
1.  Introduction
Lakes are a critical component of the earth system that strongly influence the global water cycle and energy 
balance. Lakes modulate local atmospheric boundary layer conditions by affecting fluxes of heat, moisture, 
and momentum. For example, the presence of lakes was found to produce a warming effect on regional cli-
mate (Samuelsson et al., 2010), enhance water cycling between adjacent land grids, and alter the behavior of 
severe weather events (King et al., 2003; Thiery et al., 2016). It is thus important to represent lakes in global 
climate models to improve the accuracy of air temperature and precipitation prediction, as shown in previ-
ous modeling studies (Balsamo et al., 2012; Bates et al., 1993; Dutra et al., 2010; Hostetler et al., 1993; Long 
et al., 2007; Mironov et al., 2008). Also, studies have shown that lakes are sensitive to environmental chang-
es such as warmer temperature and thus are likely important sentinel of climate change (Adrian et al., 2009; 
Carpenter et al., 2011; O'Reilly et al., 2015; Schmid et al., 2014; Woolway & Merchant, 2019). Therefore, it is 
of great scientific and societal importance to understand the historical and future climate change impacts 
on lakes and modeling is a powerful tool. Moreover, accurate modeling of lake thermodynamic properties 
and processes is essential for simulating lake carbon dynamics, such as CO2 and CH4 emissions, of which 
lakes have been identified as an important source (Bastviken et al., 2011; Guo, Zhuang, Tan, et al., 2020; 
Prairie et al., 2013; Saunois et al., 2016; Tan & Zhuang, 2015a, 2015b).

Based on the research purpose, lake models varying in complexity and formulations have been developed 
and selected for modeling lakes of different sizes, regions, and mixing regimes (e.g., General Lake Mod-
el-GLM, Hipsey et al., 2019; FLake, Mironov et al., 2008; LAKE, Stepanenko et al., 2010, 2016). Although 
more advanced three-dimensional (3-D) lake models are now available, 1-D models are and will still be 
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widely used because of their simplicity in parameterization and computational efficiency in applications 
that require long-term simulations. Also, small lakes (<0.1 km2), which can be assumed to be horizontally 
homogeneous and can thus be reasonably represented by a 1-D model, dominate the lake systems on earth 
(Downing et al., 2006; McDonald et al., 2012; Paltan et al., 2015) and are hotspots of carbon emissions (Guo, 
Zhuang, Tan, et al., 2020; Holgerson & Raymond, 2016; Tan & Zhuang, 2015a, 2015b; Wik et al., 2016). As 
such, improving the capability of 1-D lake models in representing the thermal regimes of diverse lake sys-
tems is of great value. Previous lake model validations mostly focused on individual lakes because data for 
calibration and verification of a large variety of lakes are not readily available (Guseva et al., 2020; Stepanen-
ko et al., 2010). Also, previous studies did not identify which parameters or model processes should be the 
focus for improving model performance at the global scale, making it difficult to determine whether the de-
veloped numerical treatments are appropriate for regional or global applications is unclear. It is thus impor-
tant to test model across diverse lakes to help develop robust parameterization for global-scale simulations.

The Arctic Lake Biogeochemistry Model (ALBM) is a 1-D process-based lake biogeochemical model orig-
inally developed to simulate the thermal and carbon dynamics of Arctic lakes (Tan et al., 2015, 2017) and 
later successfully applied to boreal lakes (Guo, Zhuang, Tan, et  al.,  2020) and temperate lakes (Guseva 
et al., 2020; Tan et al., 2018). The Intersectoral Impact Model Intercomparison Project (ISIMIP) lake sector 
provides a framework for multimodel ensemble and model intercomparison, allowing for improved predic-
tions of changes in the thermal and biological properties of global inland water bodies under climate warm-
ing. The eight-model ensemble (Table S1) shows high robustness in the reported climate impacts on lakes. 
As ALBM is used in the ISIMIP lake sector (Vanderkelen et al., 2020), continued testing and improvement 
would be of great values to both the ISIMIP project and the scientific community. In this study, we evaluated 
the performance of ALBM over 58 lakes across the globe following the ISIMIP2a local lake protocol. By tak-
ing advantage of the highly diverse data set provided by the ISIMIP project, we aim to (1) assess the ALBM 
accuracy in simulating lake thermal profiles and investigate the dependence of model performance on lake 
characteristics, (2) analyze parameter sensitivities and identify the key processes as well as the parameters 
that affect the model simulations, and (3) discuss a possible strategy to improve the accuracy of ALBM at 
the global scale. To provide a comprehensive evaluation of the modeling practice, we analyzed the model 
outputs from several aspects including the epilimnion and full-profile temperature, lake stratification, and 
ice phenology.

