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Abstract. Reliability of terrestrial ecosystem models highly depends on the quantity and quality of the

data that have been used to calibrate the models. Nowadays, in situ observations of carbon fluxes are

abundant. However, the knowledge of how much data (data length) and which subset of the time series

data (data period) should be used to effectively calibrate the model is still lacking. This study uses the

AmeriFlux carbon flux data to parameterize the Terrestrial Ecosystem Model (TEM) with an adjoint-based

data assimilation technique for various ecosystem types. Parameterization experiments are thus conducted

to explore the impact of both data length and data period on the uncertainty reduction of the posterior

model parameters and the quantification of site and regional carbon dynamics. We find that: (1) the model

is better constrained when it uses two-year data comparing to using one-year data. Further, two-year data

is sufficient in calibrating TEM’s carbon dynamics, since using three-year data could only marginally

improve the model performance at our study sites; (2) the model is better constrained with the data that

have a higher ‘‘climate variability’’ than that having a lower one. The climate variability is used to measure

the overall possibility of the ecosystem to experience all climatic conditions including drought and extreme

air temperatures and radiation; (3) the U.S. regional simulations indicate that the effect of calibration data

length on carbon dynamics is amplified at regional and temporal scales, leading to large discrepancies

among different parameterization experiments, especially in July and August. Our findings are

conditioned on the specific model we used and the calibration sites we selected. The optimal calibration

data length may not be suitable for other models. However, this study demonstrates that there may exist a

threshold for calibration data length and simply using more data would not guarantee a better model

parameterization and prediction. More importantly, climate variability might be an effective indicator of

information within the data, which could help data selection for model parameterization. We believe our

findings will benefit the ecosystem modeling community in using multiple-year data to improve model

predictability.
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INTRODUCTION

Large-scale process-based biogeochemical
models have been widely used to simulate
ecosystem carbon and nitrogen dynamics, such
as TEM (McGuire et al. 1992), Biome-BGC
(Running and Coughlan 1988), CASA (Potter et
al. 1993), CENTURY (Parton et al. 1993) and
Biosphere Energy Transfer Hydrology scheme
(BETHY; Knorr 2000). Although based on differ-
ent underlying assumptions, these models are
able to reproduce the observed fluxes with
careful calibration using observational data.
Therefore, the performance of the model depends
on how well its parameters are calibrated other
than the model structure or algorithms being
used.

Eddy covariance techniques have been used to
measure exchanges of carbon, water, and energy
between terrestrial ecosystems and the atmo-
sphere. Globally over four hundred eddy covari-
ance flux towers are active and operated on a
long-term and continuous basis. The data mea-
sured from these towers help to understand
terrestrial ecosystem processes and are used to
calibrate terrestrial ecosystem model parameters
(Baldocchi et al. 2001, Baldocchi 2003). Terrestrial
ecosystem model calibration with eddy covari-
ance data aims to constrain the uncertainty in
model parameter space and optimize the model
output of biosphere-atmosphere CO2 exchanges.
Model calibration methods have been studied
extensively during the recent decades (Santaren
et al. 2007, Kuppel et al. 2012). However, the
sensitivity of terrestrial ecosystem model calibra-
tion to the characteristics of calibration data (e.g.,
data length, data period) has not been well
investigated. For example, Knorr and Kattge
(2005) showed that, by assimilating data of only
7 days, half-hour net ecosystem production
(Trumbore et al. 2006) and energy flux (LE), the
ecosystem model uncertainty could be substan-
tially reduced. More importantly, the 7-day
calibration data were not randomly selected.
They carefully chose the 7-day data (14 January,
3 March, 9 July, 24 September, 25 October in 1997
and 15 May, 9 August in 1998) to represent
typical weather conditions of different seasons.
The importance of calibration data period was
highlighted in their study, but a quantitative
criterion to select an appropriate period of

available data for model calibration is still
lacking.

Classical model calibrations tend to use as
much calibration data as they could, in order to
adequately use information about the ecosystem
processes. However, those calibration experi-
ments using as much data as they could were
not demonstrated to be superior to those using a
certain length of data (Sorooshian et al. 1983).
Previous studies focusing on the calibration data
length suggested that a length of data ranging
from one year to eight years was sufficient to
calibrate a particular hydrological process (Gan
and Biftu 1996, Yapo et al. 1996, Xia et al. 2004).
However, for calibrating terrestrial ecosystem
models, the data length issue has not been well
addressed to date. Here our first objective is to
investigate the sensitivity of ecosystem model
calibration to the length of calibration data.

Generally, terrestrial ecosystem models are
calibrated with a subset of available observation-
al data and validated with the remaining data.
However, which section of available data (data
period) should be used to calibrate the model has
not yet been well studied. Previous efforts
suggested that we must use appropriate data
for calibration, and more importantly the data
should be representative of various possible
climatic conditions (e.g., drought/wet) experi-
enced by the system (Gan and Biftu 1996). A
recent study showed that, in calibrating hydrol-
ogy model, the unusual events were extremely
helpful to constrain model parameters (Singh
and Bárdossy 2012). The ‘‘data depth’’ was
employed as an important concept to identify
the abnormal events within the entire dataset
(Bárdossy and Singh 2008). While some other
studies indicated that the model parameteriza-
tion was insensitive to the data period selected
(Yapo et al. 1996). In this study, we hypothesize
that: (1) calibration data period selection is as
important as calibration data length in reducing
model parameters uncertainty; (2) to best reduce
the uncertainties in model parameter space,
calibration data should be carefully selected so
that they represent the various climatic condi-
tions experienced by ecosystems. Thus, our
second objective is to test if calibrations using
the data that have covered various climatic
conditions (including drought/wet, high temper-
ature/low temperature and high radiation/low
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radiation) are superior to the calibrations using
flux data that cover normal climatic conditions in
improving model parameterization.

The optimal calibration data length could be
different at various calibration sites depending
on the site characteristics such as ecosystem types
(Xia et al. 2004). Previous studies often focused
on only one or two specific ecosystem types. For
example, Xia et al. (2004) worked on a grassland
site and Knorr and Kattge (2005) studied one
grassland site and one pine forest site. In this
study, the calibrations with various data lengths
and data periods were conducted at sites with
different ecosystem types including deciduous
broadleaf forest, coniferous forest, grassland,
shrubland and boreal forest. Thus, our third
objective is to explore whether or not the
selection criterion of optimal calibration data
length and data period will change with ecosys-
tem types.

