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Abstract. A large amount of soil carbon in northern tem-
perate and boreal regions could be emitted as greenhouse
gases in a warming future. However, lacking detailed micro-
bial processes such as microbial dormancy in current biogeo-
chemistry models might have biased the quantification of the
regional carbon dynamics. Here the effect of microbial dor-
mancy was incorporated into a biogeochemistry model to im-
prove the quantification for the last century and this century.
Compared with the previous model without considering the
microbial dormancy, the new model estimated the regional
soils stored 75.9 Pg more C in the terrestrial ecosystems dur-
ing the last century and will store 50.4 and 125.2 Pg more
C under the RCP8.5 and RCP2.6 scenarios, respectively, in
this century. This study highlights the importance of the rep-
resentation of microbial dormancy in earth system models
to adequately quantify the carbon dynamics in the northern
temperate and boreal natural terrestrial ecosystems.

1 Introduction

The land ecosystems in northern temperate and boreal re-
gions (> 45◦ N) occupy 22 % of the global surface and store
over 40 % of the global soil organic carbon (SOC) (McGuire
and Hobbie, 1997; Melillo et al., 1993; Tarnocai et al., 2009;
Hugelius et al., 2014). During the past decades, a greening
accompanying a warming in the region has been documented
(Zhou et al., 2001; Lloyd et al., 2002; Stow et al., 2004;
Callaghan et al., 2005; Tape et al., 2006). The regional car-
bon dynamics are expected to loom large in the global carbon
cycle and exert large feedbacks to the global climate system

(McGuire et al., 2009; Davidson and Janssens, 2006; Bond-
Lamberty and Thomson, 2010).

To date, numerous ecosystem models have been developed
to project the feedbacks between terrestrial ecosystem carbon
cycling and climate (Raich et al., 1991; Zhuang et al., 2001,
2002, 2015; Parton et al., 1993; Knorr et al., 2005; Running
and Coughlan, 1988), but they can bias their quantifications
due to missing detailed microbial mechanisms in these mod-
els (Schmidt et al., 2011; Todd-Brown et al., 2013; Conant
et al., 2011; Treseder et al., 2011). Microorganisms play a
central role in decomposition of litter and soil organic car-
bon, which further governs the global carbon cycling and cli-
mate change (Xu et al., 2014; Treseder et al., 2011; Wang et
al., 2015). An emerging field of research has begun to incor-
porate microbial ecology into existing process-based mod-
els to represent decomposition in ways that include impor-
tant microbial processes that were previously ignored (Zha
and Zhuang, 2018; Schimel and Weintraub, 2003; Allison et
al., 2010; German et al., 2012). These microbe-based mod-
els tend to better reproduce field and satellite observations
than traditional ones that treat soil decomposition as a first-
order decay process without considering microbial activities
(Treseder et al., 2011; Wieder et al., 2013; Todd-Brown et
al., 2011; Lawrence et al., 2009; Moorhead and Sinsabaugh,
2006). However, some vital microbial traits such as micro-
bial dormancy and community shifts are still rarely explic-
itly considered in large-scale ecosystem models (Wieder et
al., 2015), and this may introduce notable uncertainties (Gra-
ham et al., 2014, 2016; Wang et al., 2015; Bouskill et al.,
2012; Kaiser et al., 2014).

Dormancy is broadly recognized as a strategy for mi-
croorganisms to cope with periodical environmental stresses
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(Harder and Dijkhuizen, 1983). When environmental con-
ditions are unfavorable for growth, microbes switch to a
dormant state, which is a reversible state of low to zero
metabolic activity (Stolpovsky et al., 2011; Lennon and
Jones, 2011). In this state, biogeochemical processes such as
soil decomposition are slow (Blagodatskaya and Kuzyakov,
2013). At any given time, there is only a fraction of, likely
below 50 %, metabolically active microbes in natural soils
(Wang et al., 2015; Stolpovsky et al., 2011). Soil decomposi-
tion and nutrient cycling mainly depend on these active mi-
crobes because only active ones can consume organic matter
and replicate themselves (Wang et al., 2015; Blagodatskaya
et al., 2014). To date, most existing biogeochemistry models
use total rather than active microbial biomass as an indicator
of microbial activities (Wieder et al., 2015), which could bias
the estimates of soil decomposition and ecosystem carbon
budget (Hagerty et al., 2014; He et al., 2015). In particular,
the northern temperate and boreal terrestrial ecosystems are
nitrogen-limited; neglecting microbial dormancy will lead to
incorrect estimates of nitrogen availability through soil de-
composition, failing to capture nitrogen feedbacks to carbon
dynamics (Wang et al., 2015; Stolpovsky et al., 2011; Thull-
ner et al., 2005). Furthermore, these ecosystems have experi-
enced a marked seasonality of active and dormant microbial
cycles and the above-global-average warming, which might
have increased the proportion of active microbes in soils (He
et al., 2015). Thus, incorporating dormancy effects will im-
prove model realism to provide a better projection of the
northern temperate and boreal terrestrial ecosystem carbon
dynamics.

This study incorporated the effects of the microbial dor-
mancy trait into an extant process-based biogeochemistry
model (MIC-TEM) (Zha and Zhuang, 2018; He et al., 2015).
The dormant and active microbial physiology has been con-
sidered explicitly in the new version of the model (MIC-
TEM-dormancy). The revised model was parameterized, val-
idated, and then applied to evaluate the carbon dynamics dur-
ing the last century and this century in the northern tem-
perate and boreal terrestrial ecosystems (north 45◦ N above).
By comparing the results of MIC-TEM-dormancy and MIC-
TEM, we can show that incorporating microbial dormancy
may produce a much different prediction in the historical and
future carbon budget.