2.  Data and Method
2.1.  Study Sites

Our study examined 58 freshwater lakes varying in shape, landscape and climate (Figure 1 and Table S2). 
Among the 58 lakes, 17 are located north to 50°N, 35 are within latitudes 25–50°N, two are in the tropics 
and the remaining four are in the Southern Hemisphere within 35–40°S. Lake surface areas range from 0.14 
to 2,700 km2, maximum depths from 6.4 to 501 m and elevations from 210 m below to 4,300 m above sea 
level. For presentation convenience, lakes are referred to by abbreviations (as in Table S2) in the figures. 
Sufficient water temperature at multilayers with high frequency or at least 5 years of monthly observations 
were available for each lake and were used for model calibration (Text S1). All lakes have observational data 
during the most recent decade while the earliest can be traced back to the 1902. Furthermore, bathymetry 
measurements are available for all lakes.

2.2.  ALBM Model Configuration

In ALBM, a water body is divided into vertical layers and the thermal dynamics within each layer consists 
of three processes: heat exchange with the air at the water surface, heat transfer and mixing in the water 
column driven by wind-induced eddies and molecular diffusion and heat exchange with the sediment at the 
bottom. The governing equation of thermal diffusion is

  

             
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Figure 1.  A map of all lakes in the dataset with background elevation contours, lake area denoted by the size of the points and depth by the colors (a) and 
histograms of lake latitude (b), longitude (c), elevation (d), depth (e), area (f), and shape factor (g).
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where Tw is the water temperature (K) at depth z (m), t is time (s), A is the lake cross-section area at depth 
z (m2), Dm is the molecular diffusivity (m s−1), De is the wind-driven eddy diffusivity (m s−1) (Hostetler & 
Bartlein, 1990), ktscale is a scaling factor of De that compensates the underestimation of De and the unre-
solved hydrodynamical processes by Hostetler and Bartlein (1990) for large lakes, ρw is the water density 
(kg m−3), cpw is the specific heat of water (J kg−1 K−1) and      0Φ 1 zL e  is the solar radiation (W m−2) 
penetrating to depth z. β is the fraction reflected by water surface, L0 is the incident solar radiation (W m−2) 
at lake surface and η is the light extinction coefficient (m−1) calculated by a modified equation from Subin 
et al. (2012):

  0.424·1.1925 ,feta d� (2)

where feta is a correction factor of η for shallow lakes and d is the lake depth (m). The bulk expressions are 
used to calculate the sensible heat (QH) and latent heat (QE) by

   ,H a pa H w aQ c hwt C u T T� (3)

   ,E a E w aQ L hwtC u q q� (4)

where ρa is the air density (kg m−3), cpa is the specific heat of air (J kg−1 K−1),    31.75 10H EC C  are 
the bulk transfer coefficients for the sensible and latent heat, respectively, hwt is a correction factor of CH 
and CE, u is the 2-m wind speed (m s−1), and Tw and Ta are temperatures (K) and qw and qa are specific 
humidity of the surface water and of air at 2 m, respectively. The model represents the convective mix-
ing as the balance of wind-induced kinetic energy and thermal and chemical stratification induced poten-
tial energy (Saloranta & Andersen, 2007) with kinetic energy adjusted by the wind shielding coefficient 

   0.31 As
wstrF wstr e , where wstr is a correction factor for irregular lakes and As is the lake surface area 

(km2). Notably, convective mixing can be triggered in the model due to the occurrence of negative water 
density profiles even when wind-induced turbulence is small. The snow and ice dynamics of lakes are ex-
plicitly represented in ALBM by one snow layer, one gray ice layer formed when the weight of snow depress 
the ice and leads to the seepage of lake water into the snowpack, and multiple ice layers (Tan et al., 2018). 
The ice cover grows from top to bottom and melts from bottom to top. When the ice thickness of a lake layer 
equals to the layer's thickness, this layer is then counted as an ice layer. The thickness of ice cover equals to 
the sum of thickness of all ice layers plus the ice thickness of the partially frozen water layer. ALBM treats 
the reflection of solar radiation for five types of lake surface (i.e., water, ice, gray ice, fresh snow, and melting 
snow) differently. Furthermore, the albedo for each type of lake surface is calculated separately for direct 
and diffusive radiation following the method of Koehler et al. (2014). For fresh snow and melting snow, we 
use prescribed albedo profiles covering the wavelength band from the Simple Model of the Atmospheric 
Radiative Transfer of Sunshine (Gueymard, 1995). For gray ice, the albedo is defined as 0.4 and 1.0 for direct 
and diffusive radiation, respectively. For water and ice, the albedo is fixed at 0.066 and 0.55, respectively, 
for diffusive radiation but calculated using Fresnel's equation for direct radiation (Koehler et al., 2014). The 
governing diffusion equation for sediment heat transfer is:

   
     

,s s
vs s

T Tc k
t z z

� (5)

where         1vs w pw i pi i s psc c c c pi  is the volumetric heat capacity of the sediment (J m−3 K−1), 
ρi and ρs are the density of sediment ice and soil, respectively, cpi and cps are the specific heat (J kg−3 K−1), 
θ and θi are the water and ice content, respectively, and pi is the sediment porosity. ks is the sediment heat 
conductivity (W m−1 K−1) and Ts is the sediment temperature (K).