METHODS

To achieve our three research objectives, we
employ an adjoint method (Zhu and Zhuang
2013a, 2014) to parameterize the Terrestrial
Ecosystem Model by assimilating AmeriFlux
data of net ecosystem production and gross
primary production (GPP). Various model cali-
bration experiments are conducted. First, we
calibrate parameters with one-year, two-year
and three-year data, respectively. The model
performance (after assimilating different lengths
of data) is then evaluated to examine how much
data is needed to obtain a satisfactory model that
reasonably agrees with observations when the
Root Mean Square Errors calculated between
model simulations and observation data are less
than a tolerance value (e.g., 5%). Second, we
define ‘‘Climate Variability (ClimVar)’’ as the
summation of intrinsic variation of precipitation,
radiation and air temperature over the calibra-
tion data period. We then group the calibration
data into two categories (above and below the
mean ClimVar) and conducted one-year, two-
year and three-year model calibrations again to
explore which calibration data category has
overall better model performance. Finally, we
analyze the impacts of data length and data
period on model calibration at five sites with
different ecosystem types.

Model description
The Terrestrial Ecosystem Model (TEM) is a

large-scale, process-based biogeochemical model.
It simulates the dynamics of carbon (C), nitrogen
(N) and water (H2O) of various terrestrial
ecosystems. The carbon and nitrogen fluxes and
vegetation and soil pools are estimated at a
monthly time step based on the spatially explicit
information on climate, ecosystem type, soil type,
and elevation. McGuire et al. (1992) investigated
how interactions between carbon and nitrogen
dynamics affected the carbon cycling. They
incorporated the mechanism of C-N interaction
into TEM and they concluded that carbon cycling
could be strongly affected by the limited N
availability in ecosystems. Zhuang et al. (2003)
modeled the effects of soil thermal dynamics on
carbon cycling and improved the simulations of
the timing and magnitude of atmospheric CO2

draw-down during growing seasons. In this
study we use the TEM version 5.0 that is
comprised of both C-N interaction and soil
thermal dynamics. This version of TEM has been
widely used to model the carbon dynamics at
both regional and global scales.

GPP is a function of a maximal photosynthesis
capacity multiplied by a number of limiting
scalars:

GPP ¼ Cmax 3 f ðphenologyÞ3 f ðfoliageÞ
3 f ðCa;GvÞ3 f ðTÞ3 f ðPARÞ
3 FðNAÞ3 f ðFTÞ ð1Þ

where Cmax is the maximum rate of carbon
assimilation through photosynthesis, the remain-
ing terms are scalar factors: f(phenology) char-
acterizes the ratio of monthly leaf area to the
potential maximum leaf area (Raich et al. 1991);
f(foliage) is the ratio of leaf biomass relative to
maximum leaf biomass (Zhuang et al. 2010);
f(Ca,Gv) represents the effect of atmospheric CO2

concentrations (Ca) and canopy conductance (Gv)
on GPP (McGuire et al. 1997); f(T) and f(PAR) are
air temperature and photosynthetically active
radiation scalar factors (Raich et al. 1991); f(NA)
represents the nitrogen availability and its
limitation on carbon production (McGuire et al.
1992); f(T) describes how the soil freeze-thaw
thermal dynamics affect the GPP (Zhuang et al.
2003).

Soil heterotrophic respiration (RH) is calculated
as a function of soil carbon (Cs) affected by soil
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moisture and soil temperature:

RH ¼ KD 3 Cs 3 f ðRHQ10Þ3 MOIST ð2Þ

where KD is the reference heterotrophic respira-
tion rate at 108C, f(RHQ10) describes the tem-
perature dependency of heterotrophic respiration
on the soil temperature. MOIST is the moisture
scalar factor.

Model autotrophic respiration is comprised of
plant growth respiration (Rm) and maintenance
respiration (Rg). Rg is estimated to be 20% of the
difference between GPP and Rm (Raich et al.
1991). Rm is formulated as a function of plant
carbon (Cv) influenced by air temperature (Eq. 3):

Rm ¼ KR 3 Cv3f ðRAQ10Þ ð3Þ

where KR is the reference plant respiration rate at
108C, f(RAQ10) describes the temperature de-
pendency of plant respiration rate on air tem-
perature.

Ten key parameters (Table 1) associated with
the three ecosystem processes (including GPP, RA

and RH) are selected based on previous model
sensitivity and calibration studies (Zhu and
Zhuang 2014). CMAX is the most important
parameter in determining GPP; KI is included
in scalar factor f(PAR); KC is in scalar f(Ca,Gv).
They have been demonstrated to be the top three
most important parameters of modeling GPP and
NEP (Chen and Zhuang 2012). ALEAF, BLEAF
and CLEAF of f(phenology) are ranked among
the most important parameters in controlling
GPP (Tang and Zhuang 2009, Zhu and Zhuang
2014). The ecosystem respirations have been
shown to be strongly affected by ambient
temperature and could be modeled as an
exponential function of Q10 parameters (Lloyd

and Taylor 1994, Kirschbaum 1995, Fang and
Moncrieff 2001). Therefore, here we select the
plant and soil Q10 respiration parameters (RA-
Q10A0, RHQ10) as our key parameters. RA-
Q10A0 is the leading coefficients for Q10 model
of plant respiration included in f(RAQ10) (Eq. 3);
RHQ10 is a coefficient of Q10 model for
heterotrophic respiration included in f(RHQ10)
(Eq. 2). In addition, we also chose the first order
respiration rates at reference temperature 108C
for plant (KR) and soil (KD) as our key param-
eters.

Forcing and calibration data
TEM is driven by monthly climate data of

cloudiness, air temperature and precipitation
(New et al. 2002, Mitchell and Jones 2005). The
model also requires geographic and topograph-
ical information including elevation, soil texture
and plant functional type (Raich et al. 1991,
McGuire et al. 1992). The long-term global
averaged atmospheric CO2 concentration is
obtained from observations at Mauna Loa,
Hawaii (New et al. 2002).

