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Prediction of temperature sensitivity of net ecosystem production (NEP) based
on conceptual model:
GPP=NEP+ER, where NEP is net ecosystem production and ER is ecosystem

respiration. The temperature sensitivity of each component can be written as:

dGPP dNEP dER
=+ (1)
dTsa dTsa dTsa

Here we define NEP/GPP as the ecosystem carbon use efficiency (CUE), then

equation (1) can be written as:
dGPP CUE dNEP dER

= +(1-CUE)—— (2)
GPP .dTsa NEP -dTsa ER.dTsa

The standardized temperature sensitivity of GPP (0gpp/re )y NEP (Oyeprea) @nd ER

(UER/Tsa) therefore can be related in equation (2). We used the TP model proposed by

Raich et al. to model ER: ER = ER¢¢ X f(T) X f(P), where ERs is the respiration
rate at the reference temperature (Trs), f(T) and f(P) is used to represent of
temperature and precipitation influence. Here we used Arrhenius type equation to

1 1

EoG————7—— . . .
model f(T): f(t) =e *TrerTo T‘TO). Eo is the activation energy parameter and

represents the ecosystem respiration sensitivity to temperature. Here we used the
previous study calibrated value (125 K) for evergreen needleleaf forest (Migliavacca
et al., 2011). Ty is fixed at 288.15 K and Ty is fixed at 227.13 K. Based on this

equation, the following equation is obtained: oy, = E, /(T —227.13)*. The long

term change of summer temperature over the study period increased about 1K, which

has a small impact (less than 0.2%/K) on o1, - The CUE of boreal ecosystem is
around 0.1(Luyssaert et al., 2007). Thus if the temporal evolution of CUE and oz,

is ignored, it means 1% change in o gppr, Will cause 10% change in o ygpre - FOT

summer mean temperature is around 14°C (287K). Evaluating equation (2) with

T=287K, CUE=0.1 and ogpyr, =2%, We get Oy = — 11%, where 2%



58  corresponds to a typical temperature sensitivity of GPP in summer according to our

59  estimation in Fig. 8d. This conceptual analysis implies o1, 1S Very likely to be

60  negative in summer based on this conceptual framework analysis.

61

62

63

64  Table S1

65

66  Temperature sensitivity of s81 NCE over NHL in the first 17 years (1981-1997) and
67 the last 17 years (1998-2014) and the corresponding temperature sensitivity of CDR
68 in the same moving time windows.

69
1981-1997 1998-2014
Ocorimsa N SPring  10.2+412% (p>0.1)  —18.5+23% (p>0.1)
Ocpritsa N SUMMeEr  —7.5+7.8% (p>0.1) —15.1+14% (p<0.05)
Oncemsa INSPriNG  39.448.7% (p<0.01)  17.2+12% (p>0.1)
Oncemsa IN SUMMeEr  —8.9+3% (p<0.05) —14.6+4% (p<0.01)
70
71 Table S2
72 Summary of the nine process-based carbon model in TRENDY project.
Model Spatial resolution \egetation N-cycle
CLM4CN 1° x 1° Imposed Y
LPJ 0.5° x 0.5° Dynamic N
LPJGUESS 0.5° x 0.5° Dynamic N
OCN 1° x 1° Imposed Y
HYLAND 0.5° x 0.5° Imposed N
TRIFFD 0.5° x 0.5° Imposed N
SDGVM 0.5° x 0.5° Dynamic N
VEGAS 0.5° x 0.5° Dynamic N
ORCHIDEE 2° % 2° Imposed N
73

74
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Figure S1: Temporal evolution of partial correlation between CO, drawdown rate and