Daily climate forcing data were retrieved from the global gridded data set of historical bias-corrected cli-
mate input data provided by ISIMIP2a (Frieler et  al.,  2017; Lange et  al.,  2019) for each lake from 1979 
to 2016 at a daily time step (Text S1). All simulations were run for the same period with spin-up periods 
ranging from 2 to 50 years depending on the mixing regime of the lake. The initial temperature of the lake 
water column was set to be 4°C uniformly. We used 50 vertical grid levels for all the lakes and applied an 
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exponential-stretched spacing with finer grid resolutions in the upper layers to accurately resolve the com-
plex radiation, heat transfer and mixing, and ice processes. Inflow or outflow data are not available for most 
of the lakes, and consequently, we decided to keep constant water levels for all lakes in this study.

2.3.  Model Performance Evaluation

Based on previous studies using ALBM (Guo, Zhuang, Tan, et al., 2020; Tan et al., 2015, 2017), we calibrated 
nine parameters related to lake sediment properties (solid particle thermal conductivity, ks; solid particle 
heat capacity, cps; sediment porosity, pi; solid particle density, ρs), radiative transfer (light extinction coeffi-
cient, feta), turbulent heat and momentum fluxes (wind shielding factor, wstr; turbulence diffusivity scaling 
factor, ktscale; bulk heat transfer factor, hwt), and snow density (ρn), respectively. Detailed explanation and 
value ranges for each parameter can be found in Table 1. For each lake, 6 years of the observation data were 
used for calibration and the rest were used for model performance evaluation. Some lakes have observation 
shorter than 6 years, so we only show the calibration results for these lakes to represent the model perfor-
mance. Model calibration was conducted in the following two steps: (1) we first ran Monte Carlo simula-
tions for each lake using a perturbed parameter ensemble (PPE) of 10,000 samples with nine parameters 
generated by Sobol sequence sampling method (Sobol, 1967) varying all together; (2) the root-mean-square 
errors (RMSEs) of epilimnion and full-profile temperature simulations were then calculated separately and 
the sample generating the minimum mean of the two RMSE values was selected for each lake as the opti-
mum parameter set. Full-profile temperature is defined as the volumetrically weighted average whole lake 
temperature. Two other metrics, correlation coefficient (r) and percentage relative error (PRE) were also 
calculated to assess the model performance. We further analyzed the correlation between the simulation 
evaluation metrics and the lake characteristics including lake latitude, depth, surface area, shape factor  
 surface area /depth , elevation, and stability. The overall parameter uncertainties were calculated for 

each lake as the standard deviations of the model output using the PPE.

2.4.  Model Sensitivity Analysis

Model sensitivity was tested for the nine parameters mentioned above. In addition, we evaluated the sensi-
tivities of two categorical parameters: water-sediment heat flux on/off (sedh) and lake bathymetry construc-
tion scheme (bthmtry). By default, the water-sediment heat flux was enabled but in the sedh sensitivity test 
this heat flux was turned off to investigate how this flux term would affect the thermal dynamics of the study 
lakes. In the bthmtry sensitivity test, three bathymetry schemes were considered: the rectangular-shape 
profile, the conic-shape profile, and the observed profile. Although the observed bathymetry profiles are 
available for all the lakes in this study, they are usually hard to obtain, especially for small lakes. Therefore, 
we would like to investigate whether using a prescribed shape would compromise the simulation accuracy.

To analyze model sensitivity for a mixture of numerical and categorical parameters, we adopted a ma-
chine-learning algorithm, classification and regression trees (CART) (Breiman et al., 1984) method which 
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Parameter Description Value range

ks Thermal conductivity of sediment (W m−1 K−1) [0.25,0.29]

cps Heat capacity of sediment soil (J kg−1 K−1) [750,1930]

pi Porosity of sediment [0.3,0.6]

ρs Density of sediment solid particle (kg m−3) [1500,2700]

ρn Density of snow (kg m−3) [100,400]

feta Light attenuation correction factor [0.1,10]

wstr Wind shielding factor of mixing [0.1,10]

ktscale Scaling factor of turbulence diffusivity [0.5,2]

hwt Scaling factor of bulk coefficients for turbulent latent/sensible heat transfer [0.5,5]

Table 1 
Abbreviations, Descriptions, and Value Ranges of the Parameters in Model Calibration
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has been found adequate (Choubin et al., 2018; Rodrigues & de la Riva, 2014) and widely used to detect 
the relationships between variables in large complex data and to make predictions (Gou, Zhuang, Tan, 
et al., 2020; W. Zhang et al., 2016). The CART method recursively splits the target data set, in our study, 
the model outputs, by selecting the explanatory variable and value that best distinguish the two subgroups 
at each node and resulting in a decision tree. The pruning process is to build a tree with the best size and 
the lowest misclassification rate. The CART method is able to examine the complicated interaction among 
parameters in the final tree and to quantify the relative influence (RI) of each parameter. In our study, the 
model output with 10,000 sample sets run for 1 year was used to train the regression trees for each lake. To 
justify using of only 1 year of simulation, we trained the regression trees with 5-year and 20-year simula-
tions, respectively, for several lakes and found that the resulting parameter RI values were highly consistent 
(Figure S1). The optimal number of iterations was estimated using the cross-validation method. A tree size 
of 500 was found to be the most appropriate. Data training and sensitivity analysis were done using the R 
package “gbm” (Greenwell et al., 2019).