2 Methods

2.1 Overview

Due to the importance of microbial dormancy, some recent
work has been done to consider the metabolic activation and
deactivation of microbes in soil and its effects on soil car-
bon (C) dynamics and climate feedbacks. For example, Wang
et al. (2015) have incorporated transformation processes be-
tween active and dormant states to develop two versions of

MEND, that is, MEND with and without dormancy. The
two versions of the model have been applied to quantify
the carbon decomposition in laboratory incubations of four
soils. Salazar et al. (2018) have also taken microbially dor-
mancy into account to compare their predictions of microbial
biomass and soil heterotrophic respiration (RH) under simu-
lated cycles of stressful (dryness) and favorable (wet pulses)
conditions. Our study extends those modeling studies to the
northern temperate and boreal terrestrial ecosystems by de-
veloping a more detailed biogeochemistry model considering
the dormancy impacts. Below, we first describe how we de-
veloped the new model (MIC-TEM-dormancy) by incorpo-
rating the microbial dormancy trait into an existing microbe-
based biogeochemistry model (MIC-TEM). Second, we dis-
cuss how parameterization and validation of the MIC-TEM-
dormancy model were conducted using observed net ecosys-
tem exchange data and heterotrophic respiration data at rep-
resentative sites. Third, we presented how the model was ap-
plied to natural ecosystems in the region (above 45◦ N) for
the 20th and 21st centuries and discussed the dormancy ef-
fects on their regional carbon budget.

2.2 Model description

A non-dormancy version of the biogeochemistry model
(MIC-TEM) has been developed by incorporating a micro-
bial module (Allison et al., 2010) into an extant large-scale
biogeochemical model (TEM) to explicitly (Zhuang et al.,
2015) consider the effects of microbial dynamics and en-
zyme kinetics on carbon dynamics (Zha and Zhuang, 2018).
Here we further advanced the MIC-TEM by incorporating
algorithms that describe the effects of microbial dormancy
dynamics based on He et al. (2015). Different from He et
al. (2015), in which the microbial module was driven with
existing data of carbon stocks and fluxes, our study incor-
porated the microbial module into an extant MIC-TEM that
simulates carbon data dynamically. This coupling enables us
to extrapolate our model to northern temperate and boreal
terrestrial ecosystems, rather than only for temperate for-
est regions in He et al. (2015). In our new model (MIC-
TEM-dormancy), the microbial biomass pool was divided
into two fractions, including the dormant and active micro-
bial biomass pools. The two microbial biomass pools and the
reversible transition between them have been considered ex-
plicitly in the new model (Fig. 1) but were ignored in MIC-
TEM.

In previous MIC-TEM, heterotrophic respiration (RH) is
simply calculated as the product of ASSIM and CUE, which
are microbial assimilation and carbon use efficiency, respec-
tively. For detailed carbon dynamics in MIC-TEM, see Zha
and Zhuang (2018).

Here we revised MIC-TEM by incorporating microbial
dormancy dynamics according to He et al. (2015). In MIC-
TEM-dormancy, the soil heterotrophic respiration RH is re-
vised to include three parts: the maintenance respiration from
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Figure 1. Framework of the dormancy model: microbial biomass is split into two parts, active microbial biomass and dormant microbial
biomass (shown in the green dashed circle). Maintenance respiration from these two parts and the CO2 production through microbial assim-
ilation contribute to heterotrophic respiration. The model was revised based on Zha and Zhuang (2018).

the active and dormant microorganisms and the CO2 produc-
tion through the process of microbial assimilation (He et al.,
2015):

RH =mR Q
temp-15

10
10 micBa+βmR Q

temp-15
10

10 micBd+CO2, (1)

where the first two terms are maintenance respiration from
the active and dormant microorganisms. The last term is the
CO2 produced during the process of microbial assimilation.

For the first two terms, Ba and Bd represent the active and
dormant microbial biomass pool, respectively. The parameter
mR denotes the specific maintenance rate in an active state
(h−1), and β is the ratio of dormant maintenance rate to active
maintenance rate. Thus, βmR denotes the maximum specific
maintenance rate in a dormant state. Temperature sensitivity

was expressed as the Q10 function
(
Q

temp−15
10

10

)
, where temp

is soil temperature in the top 20 cm (degrees Celsius).
For the third term, the CO2 produced through microbial

assimilation is calculated as in He et al. (2015) and Allison
et al. (2010):

CO2 = ASSIM× (1−Yg), (2)

where ASSIM represents the microbial assimilation, and the
parameter Yg represents carbon use efficiency. Microbial as-
similation (ASSIM) is calculated as in He et al. (2015):

ASSIM=
1
Yg

8

α
mR Q

temp−15
10

10 enz Ba

(
CNsoil

CNmic

)0.6

. (3)

Here parameter α is maintenance weight (h−1); CNsoil and
CNmic denote the C : N ratios of soil and that of microbial
biomass. In addition, 8 is the substrate saturation level and

defined as in He et al. (2015) and Wang et al. (2014):

8=
S

Ks+S
, (4)

where Ks is the half saturation constant for substrate uptake
as indicated by the Michaelis–Menten kinetic, and S is sol-
uble C substrates that are directly accessible for microbial
assimilation (Wang et al., 2014). Here we quantified concen-
tration of soluble C substrates that are directly accessible for
microbial assimilation by using the conceptual framework
from Davidson et al. (2012):

S= soluble C×Dliq× θ
3. (5)

The term “soluble C” denotes the state variable of the soluble
carbon pool. Dliq is the diffusion coefficient of the substrate
in the liquid phase and is formulated as

Dliq = 1/(1−BD/PD)3, (6)

where BD is the bulk density and PD is the soil particle den-
sity. θ is the volumetric soil moisture.

Different from MIC-TEM, the transitions between active
and dormant microbial biomass are included in MIC-TEM-
dormancy.

Ba→d = (1−8)mR Q
temp−15

10
10 mic Ba, (7)

Bd→a =8mR Q
temp−15

10
10 mic Bd, (8)

where Ba→d and Bd→a denote the transition from the active
to dormant microbe and from the dormant to active microbe,
respectively (He et al., 2015; Wang et al., 2014). Thus, dor-
mancy rate is affected by active and dormant biomass, soil
temperature (temp), and soil moisture (θ in 8).
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The active microbial biomass (Ba) is modeled as (He et al.,
2015; Wang et al., 2014)

dBa

dt
= ASSIM×Yg−mR Q

temp−15
10

10 mic Ba−Ba→d+Bd→a

−DEATH-EPROD, (9)

where DEATH and EPROD denote microbial biomass death
and enzyme production, which are modeled as proportional
to active microbial biomass with constant rates rdeath and
rEnzProd (Allison et al., 2010):

DEATH= rdeath×Ba, (10)
EPROD= rEnzProd×Ba, (11)

where rdeath and rEnzProd are the rate constants of microbial
death and enzyme production, respectively.

