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ABSTRACT: Droughts dramatically affect plant production of global ter-
restrial ecosystems. To date, quantification of this impact remains a challenge
because of the complex plant physiological and biochemical processes asso-
ciated with drought. Here, this study incorporates a drought index into an
existing process-based terrestrial ecosystem model to estimate the drought
impact on global plant production for the period 2001–10. Global Moderate
Resolution Imaging Spectroradiometer (MODIS) gross primary production
(GPP) data products are used to constrain model parameters and verify the
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model algorithms. The verified model is then applied to evaluate the drought
impact. The study indicates that droughts will reduce GPP by 9.8 gCm22month21

during the study period. On average, drought reduces GPP by 10% globally. As
a result, the global GPP decreased from 106.4 to 95.9 PgC yr21 while the global
net primary production (NPP) decreased from 54.9 to 49.9 PgC yr21. This
study revises the estimation of the global NPP and suggests that the future
quantification of the global carbon budget of terrestrial ecosystems should take
the drought impact into account.
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1. Introduction
Drought is recognized as one of the most damaging natural disasters worldwide,

which severely impacts the ecosystem goods and services. The fifth assessment
report of Intergovernmental Panel on Climate Change (IPCC) stated that confidence
is low for a global-scale observed trend in drought or dryness (lack of rainfall) and
the frequency and intensity of drought have likely increased during the last century
(IPCC 2013). In general, drought is defined as a period of abnormally dry weather
long enough to cause a serious hydrological imbalance (Planton 2013). Droughts
usually negatively impact the terrestrial ecosystems. For instance, droughts, espe-
cially extreme droughts, reduce the ecosystem productivity (Ciais et al. 2005; Zhao
and Running 2010). Therefore, droughts could substantially affect the regional and
global ecosystem carbon cycling (Chen et al. 2012; Rajan et al. 2013).

To assess drought severity, drought indices including the Palmer drought se-
verity index (PDSI), standardized precipitation index (SPI)/standardized precipi-
tation evapotranspiration index (SPEI), and drought severity index (DSI) have been
developed (McKee et al. 1993; Mu et al. 2013; Palmer 1965; Vicente-Serrano et al.
2010). PDSI and its variations (e.g., self-calibrated PDSI) are widely used for
meteorological drought monitoring and assessment, especially in the United States
(Palmer 1965; Wells et al. 2004). The response of global biome to drought was
examined using SPEI (Vicente-Serrano et al. 2013). Furthermore, SPI has been
used to analyze the drought impacts on carbon dynamics (Shi et al. 2013). For
decades, drought indices merely serve as end products for drought monitoring and
assessment, yet seldom have they been used in ecosystem modeling. Most studies
focused on analyzing the correlations between drought indices and other variables
such as gross primary production (GPP) and normalized difference vegetation
index (NDVI). Those studies generally imply a causative relation between droughts
and ecosystem productivity (Shi et al. 2013; Vicente-Serrano et al. 2015). Mean-
while, vegetation indices including leaf area index (LAI) and NDVI are intensively
used in ecosystem modeling (Hashimoto et al. 2012; Huete et al. 2002; Rossini
et al. 2012). However, no studies have attempted to incorporate drought indices
into ecosystem modeling at the global scale.

