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[1] Numerical biogeochemistry models suffer from equifinality problem in their
parameterizations using eddy flux tower data, which can contribute to diverged estimates of
regional carbon dynamics. To date, the uncertainty in regional estimates propagated from the
site-level parameterization equifinality has not been well characterized. Here, we use a
process-based biogeochemistry model, the Terrestrial Ecosystem Model (TEM), and a
Bayesian inference framework to quantify the influence of parameterization equifinality on
the estimates of carbon dynamics in boreal forest ecosystems during the 20th century. By
conducting three groups of ensemble regional simulations, we find that, given a certain
climate data set being used, (1) in comparison to the effects of random noises in climate
forcing, the regional uncertainty due to parameterization equifinality is remarkably greater,
(2) the parameterization equifinality results in drastically different decadal variations in
the estimation of carbon storage during the 20th century, and (3) the uncertainties
associated with parameterization equifinality and random noises in climate forcing vary
both spatially and seasonally. We conclude that the equifinality from site-level
parameterizations in biogeochemistry models is an important uncertainty source in
estimating regional carbon dynamics. Simply extrapolating the site-level
parameterization to large spatial and temporal scales could bias the regional estimates
irrespective of regional climate data sets used in our analysis. Ensemble process-based
biogeochemistry model simulations conditioned on observed ecosystem fluxes with
Bayesian inference techniques could provide more serious estimates of regional carbon
dynamics and their associated uncertainties.

Citation: Tang, J., and Q. Zhuang (2008), Equifinality in parameterization of process-based biogeochemistry models: A significant
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1. Introduction

[2] Earth system models usually have multiple interactive
physical, chemical, and biological components and are
mathematically formulated with numerous equations and
parameters associated with their processes and controls
[Entekhabi and Eagleson, 1989; Beven and Binley, 1992].
Equifinality in parameterizations of these models has long
been recognized to affect the model predictability and
uncertainty [e.g., Beven and Binley, 1992; Beven, 1996;
Franks et al., 1997; Beven and Freer, 2001; Schulz et al.,
2001]. Parameterization equifinality occurs when different
sets of parameters for a single modeling system result in
same or similar predictions, given that the model, forcing
data and observations used in calibration are not perfect

[Beven and Freer, 2001]. For example, in a previous study,
we have demonstrated that a biogeochemistry model, the
Terrestrial EcosystemModel (TEM), when calibrated against
eddy flux tower data, is able to reproduce the observed
carbon (C) fluxes with similar accuracy, but with very
different sets of parameters (J. Tang and Q. Zhuang, A global
sensitivity and Bayesian inference framework to improve the
parameter estimation and prediction of process-based terres-
trial ecosystemmodels, submitted toGlobal Change Biology,
2008, hereinafter referred to as Tang and Zhuang, 2008), for a
black spruce ecosystem in Canada. Thus, given the same
model structure, climate forcing, and initial conditions, there
is not a unique set of parameters, which could be used for
regional extrapolation. Rather, Bayesian theory suggests that
all the parameters derived with Bayesian inference technique
have a certain probability to be a ‘‘true’’ set of parameters
[Tarantola, 2005]. If we simply extrapolate one set of those
possibly ‘‘true’’ parameters to a region with biogeochemistry
models, the regional estimates of carbon dynamics will
potentially be seriously biased.
[3] In the past, in quantifying the uncertainty of regional

estimates of carbon dynamics due to site-level parameter-
ization equifinality, biogeochemistry models have been
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evaluated in the context of sensitivity analyses [e.g., Potter
et al., 2001; Knorr and Heimann, 2001]. These sensitivity
analyses are useful for biogeochemistry modelers to set the
upper and lower bounds on simulations, and are often
conducted by changing one parameter per simulation, and
neglect the interactions among the parameters [e.g., Potter
et al., 2001; Knorr and Heimann, 2001]. Rather, the
model parameters are often correlated [e.g., Wang et al.,
2006; Tang and Zhuang, submitted manuscript, 2008]. To
consider the parameter correlations, Ogle et al. [2003]
used Monte Carlo simulations by incorporating the infor-
mation of probability density functions (PDFs) of the
parameters and their covariance matrix into their analysis.
However, the prior knowledge of parameter correlations is
generally not readily available. Thus several researches
constructed some statistical models based on regression
between their biogeochemistry model outputs and param-
eters [Tatang et al., 1997; Ogle et al., 2007]. When a
proper multivariate regression is performed, the output

from the statistical model will be close enough to the
simulations from the process-based models. The uncertainty
analysis was then conducted using the statistical model and
the observed data [Ogle et al., 2007]. These efforts are able to
quantify regional uncertainty, in a first-order approximation,
due to equifinality associated with the model parameters, but
are not able to improve the model predictability as the
uncertainty in parameters of the biogeochemistry model has
not been constrained using any observed data, and higher-
order contributions to the uncertainties in the outputs due to
the nonlinear interactions among parameters are simply
neglected.
[4] Model-data fusion techniques, such as, the Bayesian

inference method, have been demonstrated to be able to
quantify and constrain the uncertainty of model parameters
and improve model predictability at site levels [e.g.,
Trudinger et al., 2007; Braswell et al., 2005; Raupach et
al., 2005; Xu et al., 2006; Williams et al., 2005; Gove and
Hollinger, 2006; Wang et al., 2001, 2007]. To apply these