The dormant microbial biomass (Bd) is modeled as (He et
al., 2015; Wang et al., 2014)

dBd

dt
=−βmR Q

temp−15
10

10 mic Bd+Ba→d−Bd→a. (12)

The soluble C pool is modeled as (He et al., 2015; Allison et
al., 2010)

dSolubleC
dt

= DECAY−ASSIM+ELOSS+DEATH, (13)

where DECAY represents the enzymatic decay of soil or-
ganic carbon (SOC), and ELOSS represents the loss of en-
zyme.

DECAY is regulated by enzyme biomass (ENZ), soil or-
ganic carbon (SOC), soil temperature, and substrate quality
(He et al., 2015):

DECAY= Vmax×Q
temp−15

10
10 enz ×ENZ

×
SOC

Kmuptake+SOC
× (120−CNsoil), (14)

where Vmax is the maximum SOC decay rate, and Kmuptake
is the half-saturation constant for enzymatic decay.

ELOSS is modeled as a first-order process (Allison et al.,
2010) to represent enzyme turnover:

ELOSS= renzloss×ENZ, (15)

where renzloss is the rate constant of enzyme loss.
The soil organic carbon pool (SOC) is modeled as

dSOC
dt
= litterfall−DECAY, (16)

where litterfall is estimated as a function of vegetation carbon
(Zhuang et al., 2010).

Last, the enzyme pool (ENZ) is modeled as

dENZ
dt
= EPROD-ELOSS. (17)

With the modification of microbial carbon dynamics by con-
sidering microbial life history traits, soil decomposition is
changed since it is controlled by microbes. When microbial
dormancy is considered, the number of active microbes that
participate in soil decomposition is much less. The changes
in soil decomposition directly influence the amount of soil
respiration and further influence soil nitrogen (N) mineral-
ization that determines soil N availability for plants, affect-
ing gross primary production (GPP). Since both GPP and RH
can be affected by microbial dormancy, net ecosystem pro-
duction (NEP) will also be affected.

2.3 Model parameterization and validation

The detailed description of parameters that are related to mi-
crobial dormancy can be found in He et al. (2015) (Table 1).
Here we calibrated the MIC-TEM-dormancy at six represen-
tative sites with gap-filled monthly net ecosystem productiv-
ity (NEP, gC m−2 per month) data in northern temperate and
boreal regions (Table 2). Site-level climatic data and soil tex-
ture data were organized for driving the model. All site infor-
mation can be found on the AmeriFlux network (Davidson et
al., 2000). The results for model parameterization were pre-
sented in Fig. 2. We conducted the parameterization using a
global optimization algorithm known as the SCE-UA (Shuf-
fled complex evolution) method (Duan et al., 1994). An en-
semble of 50 independent sets of parameters were performed
based on prior ranges from literature (Table 1) to minimize
the difference between the monthly simulated and measured
NEP at the chosen sites. The cost function of the minimiza-
tion is

Obj=
k∑
i=1
(NEPobs,i −NEPsim,i)

2, (18)

where NEPobs,i and NEPsim,i are the observed and simulated
NEP, respectively. k is the number of data pairs for com-
parison. Except for the parameters of microbial dormancy,
other parameters are derived directly from MIC-TEM (Zha
and Zhuang, 2018). The optimized parameters were used for
model validation and regional simulations.

For model validation, we chose another six sites that con-
tain monthly NEP data from the AmeriFlux network (Ta-
ble 3). Four of these six sites were also used for parameteri-
zation (Table 2). However, we used the data of different ob-
servation periods for model validation for those overlapped
sites. Moreover, we also conducted site-level validations with
monthly soil respiration data from the AmeriFlux network
and Fluxnet dataset. The site information was provided in
Table 4. For these sites, we assumed 50 % of soil respira-
tion was heterotrophic respiration (RH) for forest (Hanson
et al., 2000) and 60 % and 70 % of that was RH for grassland
(Wang et al., 2009) and tundra (Billings et al., 1977). Because
there is a limited amount of available heterotrophic respira-
tion (RH) data, we could not conduct a regional validation
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Table 1. Parameters associated with detailed microbial dormancy in MIC-TEM-dormancy.

Parameter Unit Description Parameter range References

mR h−1 Specific maintenance rate at active state [0.001, 0.08] Wang et al. (2014)

Q10 mic – Temperature effects on microbial metabolic activity
(rate change per 10 ◦C increase in temperature); based
on 0.65 eV activation energy for soils

[1.5, 3.5] He et al. (2015)

Q10 enz – Temperature effects on enzyme activity (rate change per
10 ◦C increase in temperature); based on 6 % rate in-
crease per degree Celsius

1.79 He et al. (2015)

α – The ratio ofmR to the sum of maximum specific growth
rate

[0.01, 0.5] Wang et al. (2014)

β – Ratio of dormant microbial maintenance rate to mR [0.0005, 0.005] Wang et al. (2014)

Yg – Carbon use efficiency [0.3, 0.7] He et al. (2015)

Ks mgC cm−2 Half-saturation constant for directly accessible substrate [0.01, 10] Wang et al. (2014)

Kmuptake mgC cm−2 Half-saturation constant for enzymatic
decay of SOC

[200, 1000] He et al. (2015)

rdeath h−1 Potential rate of microbial death [2× 10−4, 2× 10−3] Allison et al. (2010)

rEnzProd h−1 Enzyme production rate of microbe [1× 10−4, 8× 10−4] He et al. (2015)

renzloss h−1 Enzyme loss rate [0.0005, 0.002] Allison et al. (2010)

Vmax mgC cm−2 h−1 Maximum SOC decay rate [1× 10−4, 5× 10−3] He et al. (2015)

for all pixels in northern temperate and boreal regions. In-
stead, we extracted 61 sites providing data of average annual
heterotrophic respiration from the ORNL global Soil Respi-
ration Dataset (https://daac.ornl.gov/SOILS/guides/SRDB_
V4.html, last access: 9 December 2020, Bond-Lamberty et
al., 2018) for model validation. The site-level observed av-
erage annual RH was used to compare with simulated an-
nual RH by MIC-TEM-dormancy and MIC-TEM. The MIC-
TEM-dormancy was run at monthly time steps to keep con-
sistent with the time step of MIC-TEM. Although micro-
bial dynamics occur at fine temporal scales (Tang and Riley,
2014), we can still quantify the cumulative impacts of mi-
crobial dynamics on carbon and nitrogen cycling at monthly
time steps by not changing the model structure.