Ideally, a number of drought impact mechanisms instead of drought indexes
should be incorporated into ecosystem modeling. First, different organs (e.g.,
leaves and roots) of plants respond to droughts at different time scales. For ex-
ample, leaf stomatal closure responds to droughts instantly, while the root system
response may take months or longer. Drought-induced gene changes could take
years or generations (Chaves et al. 2003; Reyer et al. 2013). Second, plants respond
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to water deficits through a series of physiological and biochemical processes at
different ecosystem levels (Chaves et al. 2003; Reddy et al. 2004). At a leaf level,
the photosynthesis process is constrained through stomatal closure to reduce water
loss (Reddy et al. 2004). At the same time, plants tend to maintain high tissue water
potential to avoid tissue dehydration. Some plants also tend to shorten their growth
cycles or complete life cycles before physiological water deficits occur (Eilmann
et al. 2011; Vicente-Serrano et al. 2013). Under severe or extreme drought con-
ditions, most plant activities, including photosynthesis, are impaired, potentially
causing plant mortality (McDowell et al. 2008; Sala et al. 2010; Sitch et al. 2008).
To date, ecosystem modeling indeed has made good progress in accounting for
drought effects on photosynthesis by considering the effects of drought stress on
stomatal closure, vapor pressure deficit, and other controls (Sitch et al. 2003,
2008). However, these ecosystem models did not explicitly consider the drought
severity, especially the extreme droughts. These models also did not distinguish the
differences in responses from one plant function type (PFT) to another.

It is also important to incorporate the time-lag effects into ecosystem modeling.
This is because different PFTs respond to drought stress at different time scales
(Welp et al. 2007; Chaves et al. 2003; Sitch et al. 2008). A few studies have shown
that the time lag can range from an instantaneous response to several months or
even decades for large trees (Barber et al. 2000; Sitch et al. 2008). Globally, most
plants respond predominantly to drought with a short time lag of 2 to 4 months
(Vicente-Serrano et al. 2013).

It is also a challenge to quantify drought impacts at the global scale because
plants in different regions have different responses. For instance, in arid regions,
plants are more resistant to drought. This might be attributed to their adaption to
water deficits through physiological, anatomical, and functional strategies. How-
ever, their time lag is normally shorter (,6 months) compared to that of plants in
humid ecoregions (Vicente-Serrano et al. 2012, 2013). Vegetation in humid re-
gions, such as tropic and subtropic ecoregions, could be sensitive to drought as
water shortage rarely occurs (Engelbrecht et al. 2007; Phillips et al. 2009).
Meanwhile, vegetation in semiarid and semihumid ecoregions tends to have a
longer time lag. In these regions, plants can tolerate mild droughts but would be
negatively affected if drought persisted (Vicente-Serrano et al. 2013). Most veg-
etation in subarid ecoregions has the longest time lag (Vicente-Serrano et al. 2013).
But the time lag in these ecoregions might be less than 6 months for the growing
season (Rouault and Richard 2003). In subhumid ecoregions, where water balance
approaches zero, the time lag is usually between 8 and 10 months (Vicente-Serrano
et al. 2013); the time lag decreases as water availability increases to less than 5
months (Vicente-Serrano et al. 2013). For grasslands, the maximum correlation
between NDVI and water deficits is found to be around 1 month during the growing
season, which means the time lag might be 1 month (Wang et al. 2001). For
woodlands, the time lag is approximately 2 months in summer. The time lag for
agricultural ecosystems is from 3 to 6 months (Rouault and Richard 2003). In
summary, different PFTs have different time lags in response to droughts. How-
ever, despite the rich knowledge of time-lag effects, current ecosystem models
have not explicitly considered these effects.

Here, we make the first attempt to incorporate the drought index into ecosystem
modeling to estimate the drought impact on ecosystem carbon cycling considering
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both the drought severity and time-lag effects. The MODIS GPP data are used for
model parameterization and verification. Specifically, we incorporate PDSI into a
process-based biogeochemistry model, the Terrestrial Ecosystem Model (TEM)
(Zhuang et al. 2003, 2010), to assess the drought impact on plant primary pro-
duction at the global scale from 2001 to 2010.

2. Method

2.1. Overview

We use a model data assimilation approach to improve the ecosystem model
capability of estimating the drought impact on plant productivity (Figure 1). The
Terrestrial Ecosystem Model (Zhuang et al. 2003, 2010) is used. We develop an
empirical function to account for drought impacts on GPP using MODIS GPP data
products and drought data in the period of 2001–10. The empirical relationship is
then incorporated into TEM. A portion of MODIS GPP data is used to parameterize
the revised TEM. The remaining MODIS GPP data are used to verify the revised
TEM. Finally, we extrapolate the model to quantify the global plant primary
production considering the drought impact.

