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Abstract

Stresses from heat and drought are expected to increasingly suppress crop yields, but the degree to which current

models can represent these effects is uncertain. Here we evaluate the algorithms that determine impacts of heat and

drought stress on maize in 16 major maize models by incorporating these algorithms into a standard model, the Agri-

cultural Production Systems sIMulator (APSIM), and running an ensemble of simulations. Although both daily mean

temperature and daylight temperature are common choice of forcing heat stress algorithms, current parameteriza-

tions in most models favor the use of daylight temperature even though the algorithm was designed for daily mean

temperature. Different drought algorithms (i.e., a function of soil water content, of soil water supply to demand ratio,

and of actual to potential transpiration ratio) simulated considerably different patterns of water shortage over the

growing season, but nonetheless predicted similar decreases in annual yield. Using the selected combination of algo-

rithms, our simulations show that maize yield reduction was more sensitive to drought stress than to heat stress for

the US Midwest since the 1980s, and this pattern will continue under future scenarios; the influence of excessive heat

will become increasingly prominent by the late 21st century. Our review of algorithms in 16 crop models suggests

that the impacts of heat and drought stress on plant yield can be best described by crop models that: (i) incorporate

event-based descriptions of heat and drought stress, (ii) consider the effects of nighttime warming, and (iii) coordi-

nate the interactions among multiple stresses. Our study identifies the proficiency with which different model formu-

lations capture the impacts of heat and drought stress on maize biomass and yield production. The framework

presented here can be applied to other modeled processes and used to improve yield predictions of other crops with

a wide variety of crop models.
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Introduction

The long-lasting and pervasive 2012 heat wave and

drought in the United States damaged a substantial

proportion of crop commodities, especially those in the

Midwest (Mallya et al., 2013). Such an extreme climatic

event (ECEs), however, is only a microcosm of the past

decades full of fierce weather extremes (Coumou &

Rahmstorf, 2012). These ECEs are projected to continue

in the future, with increasing magnitude, duration, and

frequency (IPCC, 2012). The rising incidence of weather

extremes will exacerbate negative impacts on the crop

productivity; indeed, critical thresholds are already

being exceeded (Hatfield et al., 2014). As many other

crops, contemporary maize production is threatened by

the changing climate that reduces maize farming effi-

ciency (Bassu et al., 2014). Concerns have thus been

raised about maintaining a stable increase rate of the

US maize yield, which is vital to the global food secu-

rity (Bruinsma, 2009; Ort & Long, 2014). Extreme heat

and drought are the two dominant constraints to the

rainfed maize cultivating system in the United States

(Schlenker & Roberts, 2009; Lobell et al., 2013; Hatfield

et al., 2014).

Process-based crop models that incorporate maize

modules are powerful tools for evaluating the potential

impacts of climate change on maize yield (Bassu et al.,

2014). Combined with hyper-local growth monitoring
Correspondence: Qianlai Zhuang, tel. +1 765 494 9610, fax +1 765

496 1210, e-mail: qzhuang@purdue.edu

1© 2016 John Wiley & Sons Ltd

Global Change Biology (2016), doi: 10.1111/gcb.13376



and assimilation of high-resolution and real-time

weather data, crop models can increasingly help stake-

holders predict maize production and make decisions.

However, these models remain poorly suited to man-

age and alleviate the risks from ECEs such as heat and

drought. Most current generations of ecosystem mod-

els, including crop models, were originally optimized

to simulate average conditions based on long-term cli-

matology (Reichstein et al., 2013), and their algorithms

that simulate specific stresses are not well parameter-

ized, either due to a lack of natural and experimental

records of maize yield responses to high temperature

and severe drought with which to train models, or due

to a slow pace of updating model parameterizations.

While broad agreement exists in terms of the effects of

heat and drought on maize growth and development,

researchers have abstracted this knowledge into mark-

edly different equations and interactions (Saseendran

et al., 2008; Bassu et al., 2014). Differences among algo-

rithms are more prominent for heat than for drought,

likely because fewer high-quality datasets have been

available to describe heat stress effects on maize bio-

mass production, grain set, grain fill, and yield. There

is a clear need to systematically assess the environmen-

tal responses of biological processes in crop models,

especially those processes that directly determine the

simulated crop productivity.

As a critical first step toward model improvement,

crop model comparison studies have become popular,

especially for climate change scenarios (Rosenzweig

et al., 2013). In a review of 5 major crop models, Saseen-

dran et al. (2008) found that these models all use the

ratio of actual to potential transpiration or evapotran-

spiration to indicate water stress, but none of them can

accurately represent the coupled processes of carbon

assimilation, transpiration, energy balance, and stom-

atal behavior. Eitzinger et al. (2013) compared

responses to heat and drought stress of seven widely

used crop models and pointed out that even though a

general consensus can be reached on the yield trend in

response to increased temperatures, these models were

not able to capture the direct heat stress impacts that

account for substantial yield variations. More recently,

the Agricultural Model Intercomparison and Improve-

ment Project (AgMIP) has significantly advanced this

field under protocols of coordinated evaluation, inter-

comparison, and improvement of crop models (Rosen-

zweig et al., 2013). Asseng et al. (2013) observed that

variations among crop models account for a greater

proportion of the uncertainty in simulating global

wheat yields under climate change than variations

among future climate scenarios. By evaluating the per-

formance of 23 maize models under four production

conditions, Bassu et al. (2014) found that an ensemble

of models was more reliable than one single model in

capturing the mean yield even with very limited data

for model calibration.

These comprehensive assessments advance the oper-

ational use of available crop models and shed light on

the capability and uncertainty in the tools, but their

findings often give only vague guidance to support

individual model improvement (Donatelli et al., 2014).

This trade-off is inevitable in studies that compare the

output from full models. As crop models differ sub-

stantially in the way they simulate crop physiology, soil

physical characteristics and nutrient states, not to men-

tion the differences in input variables and parameter

settings, model developers often find it hard to tell

which part of their models need to be improved when

simply looking at the final results (e.g., yields). Some

might argue that modelers can trace sources of uncer-

tainty by examining intermediate variables, for instance

by comparing leaf area index (LAI) with observations.

Unfortunately, though, any of these intermediate vari-

ables themselves are results of complicated interactions

among processes within a model. For a specific crop

process (e.g., photosynthesis, phenology, and yield for-

mation), there usually exist a number of ways to con-

struct the mathematical algorithms (Bassu et al., 2014;

Martre et al., 2015). Thus, to quantitatively understand

the uncertainty related to that particular process, com-

parison should be performed in a way similar to a con-

trolled experiment, such that any other processes are

isolated.