2.4 Spatial extrapolation

For historical simulations during the 20th century, two sets of
regional simulations using MIC-TEM-dormancy and MIC-
TEM at a spatial resolution of 0.5◦ latitude× 0.5◦ longitude
were conducted. Our model simulation contains two parts:
spin-up and transient simulation. A typical spin-up was con-
ducted to get the model to a steady state for each spatial lo-
cation, which will be used as initial conditions for transient
simulations (McGuire et al., 1992). During spin-up proce-
dure, cyclic forcing data were used to force the model run
and repeated continuously until dynamic equilibrium was
achieved at which the modeled state variables show a cyclic

pattern or become constant. Specifically, this study used the
monthly historical climate data from 1900 to 1940 to repeat-
edly drive the model for the spin-up. Before spin-up proce-
dure, the model was initialized with default built-in carbon
stocks (Raich et al., 1991). During transient simulations, the
calibrated ecosystem-specific parameters were used for re-
gional simulations. The previous dynamic equilibrium was
used as an initial value for transient simulation. The histori-
cal climatic forcing data, including the monthly air temper-
ature, precipitation, cloudiness, and atmospheric CO2 con-
centrations, were organized from the Climatic Research Unit
(CRU TS3.1) from the University of East Anglia (Harris et
al., 2014). We also used gridded data of soil texture (Zhuang
et al., 2015), elevation (Zhuang et al., 2015), and potential
natural vegetation (Melillo et al., 1993) from literature. In
our model, we assumed that soil texture, elevation, and po-
tential natural vegetation data only vary spatially, not vary
over time (Zhuang et al., 2015).

In addition, regional simulations over the 21st century
were conducted under two Intergovernmental Panel on
Climate Change (IPCC) climate scenarios (RCP2.6 and
RCP8.5). The future climatic forcing data under these two
climate change scenarios were derived from the HadGEM2-
ES model, which is a member of CMIP5project213 (https:
//esgf-node.llnl.gov/search/cmip5/, last access: 9 Decem-
ber 2020). Then the regional estimations were obtained by
summing up the gridded outputs for our study region. The
positive simulated NEP represents a CO2 sink from the at-
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Table 2. Site description and measured NEP data used to calibrate MIC-TEM-dormancy.

Site name Location
(latitude
(degrees)
/longitude
(degrees))

Ele-
vation
(m)

Vegetation
type

Description Data range Citations

Univ. of Mich.
Biological
Station

45.56 N/
84.71 W

234 Temperate
deciduous
forest

Located within a protected for-
est owned by the University of
Michigan. Mean annual tempera-
ture is 5.83 ◦C with mean annual
precipitation of 803 mm.

01/2005–
12/2006

Gough et al.
(2013)

Howland Forest
(main tower)

45.20 N/
68.74 W

60 Temperate
coniferous
forest

Closed coniferous forest, mini-
mal disturbance.

01/2004–
12/2004

Davidson et al.
(2006)

UCI-1964
burn site

55.91 N/
98.3 8 W

260 Boreal forest Located in a continental boreal
forest, dominated by black spruce
trees, within the BOREAS north-
ern study area in central Mani-
toba, Canada.

01/2004–
10/2005

Goulden et al.
(2006)

KUOM turf-
grass field

45.0 N/
93.19 W

301 Grassland A low-maintenance lawn consist-
ing of cool-season turf grasses.

01/2006–
12/2008

Hiller et al.
(2010)

Atqasuk 70.47 N/
157.41 W

15 Wet tundra 100 km south of Utqiaġvik (for-
merly known as Barrow), Alaska.
Variety of moist-wet coastal
sedge tundra and moist-tussock
tundra surfaces in the more
well-drained upland.

01/2005–
12/2006

Oechel et al.
(2014)

Ivotuk 68.49 N/
155.75 W

568 Alpine tundra 300 km south of Utqiaġvik and
is located at the foothills of the
Brooks Range and is classified as
tussock sedge, dwarf-shrub, moss
tundra.

01/2004–
12/2004

McEwing et al.
(2015)

mosphere to terrestrial ecosystems, while a negative value
represents a source of CO2 from terrestrial ecosystems to the
atmosphere.

2.5 Parameter equifinality effects

Our previous studies using TEM have demonstrated that
equifinality derived from site-level parameterization will af-
fect the uncertainty in the estimation of regional carbon dy-
namics (Tang and Zhuang, 2008, 2009). Here equifinality
refers to the fact that a number of sets of parameters result
in model simulations that all match the data similarly well.
To quantify this effect on our simulation uncertainty, we con-
ducted ensemble regional simulations with 50 sets of param-
eters for both historical and future studies. The 50 sets of
parameters were obtained according to the method in Tang
and Zhuang (2008).

3 Results

3.1 Inversed model parameters and model validation

Using the SCE-UA ensemble method, 50 independent sets of
parameters were converged to minimize the objective func-
tion. Then the optimized parameters are calculated as the
mean of these 50 sets of inversed parameters. The box plot
of parameter posterior distributions reflects different ecosys-
tem properties at these sites (Fig. 3). For instance, growth
yield was higher in tundra types than in forests, meaning mi-
croorganisms in environments with higher energy limitation
tend to enhance the efficiency of energy transportation. In
addition, alpha, the maintenance weight, was also higher in
tundra types than in forests. From the plot for the parameter
beta, the ratio of dormant maintenance rate to specific main-
tenance rate for active biomass in tundra types is lower than
that in forest types. Other microbially related parameters did
not differentiate much among different vegetation types.
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Table 3. Site description and measured NEP data used to validate MIC-TEM-dormancy.

Site
name

Location
(latitude
(degrees)
/longitude
(degrees))

Ele-
vation
(m)

Vegetation
type

Description Data range Citations

Bartlett
Experimental
Forest

44.06 N/
71.29 W

272 Temperate
deciduous
forest

Located within the White Moun-
tains National Forest in north-
central New Hampshire, USA,
with mean annual temperature of
5.61 ◦C and mean annual precip-
itation of 1246 mm.