2.2. Modification of the Terrestrial Ecosystem Model

The Terrestrial Ecosystem Model is a process-based ecosystem model driven
with air temperature, precipitation, and radiation to estimate terrestrial ecosystem
carbon and nitrogen dynamics (Zhuang et al. 2003, 2010). In TEM, GPP is carbon
assimilation by plants through photosynthesis. Net primary production (NPP) is the
total amount of carbon stored by plants, which considers both the photosynthesis
and maintenance respiration. GPP is modeled as a function of atmospheric CO2

concentration, photosynthetically active radiation (PAR), air temperature, nitrogen
availability, and other variables:

GPP5Cmax f (CO2) f (PAR) f (Phenology) f (Foliage)

f (T) f (CA,Cy) f (NA) f (FT), (1)

where Cmax is the maximum rate of carbon assimilation by the entire plant canopy
under optimal environmental condition; f (CO2) represents CO2 concentration
limitation; f (PAR) represents the photosynthetically active radiation limitation;
f (Phenology) represents the leaf area limitation; f (Foliage) is the ratio of canopy
leaf biomass relative to maximum leaf biomass; and f (CA, Cy) represents the
control of leaf internal CO2 concentration change resulting from water deficits.
NPP is the difference between plant respiration and GPP:

NPP5GPP2RA, (2)

where RA is the plant respiration, which is estimated as a function of plant biomass
and air temperature using the classicalQ10 function. A more detailed description of
the model can be found in Zhuang et al. (2003) and Chen et al. (2011).
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In TEM, both GPP and RA are directly influenced by droughts. For instance, CO2

diffusion to leaves is affected by the evapotranspiration (ET) rate, which is determined
by soil water deficits and stomatal closure, both affected by drought conditions. To
some extent, TEM models’ mild drought impacts GPP. However, similar to other

Figure 1. Flowchart of modeling analysis of drought effects on plant production.
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ecosystem models, its current algorithms are not able to account for various levels of
droughts and time-lag effects on plant productivity.

Here, we incorporate a drought index PDSI, which provides comprehensive
information of drought stress into the TEMmodel to account for drought effects on
carbon cycling. PDSI is a widely used drought index (Alley 1984; Dai 2011;
Palmer 1965).

The general classification of the drought severity condition based on the PDSI is
listed in Table 1. PDSI and its variations have been extensively used for drought
monitoring and assessment regardless their limitations and assumptions (Alley
1984; Guttman 1998). In this study, the PDSI factor is added to the GPP estimation:

GPPRevised 5Cmax f (CO2) f (PAR) f (Phenology) f (Foliage)

f (T) f (CA,Cy) f (NA) f (FT) f (PDSI), (3)

where f (PDSI) represents the effects of drought, which is defined as

Table 1. Drought conditions indicated with PDSI.

Category PDSI range Drought condition

W5 4.0 or greater Extreme wet
W4 3.0 to 3.99 Very wet
W3 2.0 to 2.99 Moderate wet
W2 1.0 to 1.99 Slightly wet
W1 0.5 to 0.99 Incipient wet
WD 20.49 to 0.49 Normal
D1 20.50 to 20.99 Incipient drought
D2 21.00 to 21.99 Mild drought
D3 22.00 to 22.99 Moderate drought
D4 23.00 to 23.99 Severe drought
D5 24.00 or less Extreme drought

Figure 2. PDSI model piecewise function illustration. The x axis is the PDSI, in which
themore negative the value, themore severe the drought condition. The y
axis is the PDSI factor calculated using Equation (4). The factor ranges
between 0.0 and 1.0 and intersect with x axis at threshold A, reaching 1.0
at threshold B.
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f (PDSI)m5

8<
:
0:0 when PDSIm2l,A
log(X PDSIm2l1 Y) when A � PDSIm2l � B
1:0 when PDSIm2l.B

, (4)

where f (PDSI)m is the PDSI factor for the mth month; PDSIm2l is the PDSI value
with a time lag of lmonths; A and B are the lower and upper thresholds parameters;
and X and Y are the shape parameters of the logarithm curve.