To gauge the parameter sensitivity comprehensively, the CART models were trained to evaluate the sen-
sitivities of several lake features from three aspects: water temperature (lake epilimnion and full-profile 
temperature), lake stability (center of buoyancy, N, and Schmidt stability, SSI), and ice phenology (ice-on 
and ice-off day, ice-cover duration, ice thickness, and snow thickness). Water temperature is calculated for 
open water periods only. The ice-on day is simply defined as the first day that ice appears at surface, the ice-
off day is the first day that the ice cover is gone, and the ice duration is the period between these two days. 
The calculation of lake stratification and stability were all conducted using the R package “rLakeAnalyzer” 
(Winslow et al., 2019).

3.  Results
3.1.  Model Performance

In the model calibration, for the epilimnion and full-profile temperatures of the 58 lakes, the average RM-
SEs were 1.61°C and 1.24°C, the average r values were 0.95 and 0.94, the average PREs were 0.08% and 
−0.13%, and the average absolute values of PREs were 0.14% and 0.20%, respectively (Figure 2). The highest 
RMSEs (>2.5°C) of epilimnion temperature simulations occurred at Eagle, Erken, Monona, and Toolik. 
Lakes with the highest RMSEs (>2°C) in full-profile temperatures are Allequash, BigMuskellunge, Eagle, 
Erken, Monona, Rotorua, and Trout.

In the model performance evaluation, for the epilimnion and full-profile temperatures of the 58 lakes, the 
average RMSEs were 1.71°C and 1.43°C, the average r values were 0.95 and 0.94, the average PREs were 
0.05% and −0.19%, and the average absolute values of PREs were 0.17% and 0.23%, respectively (Figure S2). 
The average parameter uncertainty was 2.10°C and 1.86°C for epilimnion and full-profile temperature sim-
ulations, respectively (Figure S3). The model generally performed better in predicting the full-profile tem-
perature than the epilimnion temperature, consistent with our previous assessment on a temperate lake 
(Guseva et al., 2020).

In both calibration and performance evaluation, all lakes had r values over 0.8 except for Lake Kivu with 
exceptionally low r values of 0.38 and 0.31 for the epilimnion and the full-profile temperature, respective-
ly. Lake Kivu is located near the equator, which results in stable water temperatures all year round with 
small epilimnion and full-profile temperature deviations (only 0.93°C and 0.22°C, respectively) (Figure S4). 
As such, slight discrepancies in the model simulation would compromise the r values. For this reason, 
we neglected this outlier in our analysis of the correlation between lake characteristics and model perfor-
mance. Argyle, Laramie, Rotorua, and Toolik also have relatively low r values (<0.9) for both epilimnion 
and full-profile temperature simulations. Argyle and Rotorua are similar in the thermal regime to Kivu with 
stable warm temperatures all year round (not shown). Laramie only had observations for 6 days and the 
calculation of r was thus not as informative. For Toolik, the model overestimated the temperature fluctua-
tion. All PREs were within ±1% and the values indicated that the model tended to slightly overestimate the 
epilimnion temperature but underestimate the full-profile temperature.
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The correlation coefficients (r) between model performance and lake properties for epilimnion temperature 
simulations decreased for larger lakes (Figure 3). The prediction of full-profile temperatures was found to 
increase in accuracy for deeper lakes. The lake stability was also found to slightly impact the simulation 
accuracy such that with higher stability, the RMSEs of full-profile temperature simulations decreased.

We also compared the simulated turbulent heat fluxes at six lakes, including Annie, Esthwaitewater, Feeagh, 
Rotorua, Tahoe, and Windermere, with the calculated values in Woolway et al. (2018). Overall, the model 
performs well in simulating turbulent energy exchange while for lakes Feeagh, Rororua, and Windermere 
reproduced lower values with weaker seasonal cycles relative to Woolway et al.  (2018) (Figure S5). This 
could be mainly because Woolway et al. (2018) calculated heat fluxes from the observed water temperature 
and meteorological variables using a Monin-Obukhov similarity-based method with empirical parameters, 
which has been found to overestimate turbulent heat fluxes (Charusombat et al., 2018). Also, they used 
field observed wind speeds which likely have higher accuracy and more fluctuations, leading to stronger 
seasonal cycles than our results.
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Figure 2.  Root-mean-square error (RMSE) (a), correlation coefficient (r) (b), and percentage relative error (PRE) (c) of lake epilimnion and full-profile 
temperature simulations in model calibration. Lakes are arranged in the order of the maximum depth.
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3.2.  Sensitivity Analysis

