region. Daily NDWI and NDVI data
were developed by using Eq. (8) and Eq. (9). For NDVI, NDWI and LAI,
we replaced the poor quality data with the data generated using a
moving average approach. We obtained the land cover type for each
4 km×4 km cell by resampling the 1 km MODIS land cover map with
the UMD classification system.

Because PAR is not a standard MODIS product, we used PAR
datasets generated by Liang et al (2006) based on MODIS data in this
study. After decoupling the correlation between surface reflectance
and atmospheric properties, the authors used the look-up table made
by Modtran (Berk et al., 1998) to calculate instantaneous PAR from
top-of-atmosphere (TOA) radiance. Daily PAR was provided at a
spatial resolution of 4 km. Daily mean PAR was estimated from two
instantaneous PAR fluxes with the regression functions (Liang et al.,
2006).We only obtained 3-year daily forcing data of PAR. Data in 2004
and 2005 were used for estimating ET and data in 2006 were used to
validate site-level model performance.

From Terra and Aqua, we obtained two instantaneous LSTmeasures.
We calculated the daily daytime LST during daytime hours from the two
values with an assumption that the diurnal surface temperature cycle
can be approximated by the sinusoid function.

The daily meteorological inputs for the ANNs are air temperature
and wind velocity. They were acquired from North American Regional
Reanalysis (NARR, www.cdc.noaa.gov ) datasets which are originally
provided at a spatial resolution of 32 km under the Northern Lambert
Conformal Conic coordinate system. The datasets cover the whole
North American and have three time-steps: 3-hours, daily and
monthly. We directly used the daily wind velocity dataset. Since ET
almost only happens in daylight hours, we obtained daily air
temperature during daytime hours by averaging 3-hours measure-
ments. Both of them were resampled into a 4 km×4 km resolution.

http://public.ornl.gov/ameriflux
http://edcimswww.cr.usgs.gov/pub/imswelcome/
http://edcimswww.cr.usgs.gov/pub/imswelcome/
http://www.cdc.noaa.gov


Fig. 1. Location and spatial distribution of the AmeriFlux sites used in this study. The base map is the MODIS UMD land-cover, which is used to drive regional ET quantification.
Triangles indicate the location of the AmeriFlux sites.
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3.2.3. Datasets for converting EF into ET
According to Eq. (4) and Eq. (5), net radiation and ground heat

fluxes are needed to convert EF into ET. By checking soil heat flux
fraction atmost of sites, we assumed ground heat flux (G) is 15% of net
radiation flux. The net radiation flux was estimated:

Rn = 1−að Þ*Sin + Lin−Loutð Þ− 1−εsð Þ*Lin ð9Þ

where a is surface albedo; Sin is the NARR estimate of shortwave
radiation flux (W/m2); Lin and Lout are the downward and upward
long wave radiation flux (W/m2), respectively and εs is the surface
emissivity. Lin and Lout were estimated by:

Lin = εaσT
4
a ð10Þ

Lout = εsσT
4
s ð11Þ

where εa is the atmospheric emissivity; σ is the Stefan–Boltzman
constant (5.67×10−8wm−1 K−4) and Ta and Ts are the air and surface
temperature (K), respectively. εa was calculated from Ta using the
following formula (Idso and Jackson, 1969):

εa = 1−0:261*exp −7:77*10−4* 273−Tað Þ2
h i

ð12Þ
The surface emissivity (εa) was estimated according to the
approach proposed by Jin and Liang (2006):

εs = 0:4587*ε31 + 0:5414*ε32 ð13Þ

where ε31 and ε32 are the spectral emissivity in MODIS bands 31 and
32, which are part of LST products.

We used the 1 km 16-day MCD43B3 Version-5 MODIS/Terra+
Aqua BRDF/Albedo product. The actual surface albedo was obtained
by adding 50% of the black-sky albedo and 50% of the white-sky
albedo. Similarly, each 16-day composite albedo was assigned to the
corresponding 16 daily periods. For the details of MODIS albedo
products' algorithm and validation, interested readers are suggested
to refer to Schaaf et al. (2002) and Jin et al. (2003a,b).