Monthly aggregated GPP and NEP from
AmeriFlux level 4 products are used as calibra-
tion data. NEP is directly measured by the
AmeriFlux network, while GPP is derived based
on NEP measurements (Reichstein et al. 2005).
During daytime NEP contains both plant photo-
synthesis (GPP) and total ecosystem respirations
(RESP), while during nighttime NEP measure-
ments include only RESP. The nighttime RESP
measurements are extrapolated to daytime ac-
cording to a temperature response function.
Therefore the daytime GPP could be separated
from NEP by subtracting the estimated daytime

Table 1. Key parameters associated with ecosystem processes of photosynthesis, autotrophic respiration and

heterotrophic respiration.

ID Acronym Definition
Lower
bound

Upper
bound Units

1 CMAX Maximum rate of photosynthesis C 50 1500 g m�2 mo�1

2 KI Half saturation constant for PAR used by plants 20 600 J cm�2day�1

3 KC Half saturation constant for CO2-C uptake by plants 20 600 lL L�1

4 ALEAF Coefficient A to model the relative photosynthetic capacity of vegetation 0.1 1.0 None
5 BLEAF Coefficient B to model the relative photosynthetic capacity of vegetation 0.1 1.0 None
6 CLEAF Coefficient C to model the relative photosynthetic capacity of vegetation 0.0 0.5 None
7 RAQ10 Leading coefficient of the Q10 model for plant respiration 1.350 3.3633 None
8 RHQ10 Change in heterotrophic respiration rate due to 108C temperature change 1 3 None
9 KR Plant respiration rate at 108C 0.0316 3.16 3 10�8 g m�2 mo�1

10 KD Heterotrophic respiration rate at 108C 0.0005 0.007 g m�2 mo�1
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RESP. In this study, monthly aggregated NEP and

GPP data from Harvard forest site (Wofsy et al.

1993, Goulden et al. 1996), Howland main forest

site (Hollinger et al. 1999), Vaira Ranch site

(Baldocchi et al. 2004), Kennedy Space Center

Scrub Oak site (Powell et al. 2006), Wind River

Field Station site (Harmon et al. 2004) are used to

calibrate deciduous broadleaf forest, coniferous

forest, grassland, shrubland and boreal forest,

respectively (Table 2).

Model calibration method

An adjoint based data assimilation framework

has been developed for TEM model calibration

(Zhu and Zhuang 2014). The adjoint version of

TEM model was employed to calculate the

sensitivity of the cost function with respect to

model parameters. Then we use the Broyden–

Fletcher–Goldfarb–Shanno (BFGS) algorithm

(Shanno 1970), a quasi-Newton optimization

method, to optimize model parameters. The cost

function is defined as:

J ¼ ðx � xaÞTS�1ðx � xaÞ

þ
XN

i¼1

ðf ðxÞi � f o
i Þ

TR�1ðf ðxÞi � f o
i Þ ð4Þ

where x is a column vector of model parameters

of interest, xa are prior parameters and S is a

prior error covariance. The first term (x –

xa)
TS�1(x�xa) accounts for the prior constraint

on the calibrated model parameters, f(x) is an

observation operator, which calculate observable

variables ( f8 ) based on TEM model algorithms

and model parameters (x). In this study, the

observable variables are AmeriFlux monthly

NEP and GPP thus f8 is a column vector

containing the two variables. R is the data error

covariance. The second term

XN

i¼1

ðf ðxÞi � f o
i Þ

TR�1ðf ðxÞi � f o
i Þ

accounts for the model-data departure summed
over the course of assimilation (i 2[1, N ]).

The gradient of the cost function with respect
to model parameter is calculated with an adjoint
version of TEM. The second order derivatives of
the cost function to model parameters (Hessian
matrix) is approximated with the BFGS algo-
rithm (Shanno 1970). Then, the decreasing
direction of the cost function could be calculated
as:

p ¼ �rJ

Hess
ð5Þ

where p is decreasing direction, rJ is the first
order derivatives of J to model parameters, and
Hess denotes Hessian matrix. Then the model
parameter is updated iteratively (Eq. 6) until the
cost function is minimized:

xkþ1 ¼ xk þ a 3 pk ð6Þ

where xkþ1 and xk are model parameters at kth
and k þ 1th iterations, a is step size and pk is
decreasing direction calculated at kth iteration.
Through minimizing the cost function, we are
able to get the model close to real observations
and ensure that the optimized model parameters
are constrained with our prior knowledge. The
advantage of using adjoint-based data assimila-
tion is computational efficiency, especially when
the dimension of parameter space is high (10 in
this study). Traditional random sampling-based
data assimilation methods (e.g., Monte Carlo
method) need a large number (e.g., ;106) of
samples in the parameter space, and each sample
requires an individual model run, which is time-
consuming. For more technical details about the
adjoint TEM development refer to Zhu and

Table 2. Description of AmeriFlux sites involved in this study.

ID Site name Location Ecosystem type PI
Available
data years Reference

1 Harvard Forest 42.58 N, 72.28 W Deciduous
broadleaf forest

Munger, B. 1992–2006 Wofsy et al. 1993,
Goulden et al. 1996

2 Howland Forest Main 45.28 N,68.78 W Coniferous forest Hollinger, D. 1996–2004 Hollinger et al. 1999
3 Vaira Ranch 38.48 N,120.98 W Grassland Baldocchi, D. 2001–2007 Baldocchi et al. 2004
4 Kennedy Space Center

Scrub Oak
28.68 N,80.68 W Shrubland Drake, B. 2000–2006 Powell et al. 2006

5 Wind River Field Station 45.88 N,121.98 W Boreal forest Bible, K. 1998–2005 Harmon et al. 2004
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Zhuang (2014).

Observational data error covariance
Observational error covariance (R) is an

important component of data assimilation, since
it would significantly affect the estimation of
optimal model parameters. However, the estima-
tion of R still challenges the research community.
Classical ways use a constant data error or a
fraction of the observation data to approximate R
(Knorr and Kattge 2005). Another approach is to
explicitly calculate the data error with multiple
measurements that are temporally or spatially
close to each other. For example, measurement
errors could be estimated by: (1) comparing
measurements from multiple nearby eddy flux
towers or (2) comparing measurements from
single tower under similar environmental condi-
tions (Hollinger and Richardson 2005, Richard-
son and Hollinger 2005).