Tsa as well as o, OVEr 17-year moving windows. (a) and (b) shows the

standardized temperature sensitivity of CDR (Opr/res» %/K). (€) and (d) show the

partial correlation between CDR and Tsa in spring and summer when controlling Prec.
All of the variables are detrended by its first order difference before doing correlation
and regression. Unlike Figure 3, here spring CDR is derived using the end of June as
the end of spring and summer CDR is derived using the first day of July as the start of
summer. The symbols in the line mean the same as the symbols in Figure 3. The error
bars indicate the standard errors derived from 17-yr moving windows with bootstrap

estimates.
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Figure S2: Temporal evolution of oz, OVer 17-year moving windows. (a) and (b)

shows the standardized temperature sensitivity of CDR (0pr/re» %/K) when not
accounting for precipitation and just using temperature as the independent variable in

the regression. (c) and (d) show o1, When using the original CDR, Tsa and Prec

without detrending. The symbols in the line mean the same as the symbols in Figure 3.

The error bars indicate the standard errors derived from 17-yr moving windows with

bootstrap estimates.
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Figure S3: Temporal evolution of opgr, OVer 15-year moving windows (a,b).

Temporal evolution of o.psp, OVer 19-year moving windows (c,d). The symbols in

the line mean the same as the symbols in Figure 3. The error bars indicate the

standard errors derived from 17-yr moving windows with bootstrap estimates.
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Figure S4: Temperature sensitivity of spring (May) and summer o g, (JUl-Aug)

using Jena inversion 8.1 carbon exchange in the 17 year windows during

1981-2014. When o, 1S POSsitive, it means warming will stimulate carbon

uptake, otherwise, warming causes carbon loss. NCE data is area weighted over

EA and NA along with climate variables. o,., IS Obtained by regressing

detrended NCE over detrended Tsa and detrended Prec and then the regression

coefficient is standardized by NCE. Another version of Jena inversion (s99) is also

employed to show the temperature sensitivity of NCE in the latest 16 years

(1999-2014), which is shown as the numbers in parenthesis corresponding to year

of 2006.
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Figure S5: When North America continent is further divided into Alaska (AK) and

the remaining land (NA) areas, the temperature sensitivity of spring (May) and
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summer o ycgme (JUI-Aug) in the 17 year windows during 1981-2014. NCE data

is area weighted over NA and AK along with climate variables.
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Figure S6: The temperature sensitivity of spring (May) and summer (Jul-Aug)

Ogrprsa TrOm GPPLye (a,b) and GPPumte (c,d) in the 17-year windows during

1982-2012 over Northern Eurasia and North America. Both GPP yg GPPpmTE and

climate variables are area weighted over vegetated area of Eurasia and North America.

The symbols in the line mean the same as the symbols in figure 3. The error bars

indicate the standard errors derived from 17-yr moving windows with bootstrap

estimates.
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Figure S7: The spatial mean GPPye vs. area weighted temperature for the spring

EA (a), spring NA (b), summer EA (c) and summer NA (d) during 1982-2011. The

first 15 years corresponds to 1982-1996 and last 15 years corresponds to

1997-2011.
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Figure S8: Breakpoints in the time series of partial correlation between spring

temperature and CDR in 13 years running windows (a) and 15 years running

windows (b). The marked point represents the breakpoint. The breakpoint is
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determined by piece-wise linear model.
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Figure S9: Temperature sensitivity of spring (a,c) and summer (b,d) GPP Ogpp/re

derived from trendy model results in the 17 year windows during 1974-2010 over the

Eurasia (a,b) and North America (c,d).
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Figure S10: Temperature sensitivity of mean spring (a) and summer (b) GPP (0 gpp/rsa )

by averaging 9 model results from trendy in the 17 year windows during 1974-2010

over the Eurasia and North America.
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Figure S11: Temperature sensitivity of spring (a,c) and summer (b,d) NBP o gp/ra

derived from trendy model results in the 17 year windows during 1974-2010 over the

Eurasia (a,b) and North America (c,d).
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Figure S12: Temperature sensitivity of mean spring (a) and summer (b) NBP (O ygp/rsa )

by averaging 9 model results from trendy in the 17 year windows during 1974-2010

over the Eurasia and North America.
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