3.2.4. Collection5 MOD17 GPP
The old Collection4 gross primary production products were found

to have considerable errors due to the problems in the inputs (Zhao
et al., 2005). Zhao et al (2005) rectified these problems by improving
the data process methods and modifying parameters the algorithm
used, which resulted in improved Collection5 MOD17 estimates.
Collection5 MOD17 8-day GPP data for the conterminous U.S. from
January 2004 to December 2005 were obtained from http://www.
ntsg.umt.edu. Monthly and annual GPP averages were derived by
summing up each 8-day period to get monthly values for the period of
2004–2005.

http://www.ntsg.umt.edu
http://www.ntsg.umt.edu


Table 1
Eddy flux sites used in this study.

Site Latitude Longitude Vegetation structure Vegetation
type

Year References

ARM Oklahoma,
OK (ARM)

36.60 −97.49 Winter wheat, some pasture and summer crops Croplands 2003–2006 Sims and Bradford
(2001)

Audubon Research
Ranch, AZ (ARR)

31.59 −110.51 Desert grasslands Grasslands 2003–2006

Bartlett Experimental
Forest, NH (BEF)

44.06 −71.29 Temperate northern hardwood forest dominated by American beech, red
maple, paper birch, and hemlock

Deciduous
broadleaf
forest

2003–2006 Jenkins et al. (2007)

Blodgett Forest, CA (BF) 38.90 −120.63 Mixed evergreen coniferous forest dominated by ponderosa pine (N70%) Evergreen
broadleaf
forest

2003–2006 Misson et al. (2007)

Bondville, IL (BO) 40.00 −88.29 Annual rotation between corn (C4) and soybeans (C3) Croplands 2003–2006 Hollinger et al.
(2005)

Brookings, SD(Bro) 44.35 −96.84 Temperate grassland Grasslands 2003–2006
Fort Peck, MT (FP) 48.31 −105.10 Grassland Grasslands 2003–2006
Freeman Ranch
Mesquite Juniper,
TX (FRM)

29.94 −97.99 Grassland in transition to an Ashe juniper dominated woodland Woody
savannas

2003–2006 Kjelgaard et al.
(2008)

Goodwin Creek, MS
(GC)

34.25 −89.97 Temperate grassland Croplands 2003–2006

Harvard Forest EMS
Tower, MA (HFE)

42.53 −72.17 Temperate deciduous forest dominated by red oak, red maple, black
birch, white pine, and hemlock

Mixed forests 2003–2006 Urbanski et al.
(2007)

Howland Forest, ME
(HF)

45.20 −68.72 Boreal—northern hardwood transitional forest consisting of hemlock-
spruce-fir, aspen-birch, and hemlock-hardwood mixtures

Mixed forests 2003–2006 Hollinger et al.
(1999, 2004)

Kennedy Space Center-
Scrub Oak, FL (KSC)

28.61 −80.67 Scrub-oak palmetto dominated by schlerophyllous evergreen oaks and
the Saw Palmetto Serenoa repens

Open
shrublands

2003–2006 Dore et al. (2003)

Lost Creek, WI (LC) 46.08 −89.98 Alder-willow deciduous wetland Mixed forests 2003–2006 Yi et al. (2004)
Mead Irrigated
Continuous, NE (MIC)

41.17 −96.48 Continuous maize Croplands 2003–2006 Verma et al. (2005)

Mead Irrigated Rotation,
NE (MIR)

41.16 −96.47 Maize–soybean rotation Croplands 2003–2006 Verma et al. (2005)

Mead Rainfed, NE (MR) 41.18 −96.44 Maize–soybean rotation Croplands 2003–2006 Verma et al. (2005)
Metolius Intermediate,
OR (MI)

44.45 −121.55 Temperate coniferous forest dominated by Pinus ponderosa, Purshia
tridentate, and Arctostaphylos patula

Evergreen
needleleaf
forest

2003–2006 Law et al. (2003)
Irvine et al. (2007)

Missouri Ozark, MO
(MO)

38.74 −92.20 Oak hickory forest Deciduous
broadleaf
forest

2003–2006 Gu et al. (2007)

Niwot Ridge, CO (NR) 40.03 −105.55 Subalpine coniferous forest dominated by subalpine fir, engelmann
spruce, and lodgepole pine

Evergreen
needleleaf
forest

2003–2006 Monson et al. (2002)

Mize, FL (MI) 29.76 −82.24 Pine plantation dominated by Pinus elliottii Savannas 2003–2006 Powell et al. (2008)
Morgan Monroe State
Forest, IN (MMS)