Since most of the calibration sites involved in
this study have no nearby flux sites (Harvard
Forest site has a nearby site but with different
vegetation type), we use observations from a
single tower to estimate the data error covariance
by assuming the environmental conditions do
not change much in the same month at different
years. As a result, we have 12 R at each
calibration site corresponding to months from
January to December:

Ro ¼
1

N

XN

i¼1

ðgo
i � goÞðgo

i � goÞT ð7Þ

where N is the number data point for measure-
ment error calculation. For example, if the site
has 15 years data, then N ¼ 15 and we have 15
data points for each month.

go
i ¼ ½

GPPi

NEPi
�

and go is the mean of the N observations.

Model implementation protocol
The model simulation is implemented in the

following order: (1) spin-up; (2) transient; (3)
calibration; and (4) restart. Firstly, the model runs
a ‘‘spin-up’’ with repeated historical climate
forcing. It runs from 1948 until the first year of
available AmeriFlux data. The simulation is
repeated five times for the purpose of eliminating

the effects of long-term climate trend on ecosys-
tem dynamics. The model is then run for the
transient time period that has observational flux
data. Meanwhile, the model firstly runs till the
last year of calibration data. After obtaining an
optimal set of model parameters, the model is
restarted from the beginning of the transient
year. Finally, we take the outputs and compare
them with the observational data. We exclude the
data that have already been used to calibrate our
model before calculating the metrics for evaluat-
ing model performance.

Model calibration experiments
We explore how sensitive of model calibration

is to using different lengths of calibration data.
We conduct experiments of model calibration
using data length of one-, two- and three-
consecutive years. The rest of observational data
is used for evaluating the model performance. All
possible combinations of calibration data with
different lengths are considered. For example, at
Harvard Forest site (1992 to 2006), there are 15,
14 and 13 calibration runs for one-year, two-year
and three-year experiments, respectively.

We also examine the impact of using different
portions of available time series data as calibra-
tion data on the goodness of the calibrated
model. Previous studies suggested that the
calibration data should cover typical climatic
conditions of various seasons (Knorr and Kattge
2005). Therefore, we define a new term ‘‘climate
variability’’ (hereafter referred to as ClimVar) to
account for the variation of precipitation, radia-
tion and air temperature over the period of data
that have been used to calibrate the model. To
ensure the three variables are on the same order
of magnitude, they are normalized with the same
numerical range. The normalization is done by
subtracting the variable mean from each variable
and dividing by its standard deviation. All three
variables have a mean of zero and a standard
deviation of one. More importantly, each variable
represents the deviation from its mean. We then
take the absolute value of the three variables and
sum them up to come up with the variable of
ClimVar (Fig. 1)
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ClimVar ¼ maxj T �meanðTÞ
stdðTÞ j

þmaxjP�meanðPÞ
stdðPÞ j

þmaxjR�meanðRÞ
stdðRÞ ð8Þ

where T, P, and R are air temperature, precipi-
tation, and solar radiation, respectively and
mean(.) and std(.) are arithmetic mean and
standard deviation, respectively.

The ClimVar measures the overall variability of
climatic conditions that an ecosystem experiences
including drought/wet, high temperature/low
temperature and high radiation/low radiation.
We hypothesize that, in order to reduce the
uncertainties in model parameter space, calibra-
tion data should be carefully selected so that they
represent the various climate conditions experi-
enced by the ecosystems.

For calibration experiments of a certain data
length (one-year, two-year or three-year), a mean
ClimVar is calculated by averaging the specific
ClimVar from all the experiments. Depending on
the comparison between a ClimVar of a specific

experiment and the mean ClimVar, calibration
data are grouped into two categories: data
ClimVar below mean (Category 1) and data
ClimVar above mean (Category 2). By comparing
the calibrated models’ performance for the two
categories, we are able to examine how different
portions of data will affect the model calibration.

For each calibration run, 10 parameters are
calibrated (Table 1). Then, the performance of the
TEM model is assessed with Root Mean Square
Error (RMSE) and posterior parameter uncer-
tainty reduction (UR). The RMSE accounts for
total model biases and intuitively shows how
good our model is after calibration:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

ðmodeli � obsiÞ2

N

vuuuut
ð9Þ

where obsi and modeli are AmeriFlux observa-
tions and model outputs at time step i and N is
the total number of pairs of observation and
model outputs. The change of parameter uncer-
tainties after model calibration is as also another
important indicator of model performance (Rau-

Fig. 1. ClimVar (red bars) is the sum of absolute values of normalized cloudiness variability (blue bars),

precipitation variability (light blue bars) and air temperature variability (yellow bars).
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pach et al. 2005). The uncertainty reduction (UR)
accounts for the reduction of parameter uncer-
tainty compared with the prior parameter uncer-
tainty. It quantitatively shows how much useful
knowledge we can learn through assimilating a
certain length of observational data:

UR ¼ ð1� rpost

rprior
Þ3 100% ð10Þ

where rprior is prior parameter uncertainty that
assumed to be 40% of each parameter range,
rpost is posterior parameter uncertainty that is
the squared root of diagonal elements from
posterior parameter uncertainty matrix (Rpost).

Rpost ¼ ðS�1 þ
XN

i¼1

HiR
�1HiÞ�1 ð11Þ

where S and R are prior parameters error
covariance matrix and data error covariance
matrix, respectively. Hi is the Jacobian matrix
evaluated at the minimum of the cost function, i
2 [1, N ] covers the data assimilation time
window.