01/2005–
12/2006

Jenkins et al. (2007);
Richardson et al. (2007)

Howland Forest
(main tower)

45.20 N/
68.74 W

60 Temperate
coniferous
forest

Closed coniferous forest, mini-
mal disturbance.

01/2003–
12/2003

Davidson et al. (2006)

UCI-1964
burn site

55.91 N/
98.38 W

260 Boreal forest Located in a continental boreal
forest, dominated by black spruce
trees, within the BOREAS north-
ern study area in central Mani-
toba, Canada.

01/2002–
12/2003

Goulden et al. (2006)

Brookings 44.35 N/
96.84 W

510 Grassland Located in a private pasture, be-
longing to the Northern Great
Plains Rangelands, the grassland
is representative of many in the
north central United States, with
seasonal winter conditions and a
wet growing season.

01/2005–
12/2006

Gilmanov et al. (2005)

Atqasuk 70.47 N/
157.41 W

15 Wet tundra 100 km south of Utqiaġvik,
Alaska. Variety of moist-wet
coastal sedge tundra and moist-
tussock tundra surfaces in the
more well-drained upland.

01/2003–
12/2004

Oechel et al. (2014)

Ivotuk 68.49 N/
155.75 W

568 Alpine tundra 300 km south of Utqiaġvik and
is located at the foothills of the
Brooks Range and is classified as
tussock sedge, dwarf-shrub, moss
tundra.

01/2005–
12/2005

McEwing et al. (2015)

After parameterization, the MIC-TEM-dormancy was val-
idated with monthly NEP data for six representative ecosys-
tems, and the comparisons between monthly observed NEP
and simulated NEP were presented in Fig. 4. With the op-
timized parameters, the dormancy-based model was used to
reproduce NEP to compare with the measured NEP (Table 5).
The R2 ranges from 0.67 for Atqasuk to 0.93 for Bartlett Ex-
perimental Forest (Table 5). Generally, our new model per-
forms better for forest ecosystems than for tundra ecosys-
tems. Compared with MIC-TEM, the dormancy model per-
forms better for alpine tundra, temperate coniferous forest,
and grassland. For other sites, both models show similar per-
formance (Table 5). In addition, a set of monthly soil respi-
ration data were selected to evaluate the estimated RH. The
comparisons between monthly observed RH and simulated
RH from two contrasting models were conducted (Fig. 5).
MIC-TEM-dormancy has higher R2 and lower root-mean-

square error (RMSE) (Table 6). Sixty-one sites with average
annual RH in northern temperate and boreal regions were
used to further evaluate the new model performance. The
dormancy model has lower intercept and slope with R2 of
0.45, while R2 of MIC-TEM is 0.3 (Fig. 6). These analyses
indicate that the new model is more realistic in representing
RH by considering microbial dormancy.

3.2 Regional carbon dynamics during the 20th century

Regional extrapolation with both models estimated a re-
gional terrestrial ecosystem carbon sink but with different
magnitudes (Fig. 7c). With optimized parameters, MIC-TEM
estimated a regional carbon sink of 77.6 Pg with the in-
terannual standard deviation of 0.21 Pg C yr−1 during the
20th century. However, MIC-TEM-dormancy nearly doubles
the sink at 153.5 Pg with the interannual standard deviation
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Figure 2. Comparison between observed and simulated NEP (gC m−2 per month) at (a) Ivotuk (alpine tundra), (b) UCI-1964 burn site
(boreal forest), (c) Howland Forest (main tower) (temperate coniferous forest), (d) Univ. of Mich. Biological Station (temperate deciduous
forest), (e) KUOM turf-grass field (grassland), and (f) Atqasuk (wet tundra). Note: scales are different. Error bars represent standard errors
among daily measured data in 1 month.

Figure 3. Box plot of parameter posterior distributions that are obtained after ensemble inverse modeling for MIC-TEM-dormancy for all six
sites: US-Ivo: Ivotuk (alpine tundra), CA-NS3: UCI-1964 burn site (boreal forest), US-Ho1: Howland Forest (temperate coniferous forest),
US-UMB: Univ. of Mich. Biological Station (temperate deciduous forest), US-KUT: KUOM turf-grass field (grassland), US-Atq: Atqasuk
(wet tundra).

of 0.12 Pg C yr−1 during the last century (Fig. 7c). At the
end of the century, MIC-TEM estimated that NEP reaches
1.0 Pg C yr−1 in comparison with MIC-TEM-dormancy es-
timates of 1.5 Pg C yr−1 (Fig. 7c). Both models simulated
similar trends for regional net primary production (NPP),

RH, and NEP (Fig. 7). Generally, they show an increasing
trend in the 20th century (Fig. 7). Meanwhile, with optimized
parameters, MIC-TEM-dormancy estimated NPP and RH at
7.94 and 6.4 Pg C yr−1, which are 5.8 % and 16.3 % less than
the estimations from MIC-TEM, respectively (Fig. 7a and
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Figure 4. Comparison between observed and simulated NEP (gC m−2 per month) at (a) Ivotuk (alpine tundra), (b) UCI-1964 burn site
(boreal forest), (c) Howland Forest (main tower) (temperate coniferous forest), (d) Bartlett Experimental Forest (temperate deciduous forest),
(e) Brookings (grassland), and (f) Atqasuk (wet tundra). Note: scales are different.

Table 4. Site description and measured RH data used to validate the MIC-TEM-dormancy model.