When PDSIm2l is lower than the threshold A, which indicates the extreme
drought, f (PDSI)m 5 0.0. On the contrary, when PDSIm2l is greater than the

Table 2. The time lags (months) for different plant function types.

Plant function type Time lag References

The alpine tundra and the polar desert 1–12 (Brock and Galen 2005;
Vicente-Serrano et al. 2013)

Wet tundra 3–9 (Vicente-Serrano et al. 2013)
Boreal forest 6–12 (Peng et al. 2011; Vicente-Serrano

et al. 2013; Welp et al. 2007)
Temperate coniferous forests 8–10 (Lévesque et al. 2013; Vicente-Serrano et al. 2013)
Temperate deciduous forests 1–8 (Vicente-Serrano et al. 2013)
Grasslands 1–6 (Craine et al. 2012; Vicente-Serrano et al. 2013)
Xeric shrub lands 4–7 (Vicente-Serrano et al. 2013)
Tropical forests 1–12 (Engelbrecht et al. 2007; Kumagai and Porporato

2012; Vicente-Serrano et al. 2013)
Xeric woodlands 2–6 (Vicente-Serrano et al. 2013)
Temperate evergreen broadleaf 1–12 (Vicente-Serrano et al. 2013)

Figure 3. Histogram of time lags for temperate coniferous forests. The x axis is the
time lag (month). The y axis is the frequency.
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threshold B, which means no drought or incipient drought, or even wet condition,
the drought impact is negligible; therefore, f (PDSI)m 5 1.0. When PDSIm2l lies
between the lower and upper bounds, the logarithm curve is used to model drought
effects based on a power-law impact distribution (Reichstein et al. 2013;
Zscheischler et al. 2014). An ideal case of this piecewise-defined function is il-
lustrated in Figure 2 (when threshold A5 24.0 and threshold B 5 0.0 from Table
1). All parameters vary with PFTs.

Table 3. Global optimization results of time lag (months) and thresholds for PDSI
model using SCE-UA method and histogram method for 10 plant function types.

Plant function type Time-scale lag Threshold A Threshold B

The alpine tundra and polar desert 8 25.50 21.00
Wet tundra 9 25.5 21.00
Boreal forest 9 25.5 21.00
Temperate coniferous forests 10 24.5 21.75
Temperate deciduous forests 8 24.0 0.0
Grasslands 6 24.0 21.75
Xeric shrub lands 7 25.5 21.75
Tropical forests 6 24.0 21.75
Xeric woodlands 6 25.5 21.75
Temperate evergreen broadleaf 6 25.5 0.0

Figure 4. Global plant function2type distribution and case study regions. The points
are the spatial locations of case study regions for 10 plant function types,
from which cropland is excluded. For each plant function type, two case
study regions are selected for model verification.
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2.3. Model parameterization and global simulations

To estimate the parameters in Equation (4), we employed the shuffled
complex evolution (SCE-UA) parameter optimization method, which has
been widely used in hydrologic model parameter optimization (Duan et al.
1994). The SCE-UA method requires initial parameter values, lower and
upper boundaries of the parameters, and a cost function. The boundary con-
dition and initial values of time lag and thresholds were determined based on
literature (Table 2). The cost function was from (Tarantola 2005; Thiemann
et al. 2001)

S5 [g(m)2 dobs]
tC21

d [g(m)2 dobs], (5)

where g(m) is the theoretical prediction, dobs is the observation, and Cd is the
covariance matrix.