The idea of focusing on different algorithms or differ-

ent implementations of the same algorithm for a partic-

ular process (defined as ‘algorithm ensemble’ hereafter)

when comparing crop models has been tested a few

times and proved to be promising for elucidating the

target issue (Saseendran et al., 2008; Eitzinger et al.,

2013; Alderman et al., 2014; Donatelli et al., 2014;

Kumudini et al., 2014). It is favorable also because

research advances that can be easily assimilated into

models are mostly those at the process level (Donatelli

et al., 2014). However, very few studies have performed

comparisons in a fully controlled style such that a pro-

cess ensemble was quantitatively evaluated within a

single platform (but see Donatelli et al. (2014) for a

pioneering case study on soil temperature simulation).

Insufficient modularization, poor documentation of

most crop models and intellectual property boundaries

are believed to be the three vital obstacles that hinder

reimplementation and reuse of alternative algorithms

for a specific process (Holzworth et al., 2015).

In this study, we implement the ‘algorithm ensemble’

framework to evaluate the performance of difference

algorithms in capturing the impact of heat and drought

stress on maize biomass production and yield

© 2016 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13376

2 Z. J IN et al.



formation. We first review existing algorithms at the

equation level from 16 major crop models that simulate

the direct heat and drought stress on maize photosyn-

thesis and yield formation, and document them for

crop modelers (Data S1 in the Supporting Information).

Next, we describe how representative algorithms were

extracted from their parent crop models and incorpo-

rated into a standard model so that variations among

algorithms could be quantified in a controlled manner.

We select the Agricultural Production Systems sIMula-

tor (APSIM) as the standard model, because its generic

and modularized design allows algorithms to be

replaced without changing the model structure. Finally,

the revised APSIM with algorithm ensemble is used to

simulate maize production at typical farms in the US

Corn Belt, and evaluated using the county-level yield

statistics from the USDA National Agricultural Statis-

tics Service (NASS). Our goal is to understand why a

particular algorithm (if any) performed better than

others in capturing the signal of heat and drought, and

to offer clear and useful information regarding crop

model improvement. We exclude the evaluation of

algorithms of indirect heat and drought stresses via leaf

elongation/senescence, which are often programed to

be more susceptible to adverse growth conditions (e.g.,

water stress effect in CERES-Maize), because the com-

plex interactions between phenology and photosynthe-

sis will make the results too complicated to interpret.

We focus on maize because it is the most important cer-

eal commodity in the United States, but the framework

presented in our study can be extended to other crops

and any process in a crop model.

Materials and methods

In this section, we first describe a method to quickly screen

the behavior of heat stress algorithms. Next, we describe

simulations that use an algorithm ensemble for the histori-

cal period of 1980–2013 and future scenarios of 2006–2099.

A brief introduction to the development and application of

APSIM-Maize model and its important engineering features

is provided in Data S2. Screening of heat stress algorithms

was conducted at the AmeriFlux Mead Rainfed station,

Saunders, NE (41.18o, �96.44o), where hourly meteorological

and fluxes variables were archived. Screening of drought

stress algorithms was performed at Agricultural Engineer-

ing and Agronomy Research Farms of Iowa State Univer-

sity, Boone, IA (42.02o, �93.78o). The ensemble simulation

was conducted at the Iowa farm as well as at two other

sites: (i) the AmeriFlux Bondville station, Champaign, IL

(40.01o, �88.29o); (ii) Purdue Agronomy Center for Research

and Education, West Lafayette, IN (40.47o, �86.99o). For

brevity, we mainly focus on the Indiana farm for the

ensemble simulation, while present similar results from the

other two farms in the Supporting Information.

Screening of stress functions

To understand the behavior of representative heat and

drought response functions, we pulled out these algorithms

from their parent models and reprogrammed each in R lan-

guage. Such a ‘lightweight’ method allowed fast screening of

these algorithms, while avoiding the ‘heavy’ task of running

crop models, which usually requires extensive preparation.

For heat stress, we selected the temperature response curve

of photosynthesis/carbon assimilation from AgroIBIS (Quad-

ratic; Kucharik & Brye, 2003), APSIM (piecewise linear; Keat-

ing et al., 2003), CERES (piecewise linear; Jones et al., 2003),

DayCent (Generalized Poisson; Parton et al., 1998), EPIC (Sinu-

soidal; Sharpley & Williams, 1990), MAIZSIM (Exponential;

Yang et al., 2009), SWAT (Exponential; Neitsch et al., 2011),

and WOFOST (piecewise linear; Supit et al., 1994). These 8

representative selections cover all different shapes of tempera-

ture response curves for the 16 crop models reviewed in this

study (Table 1) and detailed descriptions for each can be

found in Data S3. These temperature response curves were

compared to the observed ratio of gross primary production

(GPP) to absorbed photosynthetically active radiation (APAR)

at different temperatures from the AmeriFlux Mead Rainfed

station (Data S4). Next, we calculated the mean annual heat

stress factors by integrating daily values over either the grow-

ing season. Daily weather inputs, including maximum and

minimum air temperature at a spatial resolution of

1 km 9 1 km, were downloaded from the Daymet website

(http://daymet.ornl.gov/). During our preliminary analysis,

we observed that models such as DayCent, SWAT, and

WOFOST that use daily mean temperature to force the heat

stress algorithm predicted almost no heat stress on annual

basis, while the CERES model that uses daylight temperature

(approximated by TmaxþTmean

2 hereafter) was more sensitive to

excessive heat. Therefore, we also tested the effect of using

daylight temperature to simulate heat stress. The simulation

results were compared to growing season extreme degree

days (EDD, which is cumulative daily mean of hourly temper-

ature above 30 °C; Lobell et al., 2013) and killing degree days

(KDD, which is the cumulative daily mean temperature above

29 °C; Butler & Huybers, 2013), both of which are indicators of

excessive heat for crops (details of our implementation are

given in Data S5).

For drought stress, we evaluated the three dominant algo-

rithms that cover more than 80% of the crop models we

reviewed (Table 2): functions of average soil moisture content

(SWC), water supply to demand ratio (Ws/Wd), and actual to

potential transpiration ratio (AT/PT). It should be noted that

although Ws is close to AT because soil water supply largely

determines the actual transpiration in many models, the

denominators of Wd and PT are quite different, such that the

former is based on the concept of transpiration efficiency

(Hammer et al., 2010) and the latter directly reflects daily

weather conditions (Allen et al., 1998). For simplicity, we used

the APSIM SoilWat module (a tipping-bucket model) to simu-

late daily state variables and fluxes that were not directly

observed. We calculated mean annual drought stress factors

by averaging daily values over the growing season for each

year. To reduce the uncertainty in hydrological modeling, we

© 2016 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13376
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reused the APSIM simulation configuration and parameters

from the well-calibrated site in Boone, IA (Archontoulis et al.,

2014b). We again used meteorological inputs from the Daymet

dataset.