Table 1. TEM Parameter Values for the Base Simulations at Black Spruce Forest Ecosystem in Bonanza Creek, Alaska, and the Standard

Simulations in the Northern Study Area of BOREAS, Manitoba, Canadaa

Name Unit Definition
Base

Simulation
Standard
Simulation Prior Range

kc mL/L Half saturation constant for CO2-C
uptake by plants

100 195.72 [20, 600]

ki J cm�2 d�1 Half saturation constant for PAR
use by plants

75 50.353 [20, 600]

Tmin �C Minimum temperature for GPP �8.0 �5.4756 [�12, �4]
Toptmin �C Minimum optimum temperature for GPP 5.5 5.8262 [0, 15]
Toptmax �C Maximum optimum temperature for GPP 20.0 19.037 [15, 25]
Tmax �C Maximum temperature for GPP 29.0 31.191 [25, 35]
RAQ10A0 None Leading coefficient of the Q10 model

for plant respiration
2.35665 2.7679 [1.3502, 3.3633]

RAQ10A1 �C�1 First-order coefficient of the Q10 model
for plant respiration

�0.053077 �0.051222 [�0.054577, �0.051183]

RAQ10A2 �C�2 Second-order coefficient of the Q10 model
for plant respiration

0.0023842 0.0023061 [2.2902, 2.4381] � 10�3

RAQ10A3 �C�3 Third-order coefficient of the Q10 model
for plant respiration

�4.110 � 10�5 �3.9835 � 10�5 [�4.17, �3.97] � 10�5

kn1 g/m3 Half saturation constant for
N uptake by vegetation

4.2 4.8716 [0.5, 10]

kn2 g/m3 Half saturation constant for N uptake by
heterotrophic organisms

4.2 3.8209 [0.5, 10]

MINLEAF None Minimum photosynthetic capacity
of vegetation

0.5 0.50327 [0.2, 0.8]

ALEAF None Coefficient to model the relative
photosynthetic capacity of vegetation

0.42893 0.28868 [0.1, 1.0]

BLEAF None Coefficient to model the relative
photosynthetic capacity of vegetation

0.33295 0.11575 [0.1, 1.0]

CLEAF None Coefficient to model the relative
photosynthetic capacity of vegetation

0.32228 0.41158 [0.0, 0.5]

MOISTOPT % saturation Optimum soil moisture content for RH 0.5 0.54753 [0.2, 0.8]
RHQ10 None Change in RH rate due to 10�C

temperature increase
2.00 2.4991 [1, 3]

CMAX g m�2 mo�1 Maximum rate of photosynthesis C 768.07 1656.75 [216.65, 1666.65]
CFALL g g�1 mo�1 Proportion of vegetation carbon loss

as litterfall monthly
0.0020.37 0.00048062 [0.0001, 0.015]

KRC None Logarithm of plant respiration rate at 0�C �6.467 �4.7447 [�7.5, �3.5]
KDC g g�1 mo�1 Logarithm of heterotrophic

respiration rate at 0�C
0.00216527 0.005868 [0.000906, 0.007406]

NMAX g m�2 mo�1 Maximum rate of N uptake by vegetation 374.6775 397.8875 [171.8375, 871.8375]
NFALL g g�1 mo�1 Proportion of vegetation nitrogen loss as

litterfall monthly
0.007955 0.0054617 [0.003, 0.012]

NUP g/g Ratio between N immobilized and
C respired by heterotrophs

29.2639 48.5549 [9.9019, 104.9019]

VEGC2N g/g Mean C:N of vegetation 375.0 462.45 [200, 600]
aThe prior ranges are based on the studies of Raich et al. [1991] andMcGuire et al. [1992], except for Tmin, Toptmin, Toptmax, Tmax, RAQ10A0, RAQ10A0,

RAQ10A0, RAQ10A0, CFALL, and VEGC2N, which are estimated based on conventional calibration.
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techniques to quantify uncertainties in estimates of region-
al carbon dynamics, Knorr and Kattge [2005] suggested
that process-based biogeochemistry models should go
through determination of parameters using the Bayesian
techniques (e.g., using the Monte Carlo Markov Chain
algorithm in their study) with the observed ecosystem flux
data. The parameters and models could then be extrapo-
lated to a region. Here we use a process-based biogeo-
chemistry model, the Terrestrial Ecosystem Model (TEM;
[Melillo et al., 1993; Zhuang et al., 2002, 2003]), site-
level eddy flux tower data for a black spruce ecosystem, and
a Bayesian inference framework (Tang and Zhuang, submit-
ted manuscript, 2008), to conduct a such study. Our aim is to
show that parameterization equifinality is a major uncertainty
source to regional carbon estimates. We also show that using
Bayesian techniques and process-based biogeochemistry
modeling will provide more serious regional estimates of
carbon dynamics and constrain their associated uncertainties.