3.2.1.  Lake Temperature Profile

The parameter sensitivities are highly consistent among all the lakes for epilimnion temperature simula-
tions (Figure 4) where hwt is the dominant parameter with an average RI value of 76.81, followed by wstr 
with RI of 19.29 and ktscale of 2.1. These three parameters together explained over 97.5% of the change in 
modeled epilimnion temperature for all lakes except two Arctic lakes. For Kilpisjarvi and Toolik in high 
latitudes, ρn was also important with RI of 6.66 and 11.37, respectively. For the full-profile temperature, the 
pattern became diverse with hwt, wstr, and feta as the three most important parameters with mean RI val-
ues of 45.39, 20.45, and 31.15, respectively, but the relative influence varied significantly among the lakes. 
The importance of hwt showed a slightly decreasing trend from tropics to northern high latitudes in the 
prediction of epilimnion temperature (Figure 5) indicating that the turbulent heat exchange process has a 
larger impact on low-latitude lakes. This can be explained by the decreasing energy inputs to lakes toward 
the poles, so turbulent heat fluxes have less impacts on the lake thermal properties. For some lakes, such as 
Kilpisjarvi and Toolik that were most obviously less affected by hwt, the stronger surface winds at the high 
latitudes would amplify the impact of wind-induced heat mixing and the corresponding parameters, in our 
model, wstr and ktscale. The RI of wstr that controls wind-induced turbulent mixing at lake surface was 
affected by lake depth in the full-profile temperature prediction due to the limited impact of surface energy 
transfer on the water column at deeper layers and thus the thermal regime of the whole lake.

3.2.2.  Lake Stability

The modeled center of buoyancy and Schmidt stability were most sensitive to hwt, wstr, and feta for most 
of the lakes, which is consistent with the modeled full-profile water temperature (Figure 6). The average RI 
values of these three parameters in center of buoyancy (N) simulations were 11.18, 15.75, and 68.65, respec-
tively, and the values were 41.35, 30.69, and 24.03, respectively, in SSI simulations. The influence of feta was 
slightly less for lakes with higher shape factors, that is, flatter shapes, but robustly stronger for deeper lakes 
while it is the opposite for wstr (Figure 7). The parameter feta controls the solar radiation penetration in the 
water column and the vertical temperature gradient that defines the thermal stratification of the lake. Shal-
lower and larger lakes often experience more frequent mixing events that prevent stratification (Gorham 
& Boyce, 1989), so they usually have lower Schmidt stability values and are more strongly influenced by 
wind-induced turbulence. In contrast, the influence of wind-induced turbulence is smaller while the influ-
ence of thermal stratification is larger for the mixing of deeper lakes. These explain the correlation of feta 
and wstr to lake bathymetry. Parameters related to lake sediment properties, including cps and ρs, played a 
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Figure 3.  Correlation between epilimnion temperature correlation coefficients and lake surface areas (a), full-profile temperature RMSEs and logarithmic lake 
depths (b), and full-profile temperature RMSEs and logarithmic Schmidt stabilities (c). The lines are regression fits. The colors denote the Arctic (A), boreal (B), 
northern temperate (NT), southern temperate (ST) and tropic (T) regions, respectively. Lake Kivu is not included in (a). RMSE, Root-mean-square error.
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Figure 4.  Parameter relative importance (RI) values for the modeled lake epilimnion temperature (a) and full-profile temperature (b). Lakes are arranged in 
the order of the latitude in (a) and maximum depth in (b).

Figure 5.  Correlation between RI values of hwt and lake latitudes in lake epilimnion temperature simulations (a) and correlation between RI values of wstr 
and logarithmic lake depths in full-profile temperature simulations (b). The lines are regression fits. RI, relative importance.
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slightly more important role in the prediction of lake stratification state than the temperature profile be-
cause of their modulating effects on the lake vertical temperature gradient.

3.2.3.  Lake Ice Phenology

Similar to the epilimnion temperature, hwt and wstr were the most important parameters in the prediction 
of the ice-on date with RI values of 61.59 and 32.3, respectively (Figure 8), because the water temperature 
at lake surface directly determines ice-cover initiation. For the ice-off day and ice duration, apart from hwt 
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Figure 6.  Same as Figure 4 but for center of buoyancy (a) and Schmidt stability (b). Lakes are arranged in the order of maximum depth.