Ensemble simulations

The algorithm ensemble for each site consisted of 30 simula-

tion runs (i.e., 10 simulations of heat stress algorithms for dif-

ferent processes 9 3 varieties of drought stress algorithms).

For heat stress, we constructed ten simulations (SM) that

covered (i) two vapor pressure deficit (VPD) calculation meth-

ods, (ii) four different representations of heat stress on bio-

mass production, (iii) two heat stress modifiers on grain

filling, (iv) three harvest index (HI) models, and (v) one leaf-

level photosynthesis model (Fig. 1). Specifically, SM1 is the

reference simulation that used the default APSIM algorithms

of heat stress on photosynthesis, grain number development,

and grain filling. SM2 replaced the default APSIM VPD algo-

rithm, which is purely based on maximum and minimum

daily temperature and is hence occasionally criticized for

overestimating drought stresses during hot days (Basso &

Table 1 Summary of heat stress algorithm on maize photosynthesis, grain set/fillings, and harvest index. Detailed descriptions

are given in Data S3

Model Process Model type

Input

temperature Key parameters References

AgroIBIS Stomatal

resistance

Quadratic Tleaf Topt* = 25 Kucharik & Brye

(2003)

APSIM RUE Multilinear Tmean Tbase† = 8, Topt1 = 15,

Topt2 = 30, Tlim‡ = 44

Keating et al. (2003)

Grain number Linear Tmax Tlim = 38, Sensitivity = 0.05 Carberry et al. (1989)

Grain filling Linear Tmean Tcrt§ = c(6, 10, 16, 22, 30, 56.3)

AquaCrop Harvest index Logistic Tmean Topt2 = 30, Tlim = 35 Raes et al. (2009)

CERES-4.0 RUE Multilinear Teff Tbase = 6.2, Topt1 = 16.5,

Topt2 = 33, Tlim = 44

Jones et al. (2003)

Grain filling Multilinear Tmean Tbase = 5.5, Topt1 = 16,

Topt2 = 39, Tlim = 48.5

CropSyst Flowering Multilinear Thr Tcrt = 31, Tlim = 44 Stockle et al. (2014)

DayCent GPP GPoisson Tsoil Topt = 30, Tlim = 45,

Sleft = 1, Sright = 2.5

Parton et al. (1998)

EPIC RUE Sinusoidal Tground Tbase = 8, Topt = 25 Sharpley & Williams

(1990)

GLAM Flowering Multilinear Tam To be calibrated Challinor et al. (2005)

Transpiration

efficiency

Multilinear Tmean Tcrt = 35, Tlim = 47 Challinor et al. (2009)

HYBRID-maize Assimilation rate Multilinear Tdaytime Tbase = 8, Topt1 = 18,

Topt2 = 30

Yang et al. (2013)

Grain filling Quadratic T3 hour Topt = 26

CSM-IXIM Assimilation rate Complex Lizaso et al. (2005)

MAIZSIM Carbon supply Exponential Thr Td = 48.6 Yang et al. (2009)

Grain filling Quadratic Thr Topt = 26 Grant (1989)

MONICA Assimilation rate Multilinear Thr Sage & Kubien (2007)

Flowering Multilinear Tdaytime Tcrt = 30, Tlim = 40 Moriondo et al. (2011)

PEGASUS LUE Quadratic Tmean Tbase = 0, Topt1 = 15,

Topt2 = 40, Tlim = 65

Deryng et al. (2011)

Flowering Multilinear Teff Tcrt = 32, Tlim = 45 Deryng et al. (2014)

STICS RUE Quadratic Tleaf Tbase = 2.5, Topt1 = 10,

Topt2 = 30, Tlim = 30

Brisson et al. (2009)

Grain filling Multilinear Tleaf Tbase = 5, Topt1 = 6,

Topt2 = 26.5, Tlim = 27.5

SWAT RUE Exponential Tmean Tbase = 8, Topt = 25 Neitsch et al. (2011)

WOFOST Assimilation rate Multilinear Tdaytime Tcrt = c(0, 9, 16, 18, 20, 30, 36, 42) Supit et al. (1994)

*Topt: optimum temperature above or below which stress will occur; a nonstress plateau is assume for curves with two optimum

temperatures (e.g., Topt1 and Topt2).

†Tbase: base temperature below which full stress is assumed.

‡Tlim: limiting temperature threshold at which full heat stress is reached.

§Tcrt: critical temperature threshold at which heat stress starts.

© 2016 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13376
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Table 2 Summary of drought stress algorithm on maize photosynthesis, grain set/fillings, and harvest index. Detailed descrip-

tions are given in Data S3

Model Process Conceptual Function type References

AgroIBIS Photosynthesis rate

(Vmax)

SWC Exponential Kucharik & Brye (2003)

APSIM-Maize RUE Ws/Wd Linear Keating et al. (2003)

Grain filling Ws/Wd Linear

AquaCrop Stomatal closure SWC Convex curve Raes et al. (2009)

Harvest index Complex subroutines Raes et al. (2009)

CERES-Maize RUE AT/PT Linear L�opez-Cedr�on et al. (2005)

Grain filling AT/PT Quadratic L�opez-Cedr�on et al. (2008)

CropSyst Water dependent growth Transpiration efficiency Linear Stockle et al. (2014)

Harvest index Stage-dependent average

water stress

DayCent GPP Available water to PET Linear Parton et al. (1998)

Carbon allocation Soil water content Empirical

EPIC RUE Wu/PT Linear Sharpley & Williams (1990)

Harvest index Wu/PT Convex curve Challinor et al. (2004)

GLAM Transpiration efficiency Transpiration efficiency

HYBRID-maize Assimilation rate AT/PT Linear Yang et al. (2013)

CSM-IXIM Carbon allocation AT/PT Exponential Lizaso et al. (2011)

MAIZSIM Stomatal conductance Leaf water potential Logistic Yang et al. (2009)

Carbon allocation SWC Linear Acock et al. (1982)

MONICA Assimilation AT/PT Linear Sage & Kubien (2007)

PEGASUS LUE SWC Exponential Deryng et al. (2011)

STICS RUE SWC Linear Brisson et al. (2009)

SWAT RUE AT/PT Linear Neitsch et al. (2011)

Harvest index AET/PET Linear

WOFOST Assimilation rate AT/PT Linear Supit et al. (1994)

Fig. 1 Framework for using ensemble simulations to compare algorithms at the process level. Heat stress algorithms for each process

(i.e., photosynthesis, grain number development, grain-filling rate, and harvest index increment) are listed as bricks. The combination

of different bricks for all processes evaluated leads to a simulation (SM).