Site Location (latitude
(degrees)/
longitude (degrees))

Elevation
(m)

Vegetation
type

Data range Citations

US-EML 63.88 N/
149.25 W

700 Alpine
tundra

01/2009–12/2013 Belshe et al. (2012)

CA-SJ2 53.95 N/
104.65 W

580 Boreal
forest

01/2004–12/2008 Coursolle et al. (2006)

US-Ho2 45.21 N/
68.75 W

91 Temperate
coniferous
forest

01/2000–12/2004 Davidson et al. (2006)

US-UMB 45.56 N/
84.71 W

234 Temperate
deciduous
forest

01/2005–12/2006 Gough et al. (2013)

US-Ro4 44.68 N/
93.07 W

274 Grasslands 01/2016–12/2017 Griffis et al. (2011)

RU-Che 68.61 N/
161.34 E

6 Wet tundra 01/2002–12/2005 Merbold et al. (2009)

b). This pronounced difference of NEP between two models
comes from the disparity between the simulated NPP and RH
with them since NEP is calculated as the difference between
NPP and RH. Without considering dormancy, MIC-TEM es-
timates more active microbial biomass, hence overestimating
both RH and NPP (due to higher simulated N mineralization
and uptake by plants), but resulting in lower NEP than that
calculated by MIC-TEM-dormancy.

Temporally, both models projected higher NPP and RH
in summer than in winter (Fig. 8a and b) due to higher
soil temperature and moisture (McGuire et al., 1992). Set-
ting the RH projection from MIC-TEM as a baseline, MIC-
TEM-dormancy projected 33 % less RH in summer (May
to September) and 30 % more in winter (other months)
(Fig. 8b), indicating that without dormancy, the model tends
to estimate lower soil respiration due to ignorance of dor-
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Table 5. Model validation statistics for the dormancy model and MIC-TEM at six sites with NEP data.

Site name Vegetation type Models Intercept Slope R square Adjusted p value
R square

Ivotuk Alpine tundra MIC-TEM 0.85 0.83 0.70 0.67 < 0.001
Dormancy −0.51 1.09 0.75 0.73 < 0.001

UCI-1964 Boreal forest MIC-TEM 0.18 1.03 0.912 0.9080 < 0.001
burn site Dormancy −0.21 0.96 0.90 0.894 < 0.001

Howland Forest Temperate coniferous MIC-TEM 7.29 0.72 0.85 0.83 < 0.001
(main tower) forest Dormancy 0.27 1.05 0.89 0.88 < 0.001

Bartlett Experi- Temperate deciduous MIC-TEM −6.05 0.91 0.944 0.941 < 0.001
mental Forest forest Dormancy −2.34 1.13 0.93 0.924 < 0.001

Brookings Grassland MIC-TEM 3.05 0.71 0.84 0.83 < 0.001
Dormancy 0.17 0.95 0.90 0.898 < 0.001

Atqasuk Wet tundra MIC-TEM 7.22 1.85 0.71 0.70 < 0.001
Dormancy 0.19 0.82 0.67 0.66 < 0.001

Figure 5. Comparison between observed and simulated RH (gC m−2 per month) at (a) US-EML (alpine tundra), (b) CA-SJ2 (boreal forest),
(c) US-Ho2 (temperate coniferous forest), (d) US-UMB (temperate deciduous forest), (e) US-Ro4 (grassland), and (f) RU-Che (wet tundra).
Note: scales are different.

mant respiration in winter but higher soil respiration due to
higher active biomass in summer. NEP seasonality estimated
with two models are close to each other (Fig. 8c), but the
dormancy model projected slightly higher NEP in summer.

3.3 Regional carbon dynamics during the 21st century

Under the RCP8.5 scenario, both models estimated the re-
gional natural terrestrial ecosystems act as a carbon sink
(Fig. 9). The MIC-TEM-dormancy predicted a C accumu-
lation of 129.9 Pg by the end of this century, with the inter-
annual standard deviation of 0.13 Pg C yr−1, whereas MIC-

TEM estimates a C accumulation of 79.5 Pg with the inter-
annual standard deviation of 0.37 Pg C yr−1 during the 21st
century (Fig. 9). Thus, MIC-TEM-dormancy estimates an in-
crease of 50.4 Pg regional carbon sequestration relative to
MIC-TEM, with less interannual variation (Fig. 9). Under
this scenario, both models predict similar temporal trends for
NEP, namely increasing from the 2000s and then decreas-
ing from the 2070s onward (Fig. 9). MIC-TEM-dormancy
predicts that the carbon sink reaches 1.36 Pg C yr−1 in the
2090s, which is 0.26 Pg C yr−1 more than the projection
of MIC-TEM. Moreover, MIC-TEM-dormancy estimated
NPP and RH at 10.2 and 8.9 Pg C yr−1, which are 1.3 and
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Figure 6. Linear regression between simulated and observed annual RH (gC m−2 yr−1) for (a) MIC-TEM-dormancy and (b) MIC-TEM.

Figure 7. Simulated annual net primary production (NPP, a), heterotrophic respiration (RH, b), and net ecosystem production (NEP, c) during
the 20th century by the dormancy model and MIC-TEM.

1.8 Pg C yr−1 less than the estimations from MIC-TEM, re-
spectively (Fig. 9).

Under the RCP2.6 scenario, the cumulative NEP from
two models diverged by 125.2 Pg C by 2100. The trajectory
of interannual NEP estimated with the two models also di-
verged. The MIC-TEM predicted the region fluctuates be-
tween carbon sinks and sources and totally acts as a car-
bon source of 1.6 Pg C with the interannual standard de-
viation of 0.24 Pg C yr−1 during the 21st century. In con-
trast, MIC-TEM-dormancy projected the region acts as a
carbon sink of 123.6 Pg C with an interannual standard de-
viation of 0.1 Pg C yr−1 (Fig. 9). MIC-TEM-dormancy esti-
mates NPP and RH at 9.9 and 8.7 Pg C yr−1, which are 0.5
and 1.7 Pg C yr−1 less than the estimations from MIC-TEM,
respectively (Fig. 9). Moreover, simulations under the two

contrasting climate scenarios (RCP2.6 and RCP8.5) exhibit
a large difference of 81.1 Pg C of cumulative NEP during the
21st century by MIC-TEM, but only 6.3 Pg C of that by MIC-
TEM-dormancy.

MIC-TEM-dormancy estimated higher RH in winter, but
lowerRH in summer under both future scenarios in the 2090s
(Fig. 10). NPP is the same in winter with or without dor-
mancy, and in the late summer it is higher than that without
dormancy, especially in the RCP8.5 scenario. The combined
flattening patterns of NPP and RH result in different patterns
for NEP. Under the RCP2.6 scenario, MIC-TEM-dormancy
predicts higher NEP from June to October but lower NEP
from January to April compared to MIC-TEM (Fig. 10).
Under the RCP8.5 scenario, MIC-TEM-dormancy predicts
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Table 6. Model validation statistics for the dormancy model and MIC-TEM at six sites with RH data.