2. Method

2.1. Overview

[5] We use the TEM and a Bayesian inference framework
(Tang and Zhuang, submitted manuscript, 2008), to inves-
tigate how equifinality derived from site-level parameteri-
zation affects the uncertainty in the estimation of regional

carbon dynamics in boreal forest ecosystems (north of 45�N)
during the 20th century. We parameterize TEM for boreal
forest ecosystems at a black spruce forest ecosystem site
[Clein et al., 2002]. We first derive numerous sets of
parameters for TEM with Bayesian techniques [Zhuang et
al., 2003; Tang and Zhuang, submitted manuscript, 2008].
We then conduct three groups of Monte Carlo simulations
considering effects of parameterization equifinality and
random noises in climate forcing. We also conduct TEM
simulations with a set of parameters derived using conven-
tional calibration techniques [e.g., Raich et al., 1991;
McGuire et al., 1992]. The uncertainty in regional carbon
dynamics estimation is characterized by presenting various
statistics including mode and standard deviation from these
simulations. Below, we first introduce the TEM model and
the observed carbon flux data used in our Bayesian infer-
ence framework (Tang and Zhuang, submitted manuscript,
2008). Second, we describe how conventional and Bayesian
methods have been applied to the parameterizations for the
site and regional simulations with TEM. Finally, we de-
scribe the regional simulation protocol and how we charac-
terize the uncertainty sources.

2.2. Terrestrial Ecosystem Model and
Parameterizations

[6] TEM uses spatially referenced information on climate,
elevation, soils, vegetation and water availability to make
monthly estimates of vegetation and soil C and nitrogen (N)
fluxes and pool sizes. The model is well-documented and has
been used to examine patterns of regional and global terres-
trial C dynamics [e.g., Raich et al., 1991; McGuire et al.,
1992; Melillo et al., 1993; Zhuang et al., 2001, 2002, 2003;
McGuire et al., 2001]. The version of TEM used in this study
explicitly couples biogeochemical processes with soil ther-
mal dynamics of permafrost and non-permafrost soils
[Zhuang et al., 2001, 2002, 2003, 2006; Euskirchen et al.,
2006; Balshi et al., 2006] and therefore is applicable to this
region, dominated by boreal forest ecosystems. In TEM, the
net ecosystem production (NEP), which is net carbon ex-
change between the land ecosystems and atmosphere, is
calculated as the difference between the uptake of atmo-
spheric CO2 associated with photosynthesis (i.e., gross
primary production or GPP) and the release of CO2 through
autotrophic respiration (RA), heterotrophic respiration (RH)
associated with decomposition of organic matter. The fluxes
GPP, RA and RH are influenced by changes in atmospheric
CO2, climate variability and change, and the freeze-thaw
status of the soil.
[7] We parameterize TEM with the conventional method

at a mature black spruce ecosystem at Bonanza Creek, a
Long-Term Ecological Research site in Alaska [Zhuang et
al., 2002]. The climate, vegetation, soil, and elevation for
the site have been documented previously [Zhuang et al.,
2002]. In the conventional method, the parameters are
obtained through manually adjusting the parameters con-
trolling vegetation and soil carbon and nitrogen cycles [e.g.,
Raich et al., 1991; McGuire et al., 1992]. Specifically, the
model continuously does integrations driven by long-term
average climate data and atmospheric CO2 concentrations of
340 ppmv. By changing parameter values, the simulated
fluxes and pools sizes will match the field data with a
certain tolerance (e.g., 1%), and then parameters values can

Figure 1. (a) TEM-simulated NEP with parameters from
the conventional calibration. The linear regression model
between the simulated NEP (dependent variables) and the
observed data (independent variable) has R2 = 0.48, slope =
0.40 (p < 0.01), intercept = �2.47 g C m�2 mo�1, and root
mean square error (rmse) = 20.7 g C m�2 mo�1. (b) The
posterior TEM NEP after the Bayesian inference when all
eddy flux data (measured NEP plus derived GPP and
RESP) are used in the model-data fusion. The error bar
denotes the 95% credible interval of the variables at that
month; the black solid time series are the modes of
distribution after the Bayesian inference. The linear
regression model between the simulated NEP with
‘‘mode’’ parameters (dependent variables) and the ob-
served data (independent variable) has R2 = 0.38, slope =
0.72 (p < 0.01), intercept =�0.52 g Cm�2 mo�1, and rmse =
12.9 g C m�2 mo�1. Also shown in thin gray lines is NEP
from every ensemble members composing the posterior NEP.
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be obtained. During the calibration, we will run TEM until
(1) the modeled annual NPP and GPP match the observa-
tions, (2) the annual available nitrogen is close to the
observations, and (3) the annual NEP converges to nearly
zero with the tolerance specified above [Zhuang et al.,
2001; Clein et al., 2002]. The set of parameters are
considered optimal for the site (Table 1) and will be then
used for regional extrapolations.
[8] To parameterize TEM with eddy flux tower data, we