© 2016 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13376

HEAT AND DROUGHT STRESS IN MAIZE MODELS 5



Ritchie, 2014), with the more common method that requires

either daily dew point temperature or relative humidity as

input data (Abtew & Melesse, 2013).

SM3, SM4, and SM5 replace the APSIM multilinear temper-

ature stress function on the radiation use efficiency (RUE)

with its counterpart in STICS, SWAT, and WOFOST, respec-

tively. It should be noted that STICS uses canopy temperature,

which can be calculated by an empirical relation model,

instead of air temperature to force the stress function (Data

S3.16). SM6 was a simulation using the algorithm of high tem-

perature effect on grain filling from MAIZSIM. SM7, SM8, and

SM9 retained the APSIM photosynthesis and biomass produc-

tion routines, but estimated yield based on the simulation of

HI instead of the original grain number 9 grain-filling rate

method. SM7 incorporated the PEGASUS HI method (also

used in CropSyst and GLAM), in which potential HI can be

reduced due to heat stress around the silking–anthesis stage

(i.e., flowering stage). SM8 used the SWAT HI method, which

first develops potential HI according to the accumulation of

daily heat units, and then calculates the actual HI based on the

average water deficit over the growing season. SM9 adopted

the HI model from AquaCrop, in which the potential HI can

be adjusted either upward or downward by a number of envi-

ronmental stress factors (Raes et al., 2009). To compare the

performance of RUE-based biomass production models with

the more mechanistic model of leaf-level CO2 assimilation

processes, we incorporated the coupled photosynthesis–stom-

atal conductance model for C4 plants according to Collatz

et al. (1992) as SM10 (Data S6). Similar leaf-level photosynthe-

sis models have been implemented in more recently devel-

oped crop models (e.g., AgroIBIS, CSM-IXIM, MAIZSIM, and

MONICA). As SM1–SM10 are not fully orthogonal, results

from these simulations should not all be compared against

each other. The effect of changing the APSIM default VPD

algorithm can be observed by comparing SM1 vs. SM2. If the

focus is on different parameterizations of heat stress on bio-

mass production, then compare SM1 vs. SM3, SM4, and SM5.

Comparing SM1 and SM6 illustrates the difference between

two heat stress functions on grain filling. Different implemen-

tations of HI algorithms can be evaluated by looking at SM7,

SM8, and SM9, while the difference between grain filling vs.

the HI method can be compared by looking at the group of

SM1 and SM3-5 vs. the group of SM7-9. The effect of replacing

an RUE model with leaf-level photosynthesis can be seen by

comparing results from SM1 and SM10. On top of each simu-

lation with a particular heat stress algorithm, we further

nested three varieties of drought stress algorithms that

describe water deficit as a function of SWC, Ws/Wd, or AT/

PT. More detailed theoretical backgrounds for each of these

algorithms are given in Data S3. Simulations of maize phenol-

ogy, soil moisture, temperature, and nutrient dynamics were

still carried out by the default APSIM platform.

We used Daymet meteorology variables, as mentioned

above, to run APSIM. Soil parameters, such as layered soil

hydraulic properties and soil organic matter fractions, were

extracted from the SSURGO database (Web Soil Survey:

http://websoilsurvey.sc.egov.usda.gov). A detailed descrip-

tion for each of these soil parameters is presented in

Archontoulis et al. (2014a,b). When a farm had several soil

types according to SSURGO, we simply selected the one that

accounted for the largest fraction, to reduce the computational

cost. As a result, we derived Flanagan silt loam soil for the Illi-

nois farm, Chalmers silt clay loam soil for the Indiana farm,

and Webster clay soil for the Iowa farm. Management history

is critical for models to reproduce the historical trend in maize

yield. In rainfed fields, the required management information

includes as follows: (i) sowing date, seeding rates and cultivar;

(ii) fertilizer type, amount, and timing. We derived most of the

information from the NASS survey report, with state-specific

details provided in Table S1.

Analysis

To evaluate the APSIM-Maize performance on predicting

yield, we calculated the coefficient of determination (R2) and

root mean square error (RMSE) based on simulated yields and

the NASS county-level rainfed maize yield data (e.g., Tippeca-

noe County for the farm from West Lafayette, IN). We further

detrended the yield over time by applying a linear regression

and then used residuals to calculate the Spearman correlation.

To quantitatively understand the sensitivity of model-simu-

lated biomass and/or yield to heat and drought stress, we fur-

ther calculated the relative contributions of each stress over

the historical period of 1980–2013 and in two future climate

scenarios. Simulations were conducted by the standard

APSIM-Maize (i.e., SM1) for the Indiana farm. The APSIM

framework allowed us to switch on and off a certain stress by

setting the corresponding stress function equal to 1 (Data

S3.2). The sensitivity of biomass reduction (%) to drought was

calculated as:

SDrought ¼
BDrought � BPotential

� �

BPotential
� 100% ð1Þ

where BPotential is the simulated biomass from SM1 when stres-

ses that directly limit photosynthesis and grain development

are excluded, and BDrought is the value from the simulation

that includes drought stress. Likewise, we calculated the sen-

sitivity of biomass accumulation to high temperature as:

SH RUE ¼ BTemperature � BPotential

� �

BPotential
� 100% ð2Þ

in which BTemperature is the value from the simulation that only

applied the temperature response curve to the RUE. The sensi-

tivity of grain growth, and hence yield, to extreme heat was

quantified as:

SH Grain ¼ YHeat � Ypotential

� �

YPotential
� 100% ð3Þ

where Ypotential is the potential yield that considered stresses

on biomass accumulation but not heat stress on grain set and

grain fill, and YHeat was the actual yield. To run APSIM-Maize

under a projected future climate, we used daily projections

from 2006 to 2099 provided by The NASA Earth Exchange

Global Daily Downscaled Projections (NEX-GDDP). This

downscaled dataset in a spatial resolution of 0.25 degrees was

derived from the general circulation models (GCMs)

© 2016 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13376
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participating in the Coupled Model Intercomparison Project

Phase 5 (CMIP5) under two of the four representative concen-

tration pathways (RCPs). The effect of elevated CO2 on maize

growth was not simulated here, as it is beyond the scope of

this study and the magnitude of maize yield response to CO2

is controversial (Leakey et al., 2009). To reduce the computa-

tional cost, we selected projections for RCP4.5 and RCP8.5

from 8 representative GCMs (Table S2). The simulations con-

ducted here were enough to extend the quantification of rela-

tive contributions of heat and drought stress into the future.