39.32 −86.41 Mixed hardwood deciduous forest dominated by sugar maple, tulip
poplar, sassafras, white oak, and black oak

deciduous
broadleaf
forest

2003–2006 Sims et al. (2008)

North Carolina Clearcut,
NC (NCC)

35.81 −76.71 15-year-old loblolly pine (Pinus taeda) plantation Mixed forests 2003–2006

Rosemount G19, MN
(RG)

44.72 −93.09 Corn–soybean annual rotation Croplands 2003–2006 Baker and Griffis
(2005)

Sky Oaks Young stand,
CA (SOY)

33.38 −116.64 Chaparral (Mediterranean-type ecosystems) Closed
shrubland

2003–2006 Lipson et al. (2005)

Tonzi Ranch, CA (TR) 38.43 −120.97 Oak savanna, grazed grassland dominated by blue oak and grasses Woody
savannas

2003–2006 Ma et al. (2007)

Vaira Ranch, CA (VR) 38.41 −120.95 Grazed C3 grassland opening in a region of oak/grass savanna Grasslands 2003–2006 Xu and Baldocchi
(2004)

Walnut River, KS (WR) 37.52 −96.44 C3/C4 mixed grassland, tallgrass prairie Grasslands 2003–2006 Chen et al. (2003)
Wind River, WA (WR) 45.82 −121.95 Old coniferous, temperate rainforest, evergreen forest dominated by

Douglas fir, western hemlock
Evergreen
needleleaf
forest

2003–2006 Falk et al. (2008)

The units of latitude and longitude are in decimal degrees.
The names in the parentheses are abbreviations of flux sites.
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4. Verification at the eddy flux tower sites

4.1. ET validation

We verified the daily latent heat (ET) estimates using eddy flux
measurements in 2006. For each explanatory variable derived from
MODIS data, we used the values averaged within the 7×7 km area
surrounding each flux tower to represent the values of the tower site.

ANNs performance varied between flux sites (Fig. 2 (A)). The
lowest R2 of 0.51 occurred at ARM SGPMain and the highest R2 of 0.86
occurred at Bondville, both within croplands, which means ET on
croplands has high variations. R2 is also below 0.6 at Mead Rainfed.
At these sites, the measurements were available in the first 136 days
of 2006, when vegetation is not in the most active growth period.
This may be the reason for the relative poor performance of model
prediction. At Kennedy Space Center and Wind River Crane, R2 are
only 0.56 and 0.55, respectively. By checking the ANNs at these
sites, we found the remotely-sensed training datasets are limited
due to their low quality in 2004 and 2005. This weakened the
predictability of the ANNs. In general, ANNs trained with more data
worked generally better than the ANNs trained with less. To have
enough training data is important. We concluded that, given the



Fig. 2. Observed and estimated daily ET (mm/ day) (A), and WUE (g C g−1 H2O) (B) for each AmeriFlux site in 2006. Site information is given in Table 1.
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heterogeneity of the AmeriFlux data and the simplicity of the model
inputs, our ANNs model performance is satisfactory.

4.2. WUE validation

We also verified the daily WUE estimates using eddy flux
measurements in 2006. The site-level WUE measurements were
calculated by the ratio of GPP to latent heat. The Level 4 product of
eddy flux measurements consists of two types of GPP data, including
standardized (GPP_st) and original (GPP_or) GPP (AmeriFlux, 2007).
Both GPP_st and GPP_or were filled using the Marginal Distribution
Sampling (MDS) method (Reichstein et al., 2005) and the Artificial
Neural Network (ANN) method (Papale and Valentini, 2003). The
ANN method is generally better than the MDS method (Moffat et al.,
2007). Therefore, we used the gap-filled GPP data based on the ANN
method. For each site, if the percentage of the number of missing
values to the total number of measurements for GPP_st was lower
than that for GPP_or, we selected GPP_or; otherwise, we used GPP_st.

Comparisons between estimates with ANNs and eddy flux data
indicate that performance of WUE estimates at site level is slightly
poorer than ET estimates (Fig. 2 (B)). The lowest R2 of 0.46 occurred at
Freeman ranch site and the highest R2 of 0.75 occurred at Harvard site.
It is partially due to the uncertainties introduced by using MODIS
products. Overall, WUE estimates are best for forests, grasslands and
shrublands. WUE estimates show large variations for croplands.
Similar to ET, the amount of training data is important to the
performance of the ANNs.