Site ID Vegetation type Models Intercept Slope R square Adjusted RMSE p value
R square

US-EML Alpine tundra MIC-TEM 2.90 0.91 0.79 0.78 3.55 < 0.001
Dormancy 1.81 0.74 0.87 0.85 2.69 < 0.001

CA-SJ2 Boreal forest MIC-TEM 7.59 1.12 0.84 0.83 9.8 < 0.001
Dormancy 2.6 0.74 0.86 0.85 3.97 < 0.001

US-Ho2 Temperate coniferous MIC-TEM 4.07 0.89 0.86 0.84 12.39 < 0.001
forest Dormancy 6.59 0.71 0.91 0.89 11.83 < 0.001

US-UMB Temperate deciduous MIC-TEM −4.73 1.32 0.81 0.8 20.05 < 0.001
forest Dormancy 13.6 0.67 0.85 0.84 12.94 < 0.001

US-Ro4 Grassland MIC-TEM 9.34 0.87 0.81 0.79 11.25 < 0.001
Dormancy 4.81 0.65 0.86 0.84 9.21 < 0.001

RU-Che Wet tundra MIC-TEM 2.5 0.67 0.72 0.71 6.24 < 0.001
Dormancy 1.96 0.77 0.81 0.79 5.95 < 0.001

Figure 8. Regional annual seasonal pattern of simulated (a) net primary production (NPP, a), (b) heterotrophic respiration (RH, b), and
(c) net ecosystem production (NEP, c) during the 1990s from the dormancy model and MIC-TEM. The region is all land areas north of
45◦ N.

higher NEP from June to September but much lower NEP in
other months than MIC-TEM (Fig. 10).

3.4 Regional uncertainty considering equifinality
effects during 20th and 21st centuries

The ensemble simulations for the 20th century are shown
in Fig. 11. Given the uncertainty in parameters, MIC-
TEM-dormancy predicts that the regional cumulative car-
bon ranges from a carbon loss of 28.2 Pg to a carbon sink
of 362.1 Pg by different ensemble members, with a mean of
71.2± 54.8 Pg (Fig. 11). For the 21st century, MIC-TEM-

dormancy predicts that the region acts from a carbon source
of 49.3 Pg C to a carbon sink of 296.5 Pg C, with a mean of
112.7±116.5 Pg under RCP2.6 scenario (Fig. 12). Under the
RCP8.5 scenario, MIC-TEM-dormancy predicts that the re-
gion acts from a carbon source of 27.1 Pg C to a carbon sink
of 401.3 Pg C, with a mean of 143.1± 162.5 Pg (Fig. 12).
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Figure 9. Predicted changes in carbon fluxes: (i) NPP, (ii) RH, and (iii) NEP for all land areas north of 45◦ N in response to transient climate
change under the RCP8.5 scenario (left panels) and RCP2.6 scenario (right panels) with the dormancy model and MIC-TEM, respectively.
The decadal running mean is applied.

4 Discussion

Our regional simulations with two contrasting models (MIC-
TEM, MIC-TEM-dormancy) indicate the regional natural
terrestrial ecosystems acted as a carbon sink in past decades,
which is consistent with results from other process-based
models (White et al., 2000; McGuire et al., 2009; Schimel,
2013). However, the magnitudes of this sink are quite dif-
ferent in two models. Moreover, MIC-TEM-dormancy pre-
dicts the sink will decrease under both RCP8.5 and RCP2.6
scenarios during the 21st century, while MIC-TEM projects
that the sink will increase under the RCP8.5 but change to a
carbon source under the RCP2.6 scenario. Estimations based
on models without dormancy could fit observations of RH as
well as estimations with dormancy, but at the cost of underes-
timating microbial biomass (Wang et al., 2014). Differences
in predicted RH with and without dormancy increase with
temperature and with the length of the dry periods between
wetting events (Salazar et al., 2018). The large difference in
the two models suggests the importance of incorporating mi-
crobial dormancy effects.

The large bias between dormancy and non-dormancy mod-
els mainly comes from two parts. First, many important mi-
crobial activities such as soil organic carbon decomposi-
tion and nutrient cycling largely depend on the active frac-
tion of microbial communities, not total microbial biomass
(Wang et al., 2014; Blagodatsky et al., 2000). However, only
a small part (about 0.1 %–2 %, seldom exceed 5 %) of the
total soil microbial biomass is recognized to be active un-
der natural conditions (Blagodatsky et al., 2011; Werf and
Verstraete, 1987). Thus, dormancy could be a prominent fea-
ture in soil systems (Wang et al., 2014). Without consid-

ering dormancy, the “effective” microbial biomass for soil
decomposition could be overestimated, resulting in overes-
timation of heterotrophic respiration (He et al., 2015). He
et al. (2015) predicted total soil RH of all temperate forests
(25–50◦ N) from the dormancy model amounted to 7.28 and
8.83 Pg C yr−1 from a no-dormancy model, which is 21.3 %
higher than the dormancy model. Although their study region
and simulation period are different from our study, the results
can still be comparable. Both studies indicated that the mag-
nitude of RH from the no-dormancy model is higher than for
dormancy models. Second, high soil respiration stimulates
N mineralization in soils (Zhuang et al., 2001, 2002), mak-
ing more nutrients for photosynthesis of plants (Raich et al.,
1991; McGuire et al., 1995; Zhuang et al., 2015; Zha and
Zhuang, 2018; Thullner et al., 2005).