Results

Screening of heat stress functions

Temperature response curves of maize carbon assimi-

lation differ markedly among selected crop models

(Fig. 2a). While some models use a single optimum

temperature in their response curve (e.g., AgroIBIS

and DayCent), others specify a wider range of temper-

atures (i.e., a plateau) for optimum or near optimum

growth. AgroIBIS, EPIC, and SWAT specify 25 °C as

the optimal temperature for maize, beyond which heat

stress starts to reduce photosynthesis. APSIM, Day-

Cent, and WOFOST use approximately 30 °C as the

maximum optimal temperature. CERES and

MAIZSIM, using daylight and hourly temperature as

the forcing data, have even higher maximum optimal

temperature of 33 °C and 32 °C, respectively. The

upper limit temperature at which stress reaches its

maximum differs substantially among models

(Fig. 2a). These differences are also reflected by the

observed temperature responses of GPP to APAR ratio

(as an approximation of RUE) (Fig. S1). The optimal

temperature range for hourly GPP/APAR is roughly

20–31 °C, and the response curve is more like a piece-

wise linear function. For daylight GPP/APAR, the

optimal temperature range is roughly 28–31 °C; this is

probably why our simulations produce similar results

when using daylight and hourly temperature to drive

the algorithms. The optimal temperature for the daily

mean GPP/APAR occurs around 25 °C (which agrees

with Agro-IBIS, EPIC, and SWAT), and the response

curve is more like a quadratic function.

The predicted growing season average reduction in

photosynthesis due to heat stress did not exceed 2% for

most algorithms when forced by daily mean tempera-

ture, even in the years of 1988 and 2012, in which sev-

ere heat waves were recorded (Fig. 3). When heat stress

is simulated using daylight temperature instead of

mean daily temperature, yields simulated using all of

the algorithms vary interannually with the heat stress

factors and become negatively correlated with EDD or

KDD (Fig. 3). Algorithms from APSIM, DayCent, EPIC,

MAIZSIM, and WOFOST have very high correlations

(r < �0.95), followed by AgroIBIS (r = �0.87). The

magnitude of reduction due to heat stress typically

remained <5%, except for the EPIC simulation, which

decreased by up to 10%. We also tested the effect of

increasing simulation time frequency, in which the

daily stress is calculated by averaging the every 3 hours

prediction and obtained results very close to simula-

tions that use daylight temperature (not shown).

Screening of drought stress functions

During the moist year of 2010 (May–August precipi-

tation was 878 mm), algorithms that calculate stress

factor as a function of SWC or Ws/Wd (SWC

method and Ws/Wd method hereafter) predicted

almost no drought stress, while the algorithm based

on AT/PT (AT/PT method) predicted substantial

stress over the growing season (Fig. 4a). During the

dry year of 2012 (May–August precipitation was

301 mm), all three methods indicated severe drought

during the summer, although the magnitude of water

shortage predicted by the Ws/Wd method was much

greater than the other two methods (Fig. 4b). The

more severe drought predicted by Ws/Wd starting

in July was likely caused by both the steady decrease

Fig. 2 (a) Temperature response curves used in representative

crop models. (b) 34-year (1980–2013) averaged growing season

daily maximum (red line), mean (black), and minimum (blue)

temperature for the Indiana farm in this study. Red and black

dots are daily maximum and mean temperatures for all years,

respectively.
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in soil water supply and the persistent high transpi-

ration demand (Fig. S2). The AT/PT method indi-

cated occasional water deficit in the early growing

season, while the other two methods were unrespon-

sive (Fig. 4b). Mean annual drought stress varied

substantially across years, fluctuating between 0.7

and 1.0 for years 1980–2013 (Fig. 4c). The stress cal-

culated by the SWC method closely resembled results

from the Ws/Wd method (R2 = 0.9), whereas the

AT/PT method differed (R2 = 0.53 with the SWC

method and R2 = 0.67 with the Ws/Wd method),

consistently predicting more severe drought stress.

Comparison between algorithm ensembles

The ensemble simulations generally captured the inter-

annual yield variability for the years 1980–2013
(Fig. S3), with R2 varying between 0.39 and 0.67, RMSE

ranging from 1.089 to 1.557 t ha�1, and Spearman corre-

lation ranging from 0.2 to 0.6 (Fig. 5). Our simulations

suggest there are increasing yield trends of 65–
80 kg ha�1 yr�1 (varying among simulations) over the

study period. These trends are lower than the value

derived from NASS statistics for Tippecanoe, Indiana

(i.e., 122 kg ha�1 yr�1), but outperform the simulated

results in Lobell et al. (2014) for Johnson, Iowa, using

APSIM-Maize and Drewniak et al. (2013) for the aver-

age US maize using CLM-Crop that show almost null

or even negative yield trends. The improvement is

mainly because we explicitly customized the simula-

tions with yearly management information (e.g., plant-

ing date, density, and fertilizer amount) according to

the NASS database (Table S1). Interestingly, using dif-

ferent drought stress algorithms had little effect on the

model predictability, except that the AT/PT method

produced slightly worse performance (e.g., SM2 and

Fig. 3 Effect of the temperature forcing data of algorithms on their predictions of mean annual heat stress (1 for no stress and 0 for full

stress) for the Indiana farm. Simulations using daily mean temperature are shown as blue lines, and simulations with daylight tempera-

ture are shown as red lines. Note that AquaCrop’s algorithm is on a different scale than those from the other models. Indexes of exces-

sive heat, namely extreme degree days (EDD) and killing degree days (KDD) (Data S4), are given for reference.

© 2016 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13376
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SM10; Fig. 5a,b). Although mainstream drought stress

algorithms produced quite different predictions for the

seasonal pattern of water deficit (Fig. 4), they displayed

similar capability to represent drought on an annual

basis.

Simulations from SM2, with the updated VPD algo-

rithm, generally gave the worst model predictions

(smallest R2 and Spearman correlation, largest RMSE;

Fig. 5), but outperformed all other simulations for the

extreme drought year of 2012. Other simulations with

the default VPD algorithm substantially underesti-

mated yield by as much as 2.9 t ha�1 in that year

(Fig. S3). Such systematic biases could be a result of the

overestimation of VPD and hence crop water demand.