Many factors may bring negative effects to the ET estimation
algorithm (Mu et al., 2007). The relative low performance of the ANNs
at some sites may results from: (1) biases in the meteorological data.
Although the conterminousUS has a denseweather station network, the
reanalysis datasets still contain uncertainties (Kistler et al., 2001; Zhao
et al., 2006). The spatial interpolation scheme which doesn't consider
the terrainmay also lead to errors in the forcingmeteorological data; (2)
Fig. 3. Predicted monthly ET for the conterminous U.S. from Jan
limitations in the MODIS products. Some remotely-sensed variables,
such as LAI and LST, have large variations, especially for the daily
products (Wanet al., 2002). Although thegap-fillingmethodcanprovide
more available forcing data, their quality is likely poorer than the
direct observations. Moreover, the simple LUE scheme used by the GPP
algorithm may not work well when some other factors become more
important in the carbon assimilation, which will in turn deteriorate the
WUE estimate; (3) effect of water redistribution. Precipitation will be
redistributed as a result of topography or the water management. Two
neighbor pixels with almost the same explanatory variables may
have the huge difference in ET due to the difference in water bodies'
area. (4) Issues are with the ANNs itself. The effect of the lack of training
data has been discussed before. Some explanatory variables, such as soil
moisture, are important for estimating ET. However, MODIS can't
directly measure soil moisture. Although its effect is implicitly
considered in the NDWI and LST, the ANNs will most likely suffer the
loss of accuracy under some circumstances.

5. Results and discussion

5.1. Spatiotemporal patterns of ET

Aggregated daily ET estimates for eachmonth in 2004 shows a large
spatial variability (Fig. 3). Because remote sensing data required by
ANNs were not always available in a given composite period or ANNs
were failed (when EFN1 or EF b0) due to limited training datasets, the
missed EF or ET was assigned with the values from the most adjacent
grid cells. To show the quality of the model output data, we defined
the quality flag as the fraction of daily data with EF between 0 and 1.
The quality flag maps for each month in 2004 were presented in Fig. 4.

The ANNs trained at the AmeriFlux sites generally captured the
expected spatiotemporal patterns of ET, with a maximum ET of
1554 mm/yr and 1443 mm/yr, an average of 529 mm/yr and 533 mm/yr
in 2004 and 2005, respectively. Temporally, the majority of the
uary through December in 2004. Units are in mm/month.
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conterminous U.S. has very low ET (Fig. 3) in wintermonths (December–
February) due to low available energy, temperature, and stomatal
conductance. The associated data quality is also very poor and most of
northern regions even have no values since most remotely-sensed
variables, such as LAI, NDVI and NDWI are in bad quality due to snow
cover (Fig. 4). ETmagnitudewent to the highest level in summermonths
(June–August) because of high precipitation, dense vegetation, and
intensive radiation. In fall period (September–November), ET dropped
asvegetation senescedand radiationdeclines (Fig. 3).Moreover,we found
that pixels under slight dryness (explain later) have a higher ET than
neighbor pixels which have the same land cover type and are not under
drought.

Spatially, ET increased from south to north and from the coast to the
interior, reflectingvariations in rainfall, available energy, and temperature.
ET rates also demonstrate a high correlation with the land cover type. In
particular, the quality of training data for ANNs is limited for shrublands.
There are many places lacking of quality data in open and closed
shrublands at the regional scale (Fig. 4). As expected, deciduous broadleaf
forest have the highest ET values which are 644 and 652 mm/yr in 2004
and2005, respectively; open/closed shrublands,which aremainly located
indryareaswith shortgrowing seasons, have the lowestET,whichare247
and 287 mm/yr in 2004 and 2005, respectively. The ET for evergreen
needleleaf or broadleaf forest, mixed forest, savannas, grasslands and
croplands lies between the two extremes. ET of croplands is generally
higher than that of grasslands, which may be due to irrigation in
croplands.