implement a Bayesian inference method to the Old Black

Spruce ecosystem in Northern Study Area (northern site,
Manitoba, Canada) of BOREAS [Zhuang et al., 2002; Clein
et al., 2002; Sellers et al., 1997]. We adopt the following
likelihood function (see Thiemann et al. [2001] for a
detailed derivation and necessary assumptions)

p Vjqð Þ ¼ C
YN
i¼1

XT
t¼0

jvtij2
" # 1=2�Tð Þ

ð1Þ

Figure 2. Annual NEP of the boreal forest ecosystem north of 45�N in the 20th century. Results from
the ensemble simulations for (a) the type I uncertainty, (b) type II uncertainty, and (c) type III uncertainty.
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Figure 3. Cumulative change in ecosystem C stocks in boreal forest ecosystems north of 45�N in the
20th century. Results from ensemble simulations for (a) type I uncertainty, (b) type II uncertainty, and
(c) type III uncertainty.
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where V is a vector containing the log-transformed obser-
vations, and q is a vector containing parameters to be
inferred, and C is a normalizing constant, and N is number
of different types of observations, and T is the total length of
observations. The observed NEP and the other two deduced
fluxes, GPP and RESP (i.e., ecosystem respiration, a sum of
RA and RH), required in our Bayesian inference method are
aggregated from half-hourly measurements to monthly time
step for the period from 1994 to 1997 at the site [see Clein
et al., 2002]. In implementing the Bayesian inference, we
use the sampling importance resampling (SIR) technique to
draw the posterior from the prior TEM simulations [see
Skare et al., 2003]. We obtain a great number of sets of
parameters, including a set of ‘‘mode’’ parameters, which
have the highest plausibility (or best fitting with respect to
observations) in the parameter space (Table 1). To derive
these parameters, we assume that the prior parameters of
TEM follow the uniform distributions with different ranges
(see Table 1). The ranges are specified based on either
literature review or our experience in calibrating TEM. On
the basis of the prior distribution of the parameters, we
sampled 150,000 sets of parameters using the Latin Hyper-
cube Sampling technique (LHS; [Iman and Helton, 1988])
to conduct simulations at the site from 1975 to 1997. The
Bayesian inference analyses are then conditioned on the
eddy flux data of NEP.
[9] We now describe how to generate parameters for

regional simulations by considering the equifinality de-
duced from the site-level parameterization. We first sample
150,000 sets of parameters from prior distributions of the
parameters. We then filter those samples with available
observations using the Bayesian inference technique de-
scribed above. Finally we do a stratified sampling from
these filtered parameters to obtain different sets of param-
eters for regional simulations. Our method implicitly con-
siders the correlations among the parameters [Roulston and
Smith, 2003]. Specifically, we obtain 50 sets of parameters
with following steps:
[10] 1. A Bayesian inference procedure is performed onto

the prior Monte Carlo ensemble simulations for the black

spruce forest ecosystem described above. The posterior
NEP is thus obtained from 1994 to 1997 at a monthly time
step (see Figure 1b).
[11] 2. Choose a simulated monthly NEP data point with

the greatest uncertainty (i.e., the data point with the largest
distance between its upper bound and the lower bound from
the site-level ensemble simulations; for this study, we
choose the data point in May 1994) and divide its uncer-
tainty range into n segments with an equal probability,
where n is the number of samples we want to generate.
The NEP in each segment comes from simulations with
different sets of parameters.
[12] 3. Randomly choose one point within each segment,

and the set of parameters corresponding to such a chosen
point is then used for one ensemble TEM simulation.
[13] 4. Repeat step III until n samples are collected.
[14] We set n as 50 for this study. These 50 sets of

parameters are sampled in a stratified manner from the
posterior NEP, thus are sufficient to reveal the regional
uncertainty due to equifinality in parameterizations.

2.3. Regional Simulations

[15] Three types of TEM ensemble simulations are con-
ducted, which consider: (1) the effect of equifinality asso-
ciated with model parameterization (hereafter referred to as
the type I uncertainty); (2) the uncertainty in climate
forcing, including air temperature, cloudiness and precipi-
tation, characterized by random noises (hereafter referred to
as the type II uncertainty); and (3) both parameterization
equifinality and random noises in climate forcing (hereafter
referred to as the type III uncertainty). Our study spatial
domain has total vegetated areas of 12.1 million km2 in
7421 0.5� � 0.5� grid cells. In addition, we conduct a
regional simulation with parameters obtained using the
conventional calibration method [Zhuang et al., 2001,
2002]. We refer this simulation to as ‘‘Base Simulation’’
hereafter. To contrast the difference between the conven-
tional calibration and the Bayesian inference method in
regional simulations, we conduct another regional simula-
tion with the set of ‘‘mode’’ parameters derived with the

Figure 4. Probability density function of the cumulative changes in ecosystem C stocks in boreal forest
by the end of 20th century due to three different types of uncertainty sources.
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Bayesian inference framework (Table 1). This simulation is
hereafter referred to as ‘‘Standard Simulation’’.
[16] To conduct the type I regional simulations, we run