In the current version of APSIM, the daily water-lim-

ited dry matter production, calculated as soil water

supply 9 transpiration efficiency (TE), is inversely pro-

portional to VPD (Data S3). The overestimation of VPD

may lead to unrealistically high water demand and

thus greatly overstates water deficits on exceptionally

hot days (Basso & Ritchie, 2014). On the other hand,

underestimating soil water supply when high VPD con-

tinuously depletes soil water could also overestimate

the drought stress. Take the extreme dry year of 2012 as

an example: weekly maximum VPD was almost

1.1 kPa higher when simulated by the default method

than with the conventional method (Fig. S6), which

lowered TE and reduced biomass, as water supply was

coincidently also exceptionally low. However, because

the APSIM-Maize model has long been calibrated with

the default VPD calculation route, simply changing the

VPD algorithm will not guarantee an improvement in

the overall model performance.

Using canopy temperature (SM3) instead of daily

mean temperature to calculate heat stress lowered

model performance at farms from Indiana (Fig. 5) and

Illinois (Fig. S4) and slightly improved model

Fig. 4 Drought stress (1 for no stress and 0 for full stress) for

the Iowa farm as predicted by different drought stress algo-

rithms. Seasonal dynamics of daily stress factors for the moist

year of 2010 (a) and the drought year of 2012 (b). (c) Interannual

variability of mean growing season stress factors from 1980 to

2013.

Fig. 5 Evaluation of model performance for the Indiana farm

under 30 ensemble simulation (SM) trials (10 heat 9 3 drought

stress algorithms) with respect to reproducing the USDA county-

level yield statistics from 1980 to 2013. Model predictability is

measured collectively by (a) R2 and (c) root mean square error

(RMSE) derived from the raw data, and (b) Spearman correlation

coefficient (q) derived from the time detrending data. See Fig. 1

for detailed algorithm combinations for each ensemble.

© 2016 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13376
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predictions for the Iowa farm (Fig. S5), possibly because

the empirical canopy temperature model we adapted

from STICS is only valid under a limited set of condi-

tions. The simulated mean daily canopy temperature

was generally higher than the air temperature mea-

sured at 2 m height, but mostly no more than 3°C
(Fig. S7), whereas the difference observed in rainfed

fields ranged from �2 to 7.5°C (Siebert et al., 2014).

Switching between heat stress algorithms made little

difference for predicted yield variability (i.e., SM1 vs.

SM4-6), confirming that current crop models are insen-

sitive to heat stress. Although it is difficult to recom-

mend any algorithm over the others under

contemporary climate conditions, crop modelers

should keep in mind that these algorithms may diverge

substantially when being used for future projections.

Simulations with the HI method consistently outper-

formed the others in terms of capturing the yield vari-

ability (R2 > 0.64) and minimizing the prediction error

(Fig. 5). SM8 and SM9 performed slightly better than

SM7, which used the PEGASUS algorithm, possibly

because PEGASUS does not include water stress like

the former two algorithms, but only considers heat

stress around the silking–anthesis period when calcu-

lating the actual HI (Deryng et al., 2014). Potential HI

for AquaCrop can be more conservative (e.g., 0.5 in this

study), because AquaCrop has incorporated a mecha-

nism through which crops generally produce excessive

flowers to help recover once environmental constraints

on pollination are ameliorated (Raes et al., 2009; Data

S3). The parameter of potential HI for SWAT should be

set slightly higher than for the other two models to

obtain acceptable results (e.g., potential HI = 0.55 in

this study), as the HI in SWAT is often stressed more

than that in the PEGASUS model and will not be com-

pensated by additional flowers as in AquaCrop.

Last but not least, the leaf-level photosynthesis algo-

rithm had a similar prediction bias (RMSE =
1.272 t ha�1) and yield variability (R2 = 0.54) as the

RUE-based simulation (SM1 vs. SM10; Fig. 5), despite

its more complex model structure and heavier compu-

tational load (if solving coupled equations uses a

numerical iteration method). It should be noted that the

Collatz model does not explicitly consider N limitation

when calculating the gross CO2 assimilation (Collatz

et al., 1992) and is thus less responsive to the historical

increase in fertilizer applications (Fig. S3).

Past and projected future contributions of heat and
drought stress to yield loss

Yield losses at the Indiana farm due to climatic stress

were attributed more to water deficits than suboptimal

temperatures (hot or cold; Fig. 6), and thus, the losses

caused by excess heat were even smaller. The direct

losses from higher than optimal temperature were

mostly trivial and accounted for no more than 6% even

in the notoriously hot years of 1988 and 2012, while the

losses from water stress were more than 10% in several

years and peaked at 30% in 2012. However, part of the

water stress impact could be an indirect effect of high

temperature, as warming increases water demand via

elevating the VPD and at the same time decreases soil

water storage by accelerating transpiration over short

time periods (Lobell et al., 2013).

Under projected future climates, the models suggest

drought will continue to play a critical role in reducing

the maize production at the Indiana farm, and the

stress will intensify faster under the high emission sce-

nario (Fig. 7). Average biomass reduction due to

drought will increase from 15% in the 2000s to 20% and

27% at the 2090s under RCP4.5 and RCP8.5 scenarios,

respectively. The influence of high temperature on bio-

mass accumulation is predicted to be small under

RCP4.5, but becomes increasingly prominent after

2050s under RCP8.5. In a few years warmer climates

increase yields, possibly because the positive effect of

moderate warming on the rate of grain filling over-

comes the negative effect on other processes. Extreme

heat only occasionally damages simulated maize pro-

duction in the first half of the 21st century, but reduces

grain number and yield with greater frequency and

intensity after the 2050s, especially under the RCP8.5

scenario (Fig. 7c). It should be noted, however, the rela-

tive importance of drought vs. heat is specific to the US

Midwest and may differ in more humid regions such as

Europe.

Discussion

Lessons from the review of algorithms

Heat stress functions can be effective when based on

Tmean, daylight, or hourly temperature as long as they

Fig. 6 Percentage yield reduction attributed to temperature and

water stress on the Indiana farm from 1980 to 2013, as simulated

using the standard APSIM-Maize model.
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are parameterized correctly. However, it is very likely

that a few models that base their temperature responses

of RUE on Tmean actually have functions that were

parameterized based on an hourly (or instantaneous)

temperature response. For crop models that use daily

Tmean to calculate heat stress factors, the optimal tem-

perature threshold for algorithms should be smaller

than algorithms using daylight or hourly temperature.