The global parameter optimization method (SCE-UA) was applied for each
plant function type to estimate the time lag and thresholds parameters. For ex-
ample, for the temperate coniferous forest, SCE-UA was conducted over all
pixels for a region. The most frequent time lag, 9 months, was determined from
the optimization results based on the histogram (Figure 3). Further examinations
have shown that our parameterization results are consistent with literature (Ta-
bles 2 and 3).

We first apply the model to case study regions to obtain parameters for the
empirical function for various PFTs (Figure 4). We then extrapolate the model and
parameters globally. The simulated plant production with two versions of TEM and
MODIS data are compared.

2.4. Data

The global PDSI data are obtained from the National Center for Atmospheric
Research (NCAR) Climate and Global Dynamics (CGD) Climate Analysis Section
(http://www.cgd.ucar.edu/cas/catalog/climind/pdsi.html) at a monthly time step
and 2.58 3 2.58 spatial resolution. TEM GPP is simulated at a monthly time step
and 0.58 3 0.58 spatial resolution at the global scale from 2001 to 2010 (Table 4).
The auxiliary global PFT distribution data are obtained from previous studies
(Zhuang et al. 2003).

The MODIS GPP data are obtained from NASA Land Processes Data Active
Archive Center (LP DAAC). The spatial–temporal resolution is 8 day and 1 km 3

Table 4. Spatial–temporal attributes of the spatial datasets used in this study.

PDSI MODIS GPP MODIS NPP TEM GPP

Data source NCAR CGD’s Climate
Analysis Section

MODIS Land
MOD17A2

MODIS Land
MOD17A3

TEM
simulation

Spatial
resolution

2.58 3 2.58 Global 1 km 3 1 km Global 1 km 3 1 km 0.58 3 0.58

Temporal
resolution

Monthly 8 days Annual Monthly
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1 km. The MODIS NPP datasets are obtained from NASA LP DAAC at an annual
time step and 1 km 3 1 km spatial resolution.

The MODIS GPP is estimated using the light use efficiency (LUE) approach.
The daily GPP is estimated as below:

Figure 5. Comparison between MODIS GPP, TEM GPP, and revised TEM GPP for tem-
perate coniferous forests and temperate deciduous forests during 2001–10.
Since the time lag is 10/8 months, the TEM GPP and revised TEM GPP are
identical for the first 10/8months. The xaxis is the time fromyear 2001 to 2010.
The left y axis is the GPP estimation (gm22). The right y axis is the PDSI (di-
mensionless). The line connecting diamonds is the MODSI GPP estimation,
the line connecting triangle is the TEM GPP estimation, and the line con-
necting square is the revised TEM GPP estimation and the line connecting
cross is the PDSI trend.
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GPP5 eAPAR, (6)

e5 emax TMINscalar VPDscalar, (7)

where e is the radiation use efficiency; APAR is the absorbed photosynthetically
active radiation; emax is the maximum radiation use efficiency; TMINscalar is the air
temperature control; and VPDscalar is the vapor pressure deficits control (Heinsch
et al. 2003). In MODIS GPP algorithms, e is estimated using the biome parameter
lookup table (BPLUT) (Zhao and Running 2010). MODIS GPP data have been
verified and widely used in the ecosystem modeling scientific community.

The MODIS GPP data for different ecoregions are selected for model parame-
terization. (Table 2; Figure 4). Two case study regions are selected for parame-
terization and verification for each PFT, respectively (Figure 4). The ecoregions
experienced recent droughts are chosen, such as the Amazon forest (Phillips et al.
2009) and southern China (NOAA National Centers for Environmental Informa-
tion 2010).

3. Results and discussion

3.1. Model evaluation

Comparisons between MODIS GPP and two versions of TEM estimations show
that TEM generally overestimates GPP, especially when severe drought occurs
(Figure 5). The revised TEM constrains the GPP estimation under drought con-
ditions. For instance, when severe drought or extreme droughts occurred in spring
of 2008 and summer of 2005 for temperate coniferous forests and temperate de-
ciduous forests, respectively, the revised TEM better estimated GPP (Figures 5a,b).
The average RMSE between the revised TEM and MODIS GPP under drought
condition for 10 PFTs in case study regions decreased from 45.3 to 35.5 gCm22.
However, the RMSE reduction varies in the case study regions (Table 5).