TEM with 50 sets of parameters derived using the method
described above, but with the typical climate and atmo-
spheric CO2 data. To conduct the type II simulation, we
perturb the air temperature, precipitation and cloudiness by
imposing assumed random noises on each variable of the
original CRU data [Mitchell et al., 2004]. Specifically, the
air temperature is perturbed from a �2�C decrease to a 2�C
increase of original values, which is a reasonable assump-
tion based on the study by Brohan et al. [2006]. The
precipitation and cloudiness are perturbed from a decrease
15% to an increase 15% of original values. Such perturba-
tions are applied from 1901 to 2000 for each month. For all
the grid cells in a certain month of a certain year, same
perturbations are imposed. We then randomly generate
50 sets of climate forcing data from those perturbations.
The data are then used to drive ensemble simulations
with the ‘‘mode’’ parameters derived from the Bayesian
inference framework.

[17] The parameters and driving climate data sets for the
type III ensemble simulations are derived from those for
type I and type II ensemble simulations in a Latin hypercube
sampling manner [Iman and Helton, 1988]. Specifically,
they are generated by randomly pairing the set of parameters
for i-th member simulation of type I ensemble to the climate
forcing data set for j-th member simulation of type II
ensemble. Such a treatment assumes the parameter samples
and the driving climate data samples are independent from
each other. As a result, we conduct another 50 regional
simulations with 50 sets of parameters and forcing data.
[18] For all these regional simulations, we first run the

model to equilibrium (i.e., annual NEP is close to zero) with
the long-term mean climate from 1901 to 2000. We then
spin up the model for 120 years with the first 40 years
climate data. The model is then run starting from 1901 to
2000 with the transient climate data for each grid cell.

3. Results

[19] The site-level simulation with conventional calibra-
tion is different from the posterior NEP inferred through

Figure 5. Comparison of spatial distributions of the standard deviation for the 1991–2000 decade when
considering different types of uncertainties. (a) Type I uncertainty, (b) type II uncertainty, and (c) type III
uncertainty.
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Bayesian inference (Figure 1). This difference is resulted
from different assumptions in model parameterization. The
parameterization equifinality does occur in TEM (Figure 1b).
TEM is able to reproduce the observed NEP with certain
uncertainty using different sets of parameters, but the same
external forcing.
[20] Below, we first summarize the sources to the inter-

annual uncertainty of the estimated carbon dynamics in the
region. To compare different sources, the nonparametric
estimation of the probability density functions (PDFs) for
carbon storage is derived for all three types of uncertainty
ensemble simulations [Vikas and Duraiswami, 2006]. We
then show how different uncertainty sources influence the
estimation of spatial carbon dynamics using the average
NEP in the 1990s. The spatial patterns of NEP derived from
the ensemble simulations, the Standard Simulation, and the
Base Simulation are compared. Finally we identify the
major uncertainty sources of seasonal carbon dynamics in
the region. The uncertainty in simulated carbon fluxes is
referred to their magnitudes, except stated otherwise.

3.1. Uncertainty Sources in Estimating Carbon Storage
During the 20th Century

[21] Between random noises in climate forcing and the
equifinality of the parameters, the latter is a larger uncer-
tainty source to the estimation of carbon sequestration in the
region (Figure 2). When both equifinality and random
noises in climate forcing are considered, the type III
ensemble simulations show the largest uncertainty range
because of the multiplicative effects of these two uncertain-
ty sources (Figure 2c). The inter-annual NEP in the Base
Simulation and the Standard Simulation are different in both
their phases and amplitudes (Figure 2). As a result, the
cumulative changes in ecosystem carbon stocks from these
two simulations are different. Specifically, in the Base
Simulation, after a short nearly neutral period, the NEP
first shows a steady increase until 1924 then an irregular
decrease until 1963 and then another steady increase until
2000. In contrast, in the Standard Simulation, NEP shows a
very steady but small increase after a long nearly neutral or
weak source period until 1970, and then becomes a small
sink until 2000 (Figure 3). The PDFs of the cumulative

change in ecosystem carbon stocks also indicate that the
type II ensemble simulations have sharper convergence,
while type I and type III ensemble simulations provide
more dispersive convergences (Figure 4). The parameteri-
zation equifinality provides a larger span of simulations than
that due to random noises in climate forcing for the carbon
storage (Figure 4). Given the uncertainty in both parameters
and climate forcing data, the TEM simulations indicate that
the boreal forest ecosystems are a C sink ranging from 0.7
to 2.5 Pg C, while the Base Simulation estimates 2.1 Pg C
and the Standard Simulation estimates 0.76 Pg C by the end
of the 20th century (see Figures 3 and 4). This suggests that
the equifinality of parameterizations at a site will result in
diverged estimates of regional carbon dynamics using TEM
during the 20th century.