The likely maximum optimal temperature for a Tmean

function is around 25°C, which is smaller than the criti-

cal temperature threshold for maize growth (i.e., ~30°C)
derived from large-scale statistics by Schlenker &

Roberts (2009) and Lobell et al. (2013). Nonetheless, the

literature-suggested temperature threshold is very close

to the maximum optimal daylight or hourly tempera-

ture for RUE of 31–32°C. Interestingly, as we move

from regional scale models (e.g., AgroIBIS, EPIC, and

SWAT) to cropping systems models (e.g., WOFOST)

and then plant level models (e.g., CERES, and MAIZ-

SIM), the Topt increases, indicating the need to consider

different Topt for different scales of simulation analysis

(region, crop, leaf-level). One follow-up concern is that

these temperature thresholds may vary across space,

given that the cultivars planted could be different from

one place to another as a result of years of breeding and

selection. While the spatial pattern of an optimal tem-

perature threshold deserves further investigation, we

also suggest that crop modelers consider replacing this

type of hard-coded temperature threshold with uncer-

tain parameters, to increase model agility (Mendoza

et al., 2015).

The use of daylight temperature instead of instead of

Tmean improves model performance by making heat

stress algorithms responsive, likely because the current

parameterizations of heat stress algorithms in most

crop models that use daily mean temperature happen

to be close to the RUE response curve to daylight tem-

perature (Figs 2a and S1). This simple modification is

very easy to implement and is further justified when

the difference between 3-hour simulations and the use

of TmaxþTmean

2 is very small on either a daily or an annual

basis. Shortening the simulation time step certainly

works because it allows the algorithm to reproduce the

diurnal cycle of air temperature and hit those time

points when temperature is significantly higher than

the threshold. To control the computational cost that

includes major re-parameterization, crop modelers

would not have to run the whole model with higher

time frequency, but could simply run the subroutine

used to calculate stress factors.

The behaviors of drought stress algorithms were

close to our expectations. In general, predictions made

by the SWC method were less severe but smoother,

possibly because the use of a multilayer tipping-bucket

model in the APSIM. As maize roots can normally pen-

etrate to 1.5-2 meters depth and withdraw water

throughout the whole soil profile (Hochholdinger &

Tuberosa, 2009), crop models often calculate water

stress by averaging stress factors across all of the layers.

However, simulated soil moisture of deep layers in

many crop models normally had very small fluctua-

tions, therefore minimizing simulated water stress for

the whole soil column. The AT/PT method, which cal-

culates potential transpiration with the Priestley-Taylor

equation (Priestley & Taylor, 1972), showed substantial

daily fluctuation, and tended to overestimate drought

stress when there was no or mild soil water shortage.

Sau et al. (2004) also reported that the use of Priestley-

Taylor equation tends to overpredict potential ET

measured under irrigated and rainfed conditions in

southern Spain, which reduces stress factors when AT

Fig. 7 The effects of drought (a), high temperature via photo-

synthesis (b), and heat via grain development (c) on maize yield

for the Indiana farm under two Representative Concentration

Pathway (RCP) scenarios. Solid lines are mean predictions from

eight general circulation models (GCMs), and shaded areas rep-

resent one standard deviation.
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is fixed, and therefore underestimates LAI, biomass,

and grain yield. The use of the FAO56 ET method

(Allen et al., 1998) has been shown to perform better

than the Priestley-Taylor method (Saseendran et al.,

2008), but requires more detailed ground observational

data as input which may not be widely available (e.g.,

wind velocity and relative humidity). However, even if

the calculation of PT can capture daily weather fluctua-

tions well, how fast crops can respond to those fluctua-

tions remains an open question. The Ws/Wd method,

which is based on the concept of transpiration effi-

ciency (Data S3.2), predicted little water stress during

the cool early growing season, likely because Wd is

small as a result of: (i) low VPD at low temperature and

hence high TE; (ii) low dry matter accumulation rates

given the low temperatures and less radiation intercep-

tion in the early season. During the drought year of

2012, the Ws/Wd method predicted substantially more

severe drought than the AT/PT method due to both

high Wd values and low Ws (Fig. S2). It should also be

noted that a recent conceptual theoretical analysis

(Basso & Ritchie, 2014) argued that APSIM tends to

overestimate VPD during hot summers.

Lessons from the ensemble simulation

The consistent underestimation of the yield increase

trend by all simulations may be a consequence of simu-

lating a single cultivar for the whole study period and

in all of the different locations (Fig. 5a). It is well estab-

lished that farmers change cultivars very frequently,

and cultivars vary substantially in their yield potential

as a result of differences in traits such as relative matu-

rity (Kumudini et al., 2014), light use efficiency (Tol-

lenaar & Aguilera, 1992; Singer et al., 2011), and

genetically modified stress-tolerance (Xu et al., 2013).

While such cultivar information is more difficult to

obtain, crop modelers can inversely estimate spatiotem-

poral variations of cultivar-specific parameters against

in-situ measurements. Given the very limited number

of existing case studies (Sakamoto et al., 2010; Jones

et al., 2011; Archontoulis et al., 2014a,b), this area

deserves more research effort in the future.

Contrary to our expectations, the seemingly simple

HI method outperformed more mechanistic methods

that account for grain numbers and grain filling. A pos-

sible explanation is that the HI method has been param-

eterized based on historical county-level yield statistics

data that was used to evaluate models performance

here. Moreover, when simulating maize yield with

more mechanistic algorithms, climate variability has

already been largely represented in the biomass esti-

mates, so that additional steps to simulate grain num-

ber and grain filling based on the concept of carbon

source and sink lead to a greater uncertainty than

obtained with the HI method. On the other hand, mod-

els that explicitly simulate kernel development can pro-

vide estimates of grain number, sugar, and oil content,

all of which are commercially valuable information

(Borr�as et al., 2002). In short, more complex and mecha-

nistic algorithms are not necessarily better than simpler

alternatives. The pros and cons of simple algorithms

largely depend on the model application scale and vari-

able of interest.

Although the leaf-scale photosynthesis model

showed no apparent advantages in terms of predicting

yield, it should be considered as a research frontier for

next generation model development (Boote et al., 2013).