RMSE provides limited information about
model performance under some conditions. For
instance, it tends to underestimate the bias of
model prediction when the predicted value is
relatively small and a small RMSE does not
guarantee that the model accurately captures the
system dynamics (e.g., seasonality; Bennett et al.
2013, Ritter and Muñoz-Carpena 2013). In addi-
tion to the magnitude-based indicator (RMSE),
two complementary criteria including Mean
Absolute Percentage Error (MAPE: Eq. 12) and
Nash-Sutcliffe efficiency coefficient (NSE or R2:
Eq. 13) are employed to assess the model
performance:

MAPE ¼ 1

n

Xn

i¼1

jmodeli � obsi

obsi
j ð12Þ

NSE ¼ 1�

Xn

i¼1

ðobsi �modeliÞ2

Xn

i¼1

ðobsi � obsÞ2
ð13Þ

where MAPE evenly weights the model predic-
tion error over the course of entire simulation. It
especially benefits the error quantification of
ecosystem model during non-growing season,

since during winter, model predicted values are
small and may have large relative errors,
although the absolute error is small. NSE tells
how well the model explains the temporal
variation of the observation, which is an impor-
tant indicator of model performance in repro-
ducing ecosystem seasonality.

Calibration experiments are carried out at five
different sites including deciduous broadleaf
forest, coniferous forest, grassland, shrubland
and boreal forest. In addition to using these
experiments to study the effects of data length
and data period on calibration, the site-level
optimized parameters are also extrapolated to
the conterminous United States, which is domi-
nated by these five ecosystem types, to explore
the influence of different model calibrations on
regional carbon dynamics. The regional simula-
tions help to explore whether the effect of
calibration data length on carbon dynamics at
site levels is amplified or dampened at regional
scales. In addition, regional simulations are also
used to learn which season is highly sensitive to
optimal model parameters. We set up ensemble
simulations with optimal model parameters from
different calibration experiments. For example,
for one-year calibration experiment, 15 (decidu-
ous broadleaf forest) 3 9 (coniferous forest) 3 7
(grass) 3 7 (shrub) 3 8 (boreal forest) ¼ 52920
simulations are conducted. The uncertainty of
regional NEP for one-year calibration experiment
is the standard deviation of the NEP output from
these regional simulations.

RESULTS AND DISCUSSION

Impacts of data length and data period on
model calibration and predictability

Fig. 2 depicts the empirical cumulative distri-
bution function (CDF) of posterior model perfor-
mance in terms of Root Mean Square Error
(RMSE). To complement the measure of RESM,
the range of the simulated GPP/NEP is also
provided in Appendix: Table A1. For the one-
year calibration experiments, the values of RMSE
are ranged from 12 to 25 g C m�2 mo�1 at
Harvard deciduous broadleaf forest site. In the
two-year experiments, the RMSEs ranged from 7
to 25 g C m�2 mo�1, suggesting that the averaged
model performance is better in two-year calibra-
tion experiments compared with one-year exper-
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iments. Furthermore, in the three-year experi-
ments the RMSEs are very close to those in the
two-year experiments. Thus, we conclude that
using two-year data is much more appropriate
than using only one-year data for TEM calibra-
tion and using three-year data is only marginally
better than using two-year data at this particular
site. This conclusion is insensitive to sites with
different ecosystem types (Fig. 2). At all of the
five sites, the CDFs hardly changed when the
calibration data length is further increased from
two-year to three-year. That is likely due to that
the climate variability of the one-year data is
smaller than that of two-years (Student-t test,
statistically significant), while the climate vari-
ability of the two-year data is similar to that of
three-years (Appendix: Fig. A1).

However, we cannot conclude that two-year
data is a threshold for ecosystem model calibra-

tion, since our results are derived from a single
model and are limited at specific sites under
specific environmental conditions. However our
results do suggest that there may exist a certain
threshold of calibration data length and using
longer data will not necessarily result in a better
model parameterization and prediction.

Our experiments show that the model perfor-
mance is highly sensitive to the selection of data
period at some sites. For example, even though
we use the same length of calibration data (two-
year) at Howland main forest site, selecting
different period of data could end up with either
well or poorly calibrated models, whose RMSEs
are ranged within 6–12 g C m�2 mo�1. At Vaira
Ranch grassland site, however, model perfor-
mance is not sensitive to the selection of data
period (for all one-year, two-year and three-year
cases). Thus, we conclude that the importance of

Fig. 2. Empirical cumulative distribution function (CDF) of one-year (red line), two-year (green line) and three-

year (blue line) calibration experiments. The model performance (x-axis) is evaluated with Root Mean Square

Errors (RMSE) between model simulations and observations.
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calibration data period depends on the site
characteristics. This finding is consistent with
the diverged conclusions from previous studies
that use data from different time periods for
parameterization. For example, although the
study for Leaf River Basin site in Mississippi
concluded that model calibration was insensitive
to the selection of data period (Yapo et al. 1996);
others at sites in Nepal, China, Tanzania and the
U.S. concluded that model calibration was
sensitive to the selection of data period covering
a wide range of environmental (drought/wet)
conditions (Gan and Biftu 1996).

In additional to RMSE, two other metrics
(Nash–Sutcliffe model efficiency-NSE and Mean
Absolute Percentage Error-MAPE) also agree
that using two-year data is much better than
using only one-year data and is similar to using
three-year data. The NSE of two-year or three-
year experiments ranges from 0.8 to 0.9, which is
much higher than the NSE of one-year experi-
ments (range from 0.1 to 0.5). It indicates that, in
two-year or three-year experiments, the model is
able to well capture the seasonal variation of
ecosystem carbon fluxes. Likewise, MAPE of
two-year or three-year experiments are around
0.3 that is smaller than MAPE of one-year
experiments (range from 0.4 to 0.5). It means
that using two-year or three year calibration data
leads to better model prediction not only during

growing season (carbon fluxes are large) but also
during non-growing season (carbon fluxes are
relatively small), since a small absolute error in
non-growing season prediction may greatly
enhance MAPE. After grouping the calibration
experiments into previously defined categories
(ClimVar above men and below mean), these
metrics are not distinguishable (Tables 3 and 4,
below mean ClimVar versus above ClimVar).