3.2. Uncertainty Sources in Estimating Spatial Carbon
Dynamics

[22] By comparing the spatial pattern of the standard
deviation derived from the three types of ensemble simu-
lations from 1991 to 2000, we find that the parameterization
equifinality is also an overwhelming uncertainty source to
the estimate of spatial carbon dynamics (Figure 5). The
mean decadal carbon storage varies depending on uncer-
tainty sources and parameterization methods (Table 2).
Specifically, North America acts as a carbon sink ranging
from 17.3 to 46.8 Tg C yr�1 with large uncertainty, while
Europe’s sink ranges from 7.1 to 15 Tg C yr�1 and Northern
Asia acts as a sink between 14.5 to 33.0 Tg C yr�1 during
this 10-year period. On a per unit area basis, the large
uncertainty also exists in these regions (Table 2). Overall,
these simulations indicate that the large areas of North
America are mostly a C sink during the period, while
Europe and Northern Asia act as a weaker C sink or neutral
(Table 2 and Figure 5). The uncertainties associated with
these estimates are significantly different in these regions
with a large uncertainty in Europe and a relatively small
uncertainty in North America. These discrepancies may be
related to different sensitivities of TEM to parameters in
different regions. In addition, the parameterization based
only on a black spruce forest ecosystem in North America
may also contribute to the discrepancies. On the basis of the

Table 3. Comparisons of 10-year Average (1991–2000) NEP in Different Continents at Probability of 66% and 90%, With Units of

Tg C yr�1a

66% 90%

North America Europe Northern Asia North America Europe Northern Asia

Type I ensemble �27.3 (7.7) �14.5 (5.4) �29.4 (5.0) �52.0 (14.7) �35.0 (13.0) �61.6 (10.5)
Type II ensemble �21.3 (6.0) �15.0 (5.6) �22.8 (3.9) �29.4 (8.3) �21.9 (8.1) �36.5 (6.2)
Type III ensemble �28.9 (8.2) �18.4 (6.8) �34.2 (5.8) �61.1 (17.2) �48.2 (17.9) �78.7 (13.4)

aThose in brackets are area-averaged values with units of g C m�2 yr�1.

Table 2. Comparisons of 10-year Average (1991–2000) NEP in Different Continents With Units of Tg C yr�1a

Continents North America Europe Northern Asia

Base Simulation 46.8 (13.2) 15.0 (5.6) 33.0 (5.6)
Standard Simulation 17.7 (5.0) 11.8 (4.4) 14.5 (2.5)
Type I ensemble 17.4 (4.9) ± 15.2 (4.3) 7.1 (2.6) ± 10.3 (3.8) 15.7 (2.7) ± 20.9 (3.6)
Type II ensemble 17.7 (5.0) ± 2.0 (0.6) 12.4 (4.6) ± 2.0 (0.7) 16.4 (2.8) ± 3.1 (0.5)
Type III ensemble 17.3 (4.9) ± 19.4 (5.5) 10.9 (4.0) ± 18.4 (6.8) 17.5 (3.0) ± 27.5 (4.7)

aThose in brackets are area-averaged values with units of g C m�2 yr�1.
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ensemble simulations, we further obtained the sink values at
66% and 90% probabilities, which are defined as ‘‘likely’’
and ‘‘very likely’’, respectively. We find that the North
America likely acted as a carbon sink between 21.3 and
27.3 Tg C yr�1 while Europe between 14.5 and 18.4 and
Northern Asia between 22.8 and 29.4 Tg C yr�1. Three
regions acted very likely as a carbon sink ranging from 29.4
to 52.0 Tg C yr�1, from 21.9 to 48.2 Tg C yr�1, and from
36.5 to 78.7 Tg C yr�1 for North America, Europe and
Northern Asia, respectively (Table 3). These analyses sug-
gest that uncertainty in characterizing regional carbon sink
or source strengths resulted from parameterization equifin-
ality and random noises in climate forcing varies spatially.

[23] By further calculating the ratio of the members with
positive NEP among the 50 ensemble members, we contour
the probability for grid cells to be a carbon sink in the 1990s
(Figure 6). Majority of grid cells in North America acts as a
C sink during this period, no matter what type of uncertainty
is considered. When the parameters are uncertain such as in
type I and type III ensemble simulations, a large portion of
Northern Asia and Europe appears more likely to be carbon
sources (Figures 6a and 6c). When only the type II uncer-
tainty is considered, the whole boreal forest ecosystem
appears very likely as a C sink, except in some parts of
northern Asia. We summarize the statistics related to these
sink and source activities in Table 4, where the relative areas

Table 4. Comparisons of Relative Sink Areas at the Threshold Probabilities of 66% and 90% in Different Continents During the Period

from 1991 to 2000

66% 90%

North America Europe Northern Asia North America Europe Northern Asia

Type I Ensemble 72.5 53.8 58.0 47.6 36.0 30.5
Type II Ensemble 97.1 98.3 80.8 81.5 87.2 52.2
Type III Ensemble 73.5 61.6 57.4 30.5 17.7 14.5

Figure 6. Spatial distributions of the probability as a carbon sink during 1991–2000. Results from
ensemble simulations for (a) type I uncertainty, (b) type II uncertainty, (c) type III uncertainty.
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as a C sink in all three continents are presented at both 66%
and 90% probabilities. We conclude that, at least more than
70% of North American boreal forests act likely as a C sink,
no matter what type of uncertainty is accounted. In contrast,
the northern Asia is the least productive among three
continents with the ‘‘very likely’’ values between 14.5 and
52.5%, while North America and Europe have the values of

30.5–81.5% and 17.7–87.2%, respectively. These analyses
suggest that the equifinality and climate forcing will also
affect the estimate of C sink areas in these continents.