The conventional RUE-based crop models have hit a

bottleneck, in that they lack leaf-level physiological pro-

cesses, and hence cannot disentangle interactions

between photosynthesis and many well-known regulat-

ing factors such as light, CO2, leaf energy, leaf water,

and enzyme status (Lizaso et al., 2005). For example,

elevated atmospheric CO2 is believed to mitigate water

stress in maize by reducing stomatal conductance and

improving water use efficiency (Leakey et al., 2006;

Hussain et al., 2013), but how much this will truly bene-

fit yield is open to debate (Leakey et al., 2009; Boote

et al., 2013; Urban et al., 2015). In fact, a negative feed-

back exists between improved water use efficiency and

canopy temperature and VPD, because lower transpira-

tion will reduce latent heat flux from canopy to the

atmosphere, causing foliage temperatures to rise, which

could again increase transpiration (Lobell et al., 2013).

Improved crop modeling at the leaf scale that couples

CO2, water, and energy is thus needed.

Reflections on future crop model improvements

Overall, our analysis shows that algorithms from repre-

sentative maize models do not adequately capture the

impact of climate extremes on maize photosynthesis

and yield. These conclusions are consistent with several

other model comparison studies for cereal crops under

various growth conditions (e.g., Asseng et al., 2013; Eit-

zinger et al., 2013; Bassu et al., 2014). Knowledge gaps

and promising research frontiers for improving the pre-

dictability and credibility of current crop models have

been discussed in a number of review papers (Boote

et al., 2013; Parent & Tardieu, 2014; Barlow et al., 2015;

Rezae et al., 2015). Based on our analyses, we highlight

the following three features that have not been well

addressed in existing crop models.

First, crop models need better mechanisms to handle

climate and weather extremes. Existing temperature

and moisture response functions of many physiological

processes used by crop models to capture the climate

© 2016 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13376
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variability are mainly summaries of observed historical

statistics (Reichstein et al., 2013) and hence are ques-

tionable when used to fit novel climate conditions. For

instance, the extremely high yield reduction predicted

by the standard APSIM in the 2090s should be treated

with caution, as it has not been validated at those novel

bioclimatic scenarios. Regarding time scale, heat waves

may happen very quickly—within a window of a few

hours—and therefore is beyond the current simulation

capacity of most crop models. CropSyst has recently

incorporated a mechanism to discount biomass produc-

tion when high temperatures last for more than 4 hours

(Alderman et al., 2014). In addition, a perspective from

ecosystem modeling suggests defining extreme climatic

events as ‘an episode or occurrence in which a statisti-

cally rare or unusual climatic period alters ecosystem

structure’ (Smith, 2011). In this sense, crop models

should go beyond the current continuous reduction

functions and incorporate mechanisms to capture heat

and drought stress that occurs singly, coincidently or

when one follows another, and whose impact may or

may not be reversible. Existing models only have very

limited implementations for events-based simulation.

For example, in APSIM-Maize high temperatures

immediately following emergence will kill a fraction of

plants. The implementation of a response of grain num-

ber set to heat extremes in APSIM and DSSAT is an

early attempt to account for the carryover effect,

although its parameterization is not adequately reliable

due to limited experimental data. Other models, includ-

ing CropSyst, GLAM, MONICA, and PEGAUS, imple-

ment a reduction in HI when there is heat stress around

the flowering stage.

Second, although the importance of considering

canopy temperature in quantifying the heat stress

impact has been emphasized quite often in recent years

(Siebert et al., 2014; Rezae et al., 2015), potential losses

from increasing nighttime temperature also deserve

adequate attention. Nighttime warming has been

shown to negatively affect plant growth across the

Northern Hemisphere, because it boosts nighttime

plant respiration that consumes carbon accumulated

during daylight photosynthesis (Peng et al., 2013). Evi-

dence also suggests that damage from nighttime heat

stress is amplified during the reproductive phases and

that nighttime warming was partly responsible for the

lower productivity and reduced kernel quality

observed across the US Corn Belt in 2010 and 2012

(Hatfield et al., 2014). With the number of hot nights

projected to increase by as much as 30%, yield reduc-

tions will become more prevalent (Hatfield et al., 2011).

However, none of the models we reviewed explicitly

considered the direct impact of nighttime warming.

Crop models with leaf-level photosynthesis algorithms

can be easily adapted to account for nighttime heat

(e.g., AgroIBIS, CSM-IXIM, and MAIZSIM), although

they have not been well parameterized and tested.

MONICA also uses a mechanistic photosynthesis

model, but its daily time step certainly obscured the

signal of high nighttime temperature (Supplementary

material). For models using the RUE approach, the

nighttime temperature effect could be considered by

incorporating a new limiting factor as a function of

nighttime temperature when calculating the daily bio-

mass accumulation, or by adding a reduction term else-

where (e.g., when allocating the dry matter to grains).

Finally, the best way to coordinate multiple stresses

needs further investigation. For those RUE-based mod-

els, the minimum of heat and drought stress factors is

normally used to limit potential biomass production

(e.g., APSIM-Maize, CropSyst, CSM-CERES, and

SWAT), while a product of both is applied in PEGASUS

and STICS. In some cases, VPD is further used to adjust

the potential RUE or TE (e.g., APSIM, CropSyst, SWAT,

and GLAM). For leaf-level photosynthesis models, the

temperature effect is supposed to be captured by the

temperature dependency of each parameter, and water

stress is reflected in the stomatal conductance. But

AgroIBIS also adjusts maximum photosynthetic rate by

a water stress factor, and MAIZSIM limits stomatal con-

ductance by a function of leaf water potential. This vari-

ety of approaches begs the question: Do any or all of

these forms lead to double accounting of heat and

drought stresses? To our knowledge, no studies have

answered this question. When simulating yield forma-

tion, either via grain development or the HI method,

some models purely use heat or drought stress alone

and some models use both (Tables 1 and 2). Given that

these crop models are individually developed and their

main purpose is to predict biomass or yield variability,

the inconsistency in the organization of these stress fac-

tors is quite understandable. However, this question

should be answered because: (i) current models may

give the right result but for the ‘wrong reasons’, that is,

despite being based on questionable algorithms, and

(ii) the lack of an answer hinders the assimilation of

newly discovered stress mechanisms. One possible

solution for mechanistic models is to compare interme-

diate model outputs (such as LAI, canopy level assimi-

lation) to intermediate measurements (Boote et al.,

2013), while for RUE-based models more efforts are

needed.

In short, our study identifies the model formulations

that best predict the impacts of heat and drought stress

on maize biomass production and yield and recognizes

gaps to further reduce the prediction uncertainty. The

framework presented here can be applied to modeling

other crop physiological processes and factors (e.g.,

© 2016 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13376
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phenology, chill, and canopy transpiration) and used to

improve yield predictions of other crops in a wide vari-

ety of crop models, thus is a significant advance in the

crop modeling research.
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