Figure 7.  Same as Figure 5 but for correlation between feta and lake shape factors (a) in center of buoyancy (N) simulations, feta and depths (b) and wstr and 
depths (c) in Schmidt stability (SSI) simulations.
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Figure 8.  Same as Figure 4 but for ice-on day (a), ice-off day (b), ice duration (c), ice thickness (d), and snow thickness 
(e). Lakes are arranged in the order of latitude.
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(mean RI = 69.07 and 68.93) and wstr (mean RI = 16.06 and 20.39), the importance of ρn (mean RI = 5.79 
and 3.31) became more evident for some northern lakes with RI as high as 56.57. The decreasing RI of hwt 
with latitude for ice duration and ice-cover thickness (Figure 9) was primarily because surface turbulent 
heat fluxes are small in ice-over periods. Lakes at high latitudes are usually frozen in winter and affected 
by snow, which easily explains the increase of the RI values of ρn with latitude in the ice-off date, ice-cover 
duration, and ice-over thickness simulations.

4.  Discussion
4.1.  Lake Characteristic Impacts on Model Accuracy

Overall, the model accuracy shows a dependence on the size of the lake rather than the location or eleva-
tion. This is why even though the ALBM was developed for Arctic lakes, it can be confidently applied to 
lakes in different climate zones. The investigation of three different error assessment metrics indicates that 
the accuracy of full-profile temperature simulations is enhanced with increasing lake depth, consistent 
with the result using the GLM model (Bruce et al., 2018). Here, we present the by-layer temperature sim-
ulation results of eight lakes of diverse lake properties (Figure S6) as examples of the model performance 
in simulating vertical temperature profiles and annual and interannual thermal evolution. Except for the 
tropical and shallow (<10  m) lakes, the water temperature below the thermocline hardly changes over 
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Figure 9.  Same as Figure 5 but for ρn and lake latitudes in ice-off day simulations (a), hwt and lake latitudes (b) and ρn and lake latitudes (c) in ice duration 
simulations, hwt and the latitude (d), and ρn and the latitude (e) in ice-cover thickness simulations.
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the time, which reduces the complexity in simulating full-profile temperature. The model underestimated 
deeper-layer temperature in Lake FallingCreek which is the largest in the shape factor, consistent with 
the Wedderburn number criteria. The Wedderburn number (Patterson et al., 1984) is the ratio of the wind 
friction to the pressure gradient established by the lake stratification and can be used as the criteria consid-
ering the lake as 1-D or not for modeling. According to the definition, for lakes of the same area, those with 
larger thermocline depths would have larger Wedderburn number values and thus can be more reasonably 
represented by 1-D models. The fact that deeper lakes usually have deeper thermocline depths also explains 
the better model performance in full-profile temperature simulations. It is also found that the model perfor-
mance may deteriorate for lakes with larger surface areas in simulating epilimnion temperatures because 
the 1-D model assumes a horizontally homogeneous condition whereas, for larger lakes, horizontal and 3-D 
mixing become more important in heat circulation (particularly for the middle and bottom layers), resulting 
in simulation biases. The decrease of lake stability also has a slightly negative influence on the simulation 
accuracy of full-profile temperature, which is consistent with the negative relationship between the Wed-
derburn number and the lake turbulence.

For the lakes with relatively poor performance, all except Lake Rotorua were discontinuous cold polymictic 
or dimictic lakes with moderate depths ranging from 8 to 35.7 m. Rotorua is a discontinuous warm pol-
ymictic lake with maximum depth of 52.9 m. Some of these lakes (i.e., BigMuskellunge, Eagle, Rotorua, 
and Trout) have very irregular shapes with relatively large islands and peninsulas dividing the whole water 
bodies. Rotorua has several connecting rivers and streams with large volume of water flow, which was not 
represented in the simulation due to lack of measurements. Also, depending on the dominant wind direc-
tion, there can be seiches in some lakes that cannot be resolved in the 1-D model. There was underestima-
tion of water temperature at mid-to-bottom layers for most of these lakes (Figures S6candS7), reflecting the 
possibly unresolved seiches and the inefficiency of heat transfer from the water surface downward. Also, 
using the daily average wind speed as forcing can lead to underestimation of wind-driven mixing due to 
the smoothed wind speed. Despite the varying model performances, the RMSEs of all lakes are within an 
acceptable range of [0.6,2.92] and [0.32,2.38]°C for epilimnion and full-profile temperatures, respectively. 
Therefore, we conclude that the ALBM is also appropriate for modeling lakes of different sizes and mixing 
regimes. Possible model development strategies for the lakes with relatively poor model performances are 
discussed later.

4.2.  Key Processes and Parameters, and Calibration Strategy for Global Applications

The lake thermal structure is dominantly determined by the parameters related to surface processes, in-
cluding surface heat and momentum exchange, mixing efficiency, light extinction, and snow density, while 
the impact of the parameters related to lake sediment processes is minor. In ALBM, the corresponding 
control parameters are scaling factor for turbulent heat transfer hwt, wind shielding factor of mixing wstr, 
light attenuation correction factor feta, and snow density ρn. The sum of these parameters is responsible 
for over 95% of the variations in the modeled lake temperature structure, stability and ice phenology for 
lakes ranging broadly in size, climate zone, and mixing regime. The relative importance of each process 
and parameter varies with different regions and lake depths. The four key parameters in the ALBM can be 
divided into two types based on the RI values: the latitude-dependent parameters hwt and ρn, and the lake 
depth-dependent ones wstr and feta.