3.3. Uncertainty Sources in Estimating Seasonal
Carbon Dynamics

[24] In a site-level study, we showed that the seasonal C
dynamics in a black spruce forest ecosystem depend criti-

Figure 7. Decadal mean (1991–2000) of area-averaged seasonal NEP patterns due to different types of
uncertainty. (a) Type I uncertainty, (b) type II uncertainty, and (c) type III uncertainty. The minus signs are
NEP from ensemble members. The ensemble 50th percentile (Ens. 50% prctile) is computed using the
prctile function in Matlab v7.3.0.267.
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cally on the parameters used, including both their values and
correlations (Tang and Zhuang, submittedmanuscript, 2008).
For instance, we found that, the same amount of variation of
parameter CMAX, the maximum rate of photosynthesis C,
results in 10% of the variation of NEP in May, but increases
NEP sink by 30% in June, then decreases NEP sink less than
10% in September. When these fluctuations resulted from
parameterization equifinality are extrapolated to a region, the
uncertainty of the decadal NEP widely spans in the growing
season from April to October (Figures 7a and 7c). The
uncertainty is large in June, and has different distribution
shapes from one month to another. In contrast, the random
perturbation of the driving climate data does not significantly
impact NEP (see Figure 7b).
[25] A larger seasonal difference exists in May, June and

July, and a relatively smaller difference in April and
October (Figure 7). In other months, the differences are
almost same from one simulation to another. When such
magnitude differences in the seasonal C dynamics are
integrated with time, the multi-decadal differences between
the NEP simulated in the Base Simulation and the Standard
Simulation are dramatic (Figure 3). Such differences are
more evident in the cumulative changes in ecosystem C
stocks (Table 5). These analyses suggest that the seasonal
uncertainty influenced by equifinality is a key uncertainty
source to the inter-annual uncertainty in the region.

4. Discussion

[26] In this study, we show that, given the same model
structure and climate forcing being used, the equifinality
[Beven and Freer, 2001] of the parameters (type I uncer-
tainty) results in a much larger uncertainty to the simulated
C dynamics than that due to random noises in climate data
(type II uncertainty). Below we first further contrast the
uncertainty sources between parameterization equifinality
and random noises in climate data by conducting a set of
sensitivity analyses based on CRU data [Mitchell et al.,
2004] and NCEP/NCAR global reanalysis data [Kistler et
al., 1999]. Second, we will compare the influence between
parameterization equifinality and the uncertainty of model
structures on regional uncertainty. Third, we will discuss how
regional uncertainty will be influenced by the uncertainty at
different temporal and spatial scales. Fourth, we briefly
discuss the usefulness of our method presented in this study
in improving estimates of regional carbon dynamics. Finally,
we discuss factors and processes we have not considered in
this analysis.
[27] First, in the type II uncertainty simulations, we do

not increase or decrease all data for a certain variable with
the same magnitude as did in the study of Potter et al.
[2001]. Rather, we assume the climate data set used is only

subject to random noises. We thence perturb them using a
uniform distribution specified by some lower and upper
bounds of changes and a random pairing procedure. As a
result, the uncertainty resulted from these perturbations
tends to be narrower (Figure 2). To test if the uncertainty
type II has been underestimated in regional simulations, we
conduct a set of single-variable sensitivity simulations by
altering one variable at a time. Our results show that there
are small or moderate changes in both area-averaged NEP
and total C accumulation by the end of 20th century before
and after perturbations (Table 5). When different climate
data sets were used, a recent study indicated that the
uncertainty in carbon sequestration estimation could be
much larger [Clein et al., 2007]. This is consistent with
our results based on simulations with the NCEP/NCAR
global reanalysis data (Table 5). However, the results based
on NCEP/NCAR data also showed small changes in NEP in
all sensitivity simulations. This suggests that the parame-
terization equifinality will result in a larger uncertainty in
comparison to the effect of random noises in climate forcing
no matter which climate data set is used.
[28] Second, to contrast the effect of parameterization

equifinality and uncertain model structures on regional
uncertainty, we compare our regional average NEP with
site-level results simulated with multiple models by
Amthor et al. [2001]. When the type I and III uncer-
tainty is considered, our regional NEP varies from �6.7
to 10.8 g C m�2 yr�1 for the type I uncertainty and from
�10.9 to 15.7 g C m�2 yr�1 for the type III uncertainty in the
1990s. Using nine models, Amthor et al. [2001] found the
baseline NEP varies from �11 to 61 g C m�2 yr�1 in year
1996 for the black spruce ecosystem that we used for
parameterization. This comparison suggests that the uncer-
tainty due to different parameterizations in our simulations is
comparable with the uncertainty due to different model
structures, which is another source that contributes to the
uncertainty in modeling regional C dynamics.
[29] Third, we show that the uncertainty in the simulated