5.2. Water-use efficiency analysis

5.2.1. Spatial and temporal patterns of water-use efficiency
To date, numerous studies on WUE have focused on analyzing its

relationship with environment factors, such as elevated CO2, stand
age, and vegetation types at a leaf level (Collatz et al., 1991; Jarvis,
Fig. 4. Monthly quality flag maps for the contermino
1995; Medrano et al., 2009), rather than on an ecosystem scale. Here
we aggregated spring (March–May), summer (June–August) and fall
(September–November) seasons' ecosystem-level WUE in 2004 and
2005 from our ET estimates (Fig. 5). We excluded winter seasons
because plants are in inactive growth periods. Abnormally high values
of WUE (greater than 5 g C kg−1 H2O) were treated as no value. By
visual interpretation of Fig. 5, the plant functional type is an important
factor to determine the spatial pattern of ecosystem-level WUE. The
seasonal mean WUE values for each ecosystem are listed in Table 2.
The gradient WUE from low to high is grassland, cropland, shrubland
and then forests. Evergreen broad-leaf forest has the highest WUE,
intermediate at evergreen needle-leaf forest and lowest at the
deciduous needle/broad leaf forest. Mixed forest has the average
WUE among forest ecosystem types.

Majority of ecosystems has relative lowerWUE in summer seasons
than in fall seasons (Table 2), which means water loss rate is higher
than the increase rate of carbon assimilation. It seems that plants tend
to grow fast even with a lower WUE during summer. This may be due
to that the more soil water is available to plant as summer
precipitation tends to be higher. The distinct differences in WUE
among various ecosystems and their seasonal variations might be
determined by both inherent biological characteristics and external
environmental conditions.

5.2.2. Relationship between water use efficiency and drought condition
Understanding the effects of water availability on ecosystem

carbon assimilation is important to quantifying carbon budget of
ecosystems, especially in drought areas. Carbon uptake of ecosystems
is generally thought to decrease under thewater-limited environment
(Running and Hunt, 1993; Hunt et al., 1996). Here we analyzed WUE
responses of each ecosystem to drought. Drought monitor summary
maps from UNL (http://drought.unl.edu/dm/dmshps_archive.htm)
were used to represent the intensity and spatial distribution of
us U.S. from January through December of 2004.

http://drought.unl.edu/dm/dmshps_archive.htm


Fig. 5. Spring, summer and fall seasonal water-use efficiency (g C g−1 H2O) for the conterminous U.S. in 2004 and 2005.
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drought. The maps are weekly updated for the whole of the U.S. and
drought is categorized into five levels: abnormally dry (D0), moderate
(D1), severe (D2), extreme (D3) and exceptional (D4) drought
according to five key indicators and numerous supplementary
indicators. D0 is used for areas showing dryness but not yet in
drought, or for areas recovering from drought. To make the drought
maps and WUE products have the same time step, we generated
weekly WUE data using daily ET and weekly GPP products.
The required weekly GPP were made from disaggregating one or
two 8-day standard MODIS GPP products.

Two drought maps for the first two weeks in August 2004 and
2005 were used in our analysis (Fig. 6 (A) and (B)). In 2004, most of
drought happened in west and southwestern grasslands and shrub-
lands (Fig. 6 (A)). On the contrary, drought mainly took place in the
Midwest grasslands and croplands and southern forests in 2005
(Fig. 6 (B)). These periods were selected because: (1) August is in
the active growth period for most ecosystems; (2) these two years
have large differences in drought area and intensity, providing a
good opportunity to study ecosystems' WUE responses. To test WUE
Table 2
Mean water use efficiency (g C kg−1 H2O) in spring, summer and fall seasons for each
ecosystem type.

2004
spring

2004
summer

2004
fall

2005
spring

2005
summer

2005
fall

Evergreen needle leaf
forest

2.2 2.2 3.0 1.9 2.1 3.1

Evergreen broadleaf
forest

3.2 2.6 3.1 3.1 2.7 3.3

Deciduous needle leaf /
broadleaf forest

2.4 1.9 2.6 2.2 1.9 2.8

Mixed forest 2.5 2.3 2.8 2.6 2.1 2.9
Open/closed shrubland 1.9 2.3 2.8 1.9 2.2 2.8
Savannas/woody
savannas