Impacts of climate variability of
calibration data on model performance

Previous model calibration studies suggest
that the calibration data period should cover
typical climate conditions of different seasons
(Knorr and Kattge 2005). To establish a relation-
ship between climate conditions of calibration
data period with model performance, we group
the calibration experiments with one-year, two-
year, or three-year data into two categories
(above mean and below mean). Fig. 3 depicts
the empirical cumulative distribution function
(CDF) of model performance of the two catego-
ries. For one-year calibration experiments, the
averaged model performance in category 2 (data
ClimVar above mean) is better than that of
category 1 (data ClimVar below mean) with only
one exception at Harvard forest site. The result
suggests that, using a subset of available data
that covers various climatic conditions will

Table 3. Mean Nash–Sutcliffe model efficiency (NSE or

R2) for one-year, two-year and three-year calibration

experiments.

Model efficiency One-year Two-year Three-year

Deciduous broadleaf forest
All 0.42 0.83 0.84
Below mean ClimVar 0.40 0.82 0.81
Above mean ClimVar 0.44 0.87 0.85

Coniferous forest
All 0.42 0.88 0.89
Below mean ClimVar 0.42 0.88 0.90
Above mean ClimVar 0.43 0.86 0.85

Grassland
All 0.45 0.83 0.89
Below mean ClimVar 0.39 0.87 0.77
Above mean ClimVar 0.46 0.79 0.90

Shrubland
All 0.38 0.83 0.89
Below mean ClimVar 0.33 0.87 0.77
Above mean ClimVar 0.37 0.79 0.90

Boreal forest
All 0.15 0.87 0.87
Below mean ClimVar 0.11 0.87 0.77
Above mean ClimVar 0.18 0.79 0.90

Table 4. Mean Absolute Percentage Error (MAPE) for

one-year, two-year and three-year calibration exper-

iments.

Error One-year Two-year Three-year

Deciduous broadleaf forest
All 0.58 0.32 0.29
Below mean ClimVar 0.61 0.32 0.32
Above mean ClimVar 0.54 0.31 0.27

Coniferous forest
All 0.57 0.30 0.32
Below mean ClimVar 0.57 0.31 0.33
Above mean ClimVar 0.56 0.31 0.32

Grassland
All 0.47 0.33 0.32
Below mean ClimVar 0.47 0.33 0.32
Above mean ClimVar 0.47 0.33 0.33

Shrubland
All 0.45 0.33 0.32
Below mean ClimVar 0.52 0.33 0.32
Above mean ClimVar 0.43 0.33 0.33

Boreal forest
All 0.41 0.32 0.32
Below mean ClimVar 0.41 0.33 0.32
Above mean ClimVar 0.42 0.33 0.33
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improve model calibration. For two-year and
three-year experiments, the differences in model
performance between the two categories are not
as large as in one-year experiments, suggesting
that as the length of calibration data increases the
superiority of using data that have high climate
variability becomes relatively less significant.

Impacts of data length and data period on
parameter uncertainty reduction

Fig. 4 depicts the empirical cumulative distri-
bution function (CDF) of parameters uncertainty
reduction (UR: Eq. 10). At all of the five sites, the
uncertainty reduction for one-year experiments is
smaller compared with UR for the two-year
experiments. However the UR for two-year
experiments is very close to that for three-year
experiments. It indicates that useful information

contained in a two-year dataset is much more
than that contained in a one-year dataset, but is
similar to that contained in a three-year dataset.
Thus we conclude that, in general, the impact of
data length on reducing model parameter uncer-
tainties is significant and consistent among
different ecosystem types.

The uncertainty reduction experiments are also
grouped into two categories. Fig. 5 depicts the
empirical cumulative distribution function (CDF)
of parameters uncertainty reduction in the two
categories. In most cases a larger uncertainty
reduction could be achieved when using data
with higher ClimVar than using data with lower
ClimVar. This finding supports our conclusion
that using data period that covers various
climatic conditions will lead to a better model
calibration. Exceptions also exist. For example, in

Fig. 3. Empirical cumulative distribution function (CDF) of one-year (red line), two-year (green line) and three-

year (blue line) calibration experiments are grouped into two categories: (1) category 1 refers to data ClimVar

below mean and is shown with dash line; (2) category 2 refers to data ClimVar above mean and is shown with

solid line.
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three-year calibration experiments at Vaira Ranch
grassland and Wind River Field Station forest
sites, there are no significant differences between
CDF of high ClimVar (solid blue line) and CDF of
low ClimVar (dash blue line).

Optimal model parameters
The optimal model parameters are normalized

(parameter values minus the lower bound and
dividing by the difference between upper and
lower bounds) and depicted in Fig. 6. Since for
each calibration experiments (one-year, two-year
or three-year) we have several sets of optimal
parameters estimated with different periods of
observational data, we provide both mean and
standard deviation (error bars) of the 10 param-
eters. By comparing the optimal parameters from
one-year, two-year and three-year experiments,
we assess the sensitivity of model optimal

parameters to the length of calibration data.
At Harvard forest site, although data length

increased from one year to three years, the
optimal model parameters converge to similar
values except for RAQ10A0 and KR (two param-
eters associated with plant respiration). Only
plant respiration is sensitive to length of calibra-
tion data at this site. Therefore, the differences of
model performance (Fig. 2: Harvard deciduous
broadleaf forest site) are resulted from the
differences in plant respiration. The error bars
of CMAX, KI, KC (three photosynthesis-related
parameters) are relatively smaller than other
parameters, which suggest that these parameters
are relatively less sensitive to the data length
being selected.

At four other sites, the optimal parameters of
two-year experiments merge towards those of
three-year experiments, while they are generally

Fig. 4. Empirical cumulative distribution function (CDF) posterior model parameter uncertainty reduction

(defined as: (1 � [rpost/rprior] 3 100%) for one-year (red line), two-year (green line) and three-year (blue line)

calibration experiments.
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different from those of one-year experiments. It
again suggests that model parameters are better
improved by using two-year calibration data
rather than only one-year data. This conclusion is
valid for most of model parameters. Exceptions
include RAQ10A0 (soil respiration associated
parameter) at Howland coniferous forest site.
Optimal RAQ10A0 of one-year experiments is
close to that from three-year experiments while
they are different from that from two-year
experiments.