The parameterization of turbulent heat fluxes has already been identified and discussed by local studies as 
the main source of uncertainties in the modeling of lake temperature (Charusombat et al., 2018). Here our 
study reemphasizes that this parameterization has huge impacts on the evolution of lake thermal struc-
tures globally and thus should be the focus of future model improvement. We further demonstrate that for 
both lake temperature and ice phenology modeling, hwt has a decreasing impact with increasing latitudes 
northward.

In the simulation of water temperature and thermal stratification, wstr is found to have less impacts on 
deeper lakes. However, Bruce et al. (2018) investigated 32 lakes globally using GLM and concluded that the 
sensitivity of modeled thermocline depth to parameters controlling wind-driven mixing increases for deep-
er lakes, which is opposite to our result. This is probably because in Bruce et al. (2018) the sensitivity indices 
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of these parameters were generally around zero for most of the lakes with only five to six lakes showing 
values obviously larger than zero. The largely uneven distribution of sensitivity index values would bias the 
statistical calculation and thus the generalization may not be representative.

The light extinction coefficient parameterizes water transparency and directly determines the depth to 
which solar radiation penetrates in the water column. By applying two 1-D models, LAKE and FLake, to a 
boreal lake, Heiskanen et al. (2015) found that the simulated thermal stratification is highly sensitive to the 
light extinction coefficient, consistent with our result. They further concluded that the parameter is more 
important and thus requires lake-specific calibration for clear lakes compared to relatively humic lakes. 
However, the trophic state and lake color information were not available for some of the lakes in our study 
and therefore, we did not investigate the correlation of lake chemical and optical characteristics with feta. 
Instead, we use more accessible lake physical characteristics and demonstrate that the importance of feta 
decreases with lake shape factor and increases with depth.

It is logical that ρn plays an important role in the prediction of ice-related variables for high-latitude lakes. 
Snow density modulates the lake ice-cover thickness and duration, which strongly affects local hydrology 
and climate in particular for the climate-sensitive northern regions. Snow cover impacts the underlying ice 
in several ways (Duguay et al., 2003; Vavrus et al., 1996; Yao & Fu, 2019). First, the thermal insulation effect 
of snow cover delays lake ice growth and melting in winter and spring, respectively. Lower snow density 
would lead to a more porous snow cover structure and enhance the insulation effects. Also, snow cover 
increases surface albedo and the light extinction coefficient, both contributing to more persistent ice cover 
in spring. In addition, in converting snowfall provided by climate models to snow thickness, lower snow 
density also means larger snow thickness. Therefore, given the close coupling of snow and ice dynamics, the 
parameter ρn may need a more explicit parameterization (e.g., accounting for snow aging) instead of being 
treated as a constant to better model lake ice phenology.

The calibrated parameter values were quite variable between lakes and diversely distributed within the 
sampling ranges (Table  1, Figure  S8). There is no significant correlation between parameter values and 
accessible lake characteristics, so the optimal parameter values are highly lake-dependent and model cali-
bration is still necessary to obtain reliable model results. To minimize the recalibration effort in global lake 
simulations, one strategy is to conduct calibration by dividing lakes into groups according to the controlling 
parameters. Within each subdivision, we can then aim at achieving convergence of the major parameters, 
lower the requirement on constraining the value ranges of the secondary ones, and safely set the other 
parameters to default values. Based on our findings, generally for hwt, the calibrated value should be more 
constrained for temperate lakes compared to Arctic lakes. The parameter ρn, on the contrary, requires rel-
atively high accuracy for the Arctic and sub-Arctic lakes and can be set to default for lakes that only freeze 
for a short period annually or rarely freeze. The opposite correlations of wstr and feta to lake depth indicate 
that there should be different calibration emphases within different depth subdivisions. Under this frame-
work, the detailed grouping criteria could be adjusted according to the number of the lakes and the value 
distribution of the two lake properties.

4.3.  Data Availability Impacts

Our data set covers lakes over broad ranges in latitude and climate zones, but the observation sites tend to be 
denser at midlatitudes and temperate zones than the tropical and Arctic regions, resulting in possible biases 
in the analysis. An important thing to note here is that although the conclusion on the key parameters was 
valid for all the lakes, we noticed that lake location may affect the correlation between parameter sensitiv-
ities and lake characteristics. Including lakes in the Southern Hemisphere and near the equator (hereafter, 
southern lakes) seemed to reduce the correlation and statistical significance. To compare the correlation 
coefficients, we applied the Fisher's z transformation and confirmed that the differences of the r values were 
statistically insignificant between groups with and without the southern lakes for all the correlations shown 
in Figures 5 and 7 (Table S3). Due to the underrepresentation of southern lakes in the data set, the differ-
ences in the parameter sensitivity patterns from temperate and Arctic lakes may be overwhelmed in such 
bulk analysis. As a result, we excluded southern lakes in the correlation analysis and the calibration strat-
egy discussion. The nonuniform distribution of lake latitude can also obscure the correlation between lake 
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characteristics and parameter relative importance. For example, it has been found that lake geographical 
features (latitude, longitude, and altitude) may have significant impacts on the lake trophic level (Faithful 
et al., 2011; Wood et al., 2017). However, the relationship does not appear in our analysis. It indicates that 
a more complete analysis would require further collection of lake data in the underrepresented regions.