Therefore, NPP will be higher due to the N enrichment
from higher RH. However, how NEP will change is still
unclear. Our estimates of the northern extratropical NEP
in the 1980s (1.61 Pg C yr−1 with MIC-TEM-dormancy and
0.84 Pg C yr−1 with MIC-TEM) are within ranges (0.6 to
2.3 Pg C yr−1) reported in the literature for northern regions
(Schimel et al., 2001). Moreover, our predicted time trajec-
tory of NEP in the 21st century under the RCP2.6 scenario
is very similar to the finding of White et al. (2000), indi-
cating that NEP increases from the 2000s to the 2070s and
then decreases in the 2090s. Although our dormancy model
can project reasonable carbon fluxes and indicates the im-
portance of incorporating microbial dormancy when com-
pared with MIC-TEM (Zha and Zhuang et al., 2018), there
are some other microbial traits that have not yet been con-
sidered in our model. For instance, one vital common evo-
lutionary trait of microbes is the community shift (Wang et
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Figure 10. Regional annual seasonal pattern of simulated net primary production (NPP, a, d), heterotrophic respiration (RH, b, e), and
net ecosystem production (NEP, c, f) during the 2090s from the dormancy model and MIC-TEM under (a, b, c) the RCP2.6 scenario and
(d, e, f) the RCP8.5 scenario. The region is all land areas north of 45◦ N.

al., 2015) with changing environment, including warming, N
fertilization, and precipitation (Treseder et al., 2011; Frey et
al., 2013; Allison et al., 2009; Evans and Wallenstein, 2011).
Community shift will influence microbial physiology, tem-
perature sensitivity, and growth rates (Classen et al., 2015),
which will further affect the rate of soil decomposition and
other carbon dynamics (Treseder et al., 2011; Schimel and
Schaeffer, 2012; Todd-Brown et al., 2011). In addition, mi-
crobial community composition was ignored in our model.
We did not separate among functional microbial groups, but
gather microbes into one “box”. However, microbial commu-
nity composition could influence ecosystem functioning, and
their variance in responses to environmental conditions could

alter the prediction of the rates of decomposition of organic
material (Balser et al., 2002; Fierer et al., 2007). In particular,
some narrowly distributed functions can be more sensitive to
microbial community composition, and these might benefit
most from explicit consideration of distinguishing functional
groups in ecosystem models (McGuire and Treseder, 2010;
Schimel, 1995). Thus, functional dissimilarity in microbial
communities can be considered the next step for model de-
velopment (Strickland et al., 2009; Moorhead et al., 2006).
Moreover, microbial acclimation, a mechanism of adaption
to a new temperature regime, is another important trait to
affect soil decomposition. Recent studies have found that
the warming-induced elevated respiration of the microbial
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Figure 11. Simulated annual net primary production (NPP, a), heterotrophic respiration (RH, b), and net ecosystem production (NEP, c) by
MIC-TEM-dormancy with an ensemble of parameters.

Figure 12. Simulated annual net primary production (NPP, a, d), heterotrophic respiration (RH, b, e), and net ecosystem production (NEP,
c, f) under the RCP8.5 scenario (a–c) and RCP2.6 scenario (d–f) by MIC-TEM-dormancy with an ensemble of parameters. The decadal
running mean is applied. The grey area represents the upper and lower bounds of simulations.

community could decrease over time because of acclimation
(Melillo et al., 1993; Todd-Brown et al., 2011). This mecha-
nism shall be factored into future soil decomposition analy-
sis.

Except for the model limitations mentioned above, addi-
tional uncertainties may come from inadequate model pa-
rameterization and model assumptions. For example, a crit-
ical microbial parameter, carbon use efficiency (CUE), is a

primary control to soil CO2 efflux. Higher CUE indicates
more microbial growth and more carbon uptake by plants,
while lower CUE indicates higher soil decomposition (Man-
zoni et al., 2012). Theoretical and empirical studies have sug-
gested that CUE depends on both temperature and substrate
quality (Frey et al., 2013) and decreases as temperature in-
creases and nutrient availability decreases (Manzoni et al.,
2012). Our study considered the CUE sensitivity to temper-
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ature, but not nutrient availability. On the other hand, some
model assumptions can also cause uncertainties. For exam-
ple, we assumed that vegetation will not change during the
transient simulation. However, over the past few decades in
northern temperate and boreal regions, temperature increases
have led to vegetation shift from one type to another (Hansen
et al., 2006; White et al., 2000). The vegetation changes will
affect carbon cycling in these ecosystems.

While our analysis suggests it is important to incorporate
microbial dormancy dynamics into a process-based biogeo-
chemistry model to more adequately simulate carbon dynam-
ics in northern temperate and boreal regions, we do confront
modeling dilemmas. First, our process-based models have
a relatively large number of parameters, which unavoidably
creates the “equifinality” problem as recognized in our pre-
vious studies for the model (e.g., Tang and Zhuang, 2008,
2009). To alleviate this problem in this analysis, we have
conducted parameter ensemble simulations at both site and
regional levels and presented our results with uncertainties,
which could be a standard approach for process-based com-
plex biogeochemistry modeling analyses. Second, incorpo-
rating more ecosystem processes increases the number of pa-
rameters in our model, inducing even larger uncertainties for
both site-level and regional simulations. On the one hand, the
more complex model to a certain degree helps capture ob-
servations; on the other hand, the model uncertainty has not
been constrained or even enlarged. We highlight the need to
further investigate this trade-off within the modeling research
community.

5 Conclusions

This study incorporated microbial dormancy into a detailed
microbe-based soil decomposition biogeochemistry model
to examine the fate of large soil carbon storage in north-
ern temperate and boreal natural terrestrial ecosystems un-
der changing climate conditions. Regional simulations us-
ing MIC-TEM-dormancy indicated that, over the 20th cen-
tury, the region is a carbon sink of 166.8±97.7 Pg. This sink
could decrease to 175.9± 105.4 Pg under the RCP8.5 sce-
nario or 125.4± 85.5 Pg under the RCP2.6 scenario during
the 21st century. Whether considering microbial dormancy or
not can cause large differences in soil decomposition estima-
tion between two models. Meanwhile, due to available nitro-
gen affected by soil decomposition, net primary production
is consequently influenced in these two centuries. The com-
bined changes in soil decomposition and net primary produc-
tion led to large differences in carbon budget estimation be-
tween two models. Compared with MIC-TEM, MIC-TEM-
dormancy projected 75.9 Pg more C stored in the terrestrial
ecosystems over the last century and 50.4 and 125.2 Pg more
C under the RCP8.5 and RCP2.6 scenarios, respectively. This
study highlights the importance of the representation of mi-
crobial dormancy in earth system models in order to ade-

quately quantify the carbon dynamics of natural terrestrial
ecosystems in northern temperate and boreal regions.
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