C dynamics varies temporally and spatially. These uncer-
tainty structures depend more on parameterization equifin-
ality than on random noises in climate data. For instance,
with the same driving climate data, the NEP produced by
the Base Simulation shows a significant multi-decadal
variation, which accordingly results in significant multi-
decadal variations in cumulative changes of ecosystem C
stocks, whereas no such significant multi-decadal variation
is found in the Standard Simulation (see Figures 2 and 3).
This suggests that, if we attribute C dynamics simulated
with the same set of parameters to variations in climate,
while excluding the possible causes by large uncertainty in
parameters, we may seriously bias the regional estimates.
Similarly, conducting a few simulations with the same set of

Table 5. Decadal Mean (1991–2000) of Area-Averaged NEP (g C m�2 yr�1) Simulated with CRU Data and NCEP/NCAR Global

Reanalysis Data and Cumulative Changes in Ecosystem C Stocks (CCECS, unit: Tg C) by the End of the 20th Century Simulated with

CRU Data (1901–2000) from the Single-Variable Sensitivity Simulationsa

Standard Simulation Tair +2�C Tair �2�C Clds +15% Clds �15% Prec +15% Prec �15%

NEP (CRU 1991–2000) 3.6 3.9 3.3 3.9 4.2 4.0 4.6
NEP (NCEP 1991–2000) 1.33 1.02 0.85 1.31 1.34 1.29 1.31
CCECS at 2000 with

CRU data from 1901–2000
763.0 964.6 386.6 777.0 961.3 786.7 1096.0

aTair, Clds, and Prec represent air temperature, cloudiness, and precipitation, respectively.
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parameters may seriously bias the estimates of spatial
distributions of C dynamics. For example, the Base Simu-
lation shows that Europe and northern Asia have almost
equal NEP during the 1990s, but the Standard Simulation
shows the Europe has much larger NEP. In addition, when
the seasonal C dynamics are considered, their uncertainty
shows a strong seasonal-dependence. Uncertainty is greater
in the growing season and less in the non-growing season.
Such a seasonal-dependence was also found in the nine-
model comparison study by Amthor et al. [2001]. We
conceive such behavior in the uncertainty of modeling
seasonal carbon dynamics is related to the poor constraint
on the parameterizations and formulations of the growing
season dynamics. As showed by Tang and Zhuang (sub-
mitted manuscript, 2008), the simulated carbon fluxes are
most sensitive to these parameterizations in the growing
season. If they are otherwise well constrained, the uncer-
tainty behavior should agree with the eddy-flux measure-
ment in NEP, which shows a less uncertainty in the growing
season rather than in the non-productive season [Raupach et
al., 2005]. These comparisons suggest that the parameteri-
zation equifinality needs to be considered when conducting
both seasonal and inter-annual estimates of carbon dynam-
ics in the region.
[30] Fourth, while we show that the parameterization

equifinality is a significant source to the estimate of carbon
dynamics, we also indicate that, to reduce the uncertainty of
regional simulations using process-based biogeochemistry
models, applying Bayesian inference techniques with ob-
served flux data in a biogeochemistry model-data fusion
fashion is a vital approach. To improve biogeochemistry
model parameterizations at site-levels, a number of calibration
or parameter estimation methods are available [e.g., Raupach
et al., 2005; Trudinger et al., 2007]. To improve regional
estimates, we suggest multi-site calibration methods could be
attempted. For example, merging methods including spatial
Bayesianmodel average algorithm [Berrocal et al., 2007] and
the Bayesian multi-model merging algorithm [Luo et al.,
2007] are promising. These methods assume that each set of
parameters or model formulation is able to reproduce the
observation with certain accuracy. All sets of parameters or
model formulation together with their associated uncertainties
expressed in probability will give a better representation of the
ecosystem dynamics. In this context, our study is a first step in
developing regional estimates using observed data at site-
levels and process-based biogeochemistry models.
[31] Finally, there are many other uncertainty sources that

we have not considered in this analysis. They include effects
of different model structures, fire disturbances [Zhuang et al.,
2002; Balshi et al., 2006], deforestation and nutrient fertil-
ization [McGuire et al., 1997]. In addition, insect outbreak is
another significant disturbance that has not been accounted
for [Kurz et al., 2008]. These factors should been taken into
account in future uncertainty analysis.

5. Conclusion

[32] Simple extrapolation with a set of parameters deduced
from a site-level calibration to a region is a traditional way to
estimate regional carbon dynamics. This procedure could
result in severe biases to regional estimates. In this study,
using the process-based biogeochemistry model TEM and

a Bayesian inference framework, we show that the equi-
finality in site-level parameterizations is an overwhelming
uncertainty source to the estimates of regional carbon
dynamics in boreal forest ecosystems during the 20th
century. We further demonstrate that the uncertainties
associated with parameterization equifinality vary both
spatially and seasonally. Our study indicates that, to make
a more serious estimation of regional C dynamics, Monte
Carlo ensemble simulations constrained with the observed
data using biogeochemistry models and Bayesian inference
techniques should be conducted.
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