4.4.  Model Improvement

The relatively large biases in the simulation of some lakes require future model improvement. The discrep-
ancies for intermediate water layers and the increasing RMSEs for lakes with weaker stratifications all in-
dicated that the unresolved horizontal and 3-D mixing processes can lead to inefficiency in simulating heat 
transfer and mixing and thus biased vertical thermal structures (Fang & Stefan, 1996). As a solution, add-
ing an enhanced diffusion term has been proposed and supported (Huang et al., 2019; Subin et al., 2012). 
However, according to our result, wstr is a much more important parameter than ktscale, meaning that 
adjusting the wind-driven mixing process has a dominant effect on compensating for the underestimated 
mixing. Therefore, for models with similar configurations to ALBM, scaling eddy diffusion will likely lead 
to marginal improvement in simulating lake turbulent mixing. Moreover, this approach enhances mixing 
across all water columns equally, which may result in undesired overestimation of mixing below the lake 
boundary layer. At present, there is no consensus on the best lake turbulent mixing scheme, but our results 
indicate its importance in correctly simulating lake vertical temperature profiles and therefore, is a process 
that could be targeted for future improvement. The ISIMIP2a protocol provides a unique opportunity for a 
consistent evaluation of an ensemble of models. The intercomparison with different parameterizations will 
help selecting a better solution to this demand.

Furthermore, the light extinction coefficient has also been found to have distinct effects on the thermocline 
depth and thus the vertical thermal structure (Heiskanen et  al.,  2015; Zolfaghari et  al.,  2017). Shatwell 
et al. (2016) found that lakes with moderate depths and relatively high light extinction can switch between 
polymictic and dimictic states and thus experience seasonal shifts in water transparency and mixing regime 
due to fluctuations of phytoplankton biomass. As a result, giving greater weight to feta in spring and sum-
mer for lakes deeper than 5 m would be expected to lead to improved calibration and model performance.

5.  Conclusions
We conducted a study on the validation and sensitivity analysis of a 1-D lake model ALBM using an un-
precedentedly diverse data set. In the assessment of RMSE, r, and PRE values, the model showed an overall 
good performance at all 58 lakes. The simulation biases were mainly related to lake size but not the location. 
Therefore, we concluded that the ALBM is robust for applications on a global scale. We further investigated 
the key processes and the associated parameters that determine model performance. For the prediction 
of lake water temperature, stratification, and ice phenology, surface thermodynamic processes have the 
most dominant contribution to the simulation results for most of the lakes while lakes sediment-related 
processes only played a negligible role. The turbulent heat flux process was found to be the most crucial, 
followed by wind-driven convective mixing, light extinction, and for northern lakes, snow density. These 
key processes regulate how lakes respond to climate change and thus should be of primary concern in the 
modeling practice. Parameters related to these processes were together responsible for over 95% of the var-
iations in the predicted variables mentioned above. The relative influence of each parameter varied mainly 
with the lake depth and latitude. The scaling factors of bulk coefficients for turbulent latent/sensible heat 
transfer hwt and snow density ρn were found to be mainly latitude-sensitive while the wind shielding factor 
of mixing wstr and light extinction attenuation factor feta are lake depth-sensitive. Taking the patterns into 
consideration, modelers can largely reduce the calibration complexity in global lake simulations by group-
ing lakes based on the two properties and implement different calibration procedures accordingly. Due to 
the underrepresentation of southern lakes in our data set, whether the patterns are appropriate for lakes in 
the tropical and the Southern Hemisphere remains to be verified, highlighting the need for more long-term 
observation data for these regions. Further improving the turbulence mixing scheme and incorporating the 
seasonality of the light extinction coefficient in the calculation can also benefit the simulation accuracy and 
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adapt the model to lakes with even more diverse characteristics. Our study provides a direction to the im-
provement of the ALBM and other 1-D process-based lake models across diverse lake ecosystems, allowing 
for improved predictions of climate impacts on the physical, chemical, and biological processes in global 
lakes. Furthermore, the more accurate representation of lake thermal regimes will in return enhance the 
performance of weather and climate forecast systems from regional to global scales.

Data Availability Statement
The model output and codes for data analysis in this study are available at https://purr.purdue.edu/
publications/3529/1.
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