Regional carbon dynamics
The regional NEP averaged over 2000–2008 in

the conterminous United States is shown in Fig.
7. To complement to Fig. 7, the spatial pattern of
U.S. NEP is also provided in Appendix: Fig. A2.
The regional NEP is partitioned according to

different ecosystem types (Fig. 7a) and different
months (Fig. 7b). The regional total NEP is 0.21 6

0.004, 0.18 6 0.002 and 0.20 6 0.007 Pg C year�1

from one-year, two-year and three-year experi-
ments, respectively, suggesting that the regional
NEP is sensitive to the length of calibration data.
Furthermore, the difference between calibrated
models using two-year and three-year data is
amplified at regional scales compared with that
at site-level. At site-level the model performance
is only affected by increasing the length of
calibration data from one year to two years.
Further increasing the length of calibration data
from two years to three years does not affect
model calibration significantly (Fig. 2). However,
after extrapolating to the entire U.S., the differ-
ence in the modeled NEP between two-year and
three-year experiments (0.02 Pg C year�1) is

Fig. 5. Empirical cumulative distribution function (CDF) posterior model parameter uncertainty reduction.

Calibration experiments of one-year, two-year and three-year are divided into two categories: (1) category 1

refers to data ClimVar below mean and is shown with dash line; (2) category 2 refers to data ClimVar above mean

and is shown with solid line.
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Fig. 6. Normalized optimal parameters of different ecosystem types including Deciduous Broadleaf Forest

(DBF), Coniferous Forest (CF), Grassland (G), Shrubland (S) and Boreal Forest (BF). Mean and standard deviation

of 10 model parameters for calibration experiments of one-year (red bar), two-year (green bar) and three-year

(blue bar) are plotted.
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comparable with the NEP difference between
one-year and two-year experiments (0.03 Pg C
year�1).

For different ecosystem types (Fig. 7a), increas-
ing the length of calibration data from one year to
two years, the impact of data length on modeled
NEP is high for coniferous forest, grassland,
shrubland, but low for deciduous broadleaf and
boreal forests. The impacts of increasing the
length of calibration data from two year to three
years are relatively high in deciduous broadleaf
forest, coniferous forest, grassland and shrub-
land, but relatively low for boreal forests.

The calibration data length’s effect on regional
NEP also changes with time (Fig. 7b): (1) in
January–March, May, September–December, the
regional NEP is significantly affected when
calibration data length increased from one year
to two years, but relatively less affected when
calibration data length change from two years to
three years; (2) On the contrary, in April and June
the regional NEP with two-year calibration data
is close to that with one-year data and is
significantly different from that with three-year
data; and (3) the modeled NEP from one-year,
two-year and three-year experiments are all
significantly different in July and August.

Model calibration with 5-year and 10-year data
We limit the length of calibration datasets

within 3 years because: (1) the length of existing
datasets is really limited; and (2) The inter-annual
variability of these climate variables is often
smaller than the seasonal variation. Seasonal
variability might be more important than inter-
annual variability in the data for improving
model parameters. We hypothesize that one- or
two-year data may contain enough information
about the ecosystem GPP/NEP seasonal varia-
tions for model calibration. We test this hypoth-
esis by showing that calibrations using two-year
data are much better than those use only one-
year data, but are similar to those using three-
year data. To further confirm our results, we
conduct model calibration experiments with
longer observations (5-year and 10-year) at
Harvard forest site, since it has 15-year data,
which is much longer than other sites. We find
that adding more data (longer than 3 years), the
model is not significantly improved (Table 5).
The RMSE is 13;14 g C m�2 mo�1. That is
probably because the uncertainty in model
parameters space has been well constrained.
The rest of model error comes from other
uncertainty sources such as forcing data, initial
conditions, and model structure deficiency.

Longer calibration data may cover El Nino/

Fig. 7. Net ecosystem production averaged over 2000–2008 in the conterminous United States. The left panel (a)

is NEP of five different ecosystem types; the right panel (b) shows the seasonal variation of U.S. NEP for

calibration experiments of one-year (red bar), two-year (green bar) and three-year (blue bar). The error bar shows

the standard deviation of modeled NEP.
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Southern Oscillation (ENSO) events, which have
abnormal high temperature. These events will
significantly affect ecosystem carbon fluxes (Fo-
ley et al. 2002). However, it does not necessarily
means that ENSO events must be included in
calibration dataset. The model should be able to
predict the response of ecosystem carbon dy-
namics to abnormal climatic conditions (e.g.,
extreme high temperature), as long as the non-
linear response curve is well defined even though
calibration data do not cover such abnormal
climatic periods. For example, at temperate
deciduous broadleaf forest site (Harvard Forest),
the calibrated model is able to predict a reduced
NPP when the temperature is abnormally high
during ENSO in 1994, when abnormal high
summer temperature recorded at Harvard Forest
site is 21.78C.

Tradeoff between model complexity and
effectiveness of parameterization

New processes were incorporated into TEM
(Raich et al. 1991) including the carbon-nitrogen
interaction (McGuire et al. 1992), soil thermal
dynamics (Zhuang et al. 2003), and organic
nitrogen uptake (Zhu and Zhuang 2013b). Model
formulation has become more complex. For
example, the GPP temperature response is
improved by incorporating a temperature accli-
mation algorithm (Chen and Zhuang 2013).
Evapotranspiration algorithm is improved (Liu
et al. 2013). On the one hand, through incorpo-
rating new processes, TEM has been significantly
improved in the predictability of ecosystem
carbon, nitrogen, and water dynamics. On the

other hand, however, the number of model
parameters is increased and the calibration
becomes more difficult. To cope with more
detailed algorithms and more parameters in
TEM, a Bayesian approach (Tang and Zhuang
2009) and an adjoint method (Zhu and Zhuang
2014) to constrain model parameters using eddy
flux data have been developed.

Structure uncertainty is a significant uncertain-
ty source in the model. The model deficiencies
could not be eliminated through parameteriza-
tion. For example, our previous study (Zhu and
Zhuang 2013b) found that soil inorganic nitrogen
(NH4

þ and NO3
�) uptake alone was not sufficient

enough to allow TEM capture observed gross
primary production (GPP) of tundra ecosystems
during the growing season. By modifying the
model structure in terms of nutrient cycling, the
model is greatly improved. But the number of
model parameters has been increased, and the
model parameters shall be less well constrained
with the same data in comparison with using a
less complex model.