2.5 2.1 2.7 2.5 2.0 2.8

Grassland 1.3 1.6 2.0 1.5 1.6 2.5
Croplands 1.8 2.1 2.8 1.7 1.8 2.6
responses to dryness for each ecosystem, seventeen circle study
regions with a radius of 80 km were further chosen (Fig. 6). Two
factors were used to decide the locations of the regions: (1) there is
one interested ecosystem type dominating the region and (2) there
is an obvious difference in drought intensity between these two
years. The properties of these regions are listed in Table 3. We did
not consider evergreen broadleaf and deciduous needle leaf forests
here due to their small fractions in the region. Although each
ecosystem has somewhat random WUE values under different
drought intensities, there is a pattern: ecosystem WUE showed a
biphasic trend with the drought intensity, which can be found in
Table 3. Specifically, WUE tended to increase when drought initially
happened and increased progressively from abnormally dry (D0) to
moderate (D1) level. However, WUE decreased as drought's
intensity progressed from moderate to severe (D2), extreme (D3)
or even exceptional (D4). More interestingly, WUE values were even
lower under extreme drought (D3) than those under no dryness,
which is shown by the results in the 4th, 7th and 17th regions. This
is not consistent with current models, which usually assume a
monotonously increase water-use efficiency under the assumption
of stomatal regulation of water losses with slight photosynthetic
reductions (Flexas and Medrano, 2002). The two-stage pattern
identified in our study has been also observed by Reichstein et al.
(2002) and Yu et al (2008) at eddy flux sites. They believed the
decline in WUE under drought conditions is most likely due to
impairment of electron transport and carboxylation capacity and
thus reducing carbon assimilation capacities and active leaf area
(Reichstein et al., 2002, 2003; Harley and Tenhunen, 1991). Our
results also suggest that the two-stage pattern concerning WUE
should be considered in modeling drought effect on plant photo-
synthesis and carbon cycling at regional scales.

6. Summary and conclusion

Using a combination of tower-based observations from 28
AmeriFlux sites, artificial neural networks, and remotely-sensed



Fig. 6. Drought level distribution maps in 2004(A) and 2005 (B) and the experiment regions (denoted with numbers).

Table 3
Responses of plants' water-use efficiency to drought in the selected experiment regions in Fig. 6. D0, D1,D2, D3and D4 represent abnormally dry, moderate, severe, extreme and
exceptional drought, respectively.

The number of
study region

Dominant ecosystem type Drought level for the first
two weeks in August 2004

Average WUE
( g C kg−1 H2O )

Drought level for the first
two weeks in August 2005

Average WUE
( g C kg−1 H2O )

1 Evergreen needleleaf forest D3 4.23 D0 4.50
2 Evergreen needleleaf forest D1 5.26 No drought 4.70
3 Deciduous broadleaf forest No drought 5.31 D1 5.91
4 Deciduous broadleaf forest No drought 5.78 D3 3.79
5 Deciduous broadleaf forest D0 7.35 D2 5.72
6 Open/closed shrubland D3 2.95 D0 6.55
7 Open/closed shrubland D3 2.46 No drought 3.77
8 Open/closed shrubland D1 2.73 No drought 1.79
9 Savannas/woody savannas D0 6.48 No drought 4.08
10 Savannas/woody savannas No drought 5.19 D1 5.40
11 Savannas/woody savannas D3 4.33 D0 5.54
12 Grasslands D3 4.85 D0 5.92
13 Grasslands No drought 3.19 D0 6.27
14 Grasslands D2 4.29 No drought 6.36
15 Croplands D0 7.04 No drought 5.58
16 Croplands D0 5.06 No drought 4.54
17 Croplands No drought 6.85 D3 4.46
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environmental data, we developed a predictive EF model. Daily ET
was then estimated from available energy and the predicted EF. We
applied the model to the conterminous U.S. using the interpolated
4 km gridded meteorological datasets and the MODIS data to provide
a 2-year, daily land surface ET. The spatiotemporal ET patterns are
generally reasonable and site-level validation demonstrated the
model is able to capture the ET variation. Besides the need to have
plenty eddy flux data for training ANNs, the quality of MODIS input
data and limitation of ANNs limit the accuracy of the regional
estimates of ET.

Together with theMODIS GPP products, estimated ETwere used to
derive WUE on the continental scale. Our continental scale WUE
analysis suggests that the “classical pure stomatal control” hypothesis
should be modified. In mild and moderate dry areas, the increasing in
WUE reflects plants' physiologic acclimation to water stresses.
However, under severe and exceptional drought condition, WUE
will decrease. When a certain drought condition is reached, disability
and impairment to plant photosynthetic apparatus may occur. Our
analysis suggests that more sophisticated water-use efficiency
mechanism should be further identified and considered in ecosystem
water and carbon modeling. In addition, this study provides a new
way to quantify daily ET for various ecosystems at large spatial scales.
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