Model complexity affects the performance of a
calibrated model. A certain level of complexity
must be warranted in order to accurately capture
the ecosystem response to changing temperature,
precipitation, and solar radiation. For instance, a
model comparison study (Yew Gan et al. 1997)
showed that one particular model consistently
worked better than others due to the sophisticat-
ed treatment of runoff process. TEM structure
changed much since the first version. A number
of new algorithms were incorporated to account
for non-linear temperature and moisture re-
sponses of soil respiration, carbon-nitrogen in-
teraction, and soil thermal dynamics.

Data complexity is another important factor
that influences the model calibration. The assim-
ilated datasets should contain sufficient informa-
tion to constrain certain processes in the model.
For instance, assimilating various datasets is
better than using one dataset in model calibra-
tion. In this study, we assimilate both GPP and
NEP data to parameterize TEM model, rather
than assimilating only NEP or GPP. Multi-
objective calibration is usually better than sin-
gle-objective by using multiple datasets (de
Noord 1994). In this context, the North American
Carbon Program (NACP) compared 19 different
terrestrial ecosystem models including TEM in

Table 5. Model calibration experiments that use longer

observational data.

5-year
calibrations

RMSE
(g C m�2

mo�1)
10-year

calibrations

RMSE
(g C m�2

mo�1)

1992–1996 11.4121 1992–2001 9.0463
1993–1997 11.0413 1993–2002 8.5577
1994–1998 17.4317 1994–2003 17.2909
1995–1999 17.9935 1995–2004 8.6355
1996–2000 10.3376 1996–2005 14.9179
1997–2001 10.5927 1997–2006 27.2216
1998–2002 12.9705
1999–2003 12.0204
2000–2004 18.84
2001–2005 11.3001
2002–2006 9.9886
Mean 13.08 14.27
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simulating North American carbon dynamics
from monthly to annually scales (Huntzinger et
al. 2013). One interesting finding is that some
models overestimated both GPP and ecosystem
respiration (Huntzinger et al. 2012), still obtained
plausible estimates of NEP for wrong reasons.

Effects of model temporal scales
The ecosystem processes occur across a wide

range of scales. The response of ecosystem
dynamics to changing climate ranges from
instantaneously (in seconds) to passively (hun-
dreds of years). In TEM, all those ‘‘fast-response’’
and ‘‘slow-response’’ processes are scaled to
monthly time scale. For example, plant photo-
synthetic rate quickly responds to the change of
stomata conductance and ambient CO2/O2 con-
centrations. The fast fluctuations of such respons-
es are averaged in TEM. TEM simulates the
monthly mean states, which may miss some
detailed dynamics at finer scale, but may benefit
large temporal scale simulations. TEM biogeo-
chemical processes are formulated and calibrated
at monthly time scales. Our conclusion on two-
or three-year data use in parameterization is
valid specifically for TEM at our study sites.
Models at different time scales may have
different conclusions about the data length. For
instance, Knorr and Kattge (2005) found that
only seven-day eddy covariance measurements
of CO2 and water fluxes data were needed to
calibrate half-hour NEP and latent heat fluxes.

Study limitation
Our conclusions may be only valid for carbon

flux prediction, such as, GPP and NEP, which
have strong seasonal variations and are intrinsi-
cally related to seasonal changes of environmen-
tal forcing. Temperature, precipitation and
radiations are the three most important control-
ling factors (Del Grosso et al. 2008). Therefore,
the climate variability could more or less inform
us the variability of ecosystem carbon fluxes. By
using the dataset with higher climate variability,
we are able to better constrain the response
function of GPP and NEP to temperature,
precipitation and radiations. However, carbon
storages in vegetation biomass and soil organic
matter pool are less responsive to the variability
of climate forcing, especially when the time scale
is just a few years. Most of the forest vegetation

biomass resides in woody tissues, which have
long turnover time as large as hundreds years
(Kueppers et al. 2004). Similarly, the turnover
time of soil organic carbon could be thousands of
years, depending on carbon quality and stabili-
zation mechanisms such as mineral protection
(Ewing et al. 2006). Therefore, ecosystem carbon
fluxes data of a few years informs us little about
the changes of those carbon storages.

CONCLUSIONS

We study the importance of characteristics of
calibration data including data length and data
period in improving TEM simulations of carbon
fluxes and reducing parameter uncertainties. We
show that TEM model calibration is sensitive to
calibration data length. The model is much better
calibrated when using two-year data in compar-
ison with using one-year data. We also find that
two-year data are sufficient for TEM calibration
at our study sites because the model is only
marginally improved by using three-year data.
Optimal calibration data length also depends on
the variable being calibrated. For example, Xia et
al. (2004) showed that soil moisture, runoff and
evapotranspiration required eight, three months,
and one-year data in order to obtain optimal
parameters, respectively. Therefore, our conclu-
sion was made for calibrating GPP and NEP of
TEM at our specific research sites. Our study
implies that there may exist a threshold for
calibration data length for certain ecosystems.
Simply using more data would not guarantee a
better model parameterization. Further analyses
are still needed to address the question of how
much ecosystem carbon flux data is sufficient to
adequately constrain an ecosystem model.

We conclude that using data with high climate
variability including precipitation, air tempera-
ture and solar radiation is generally superior to
using low climate variability data in reducing
model parameter uncertainties related to flux
prediction. Climate variability was an effective
indicator of information content within the data
that are used to calibrate the model. However,
we cannot provide a universal threshold of
climate variability that can help the ecosystem
modeling community to select calibration data,
because the intrinsic variability of climate vari-
ables is different from location to location even
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though the vegetation types are the same. These
findings will benefit the ecosystem modeling
community in using multiple-year data to im-
prove model parameterization and predictability.

Our results also indicate that, in the contermi-
nous United States, the influence of calibration
data length on carbon dynamics is amplified
from site-level calibration. For different ecosys-
tem types, the impacts of data length on NEP are
significant. The simulated NEP from grassland,
shrubland and coniferous forests are most
sensitive to calibration data length. The influence
of calibration data length on the regional NEP
also changes with time. Regional NEP from one-
year, two-year and three-year experiments is
significantly different in July and August.
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