Spatially, the revised TEM significantly improves the GPP estimation for
temperate regions. On average, the RMSE is reduced by 33%. For tropic and
Arctic regions, the improvements are moderate. For instance, for alpine tundra

Table 5. RMSE comparisons between TEM GPP and revised TEM GPP for case study
regions (gCm22 month21).

Plant function type TEM Revised TEM

The alpine tundra and polar desert 7.1 7.1
Wet tundra 0.5 0.5
Boreal forest 19.9 17.4
Temperate coniferous forests 44.2 44.5
Temperate deciduous forests 65.5 45.7
Grasslands 29.1 25.1
Xeric shrub lands 5.4 5.5
Tropical forests 45.4 46.3
Xeric woodlands 36.3 34.8
Temperate evergreen broadleaf 198.9 127.4
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Figure 6. Monthly GPP estimation comparison between MODIS GPP, TEM GPP, and
revised TEM GPP for August 2010. Most of the difference between the TEM
GPP and revised TEM GPP appears in tropic and temperate ecoregions.
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and polar desert and wet tundra, no changes are found within these case study
regions because PDSI values are often larger than zero.

The correlation between GPP and PDSI is nonlinear (Figure 5). The direct
Pearson’s correlation coefficient is less than 0.5. However, some studies find the

Figure 7. Annual GPP estimation comparison between MODIS GPP, TEM GPP, and
revised TEM GPP for year 2010.
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maximum correlation coefficient could be significant using SPI/SPEI at different
temporal resolutions (Vicente-Serrano et al. 2013). The correlation would also
increase when extreme drought occurs. For example, the sharp decrease in GPP in
2008 summer for temperate coniferous forests was caused by the extreme drought in
2007 winter and the following spring time (Figure 5a, yellow ellipse). Similarly, the
drought explains the decrease in MODIS GPP in years 2005 and 2006 (Figure 5b,
yellow ellipse). In both cases, the revised TEMwas able to better capture the drought
impact on GPP.

3.2. Reduction of global plant production

MODIS GPP and TEM GPP share a similar spatial pattern (Figure 6). TEM GPP
tends to be overestimated compared with MODIS GPP spatially. The revised TEM
GPP provides more spatial details since it considers drought impacts. When ex-
treme droughts occur, GPP is close to 0.0 (Figure 6). The difference between two
versions of TEM simulations suggests that drought impacts are significant at re-
gional scales, especially in subtropic or tropic regions (Figure 6). Even a moderate
drought in tropic or subtropic regions (e.g., Amazon tropic forests) reduces GPP
significantly. Similar spatial patterns are seen in the global annual GPP. Overall,
drought impacts are significant in tropical and temperate regions, and the maxi-
mum reduction exceeds 1000 gCm22 yr21 (Figure 6).

The drought impact accounts for 10% of the global total GPP on average from
2002 to 2010 (Figure 10). For example, the global MODIS GPP is 73.2 PgC yr21,
while previous and revised versions of TEM estimate 106.1 and 92.5 PgC yr21,
respectively (Figure 7). The average global annual GPP decreases from 106.4 to
95.7 PgC yr21 from 2002 to 2010. Extreme drought events occur in specific areas
but spread worldwide, resulting in a large GPP spatial variation (Figure 6). Other
studies have also shown that the drought impact on GPP across continents varies
significantly (Zscheischler et al. 2014). In our study, for both Africa and Asia, the
total GPP reductions from 2002 to 2010 are approximately 18%. While for Aus-
tralia, the reduction is only 6%. For North America, South America, and Europe,
the reduction is consistent with the global average of 10%. However, since the GPP
for Asia and South America contributes over 56% to the global GPP, Asia and
South America explain most of the global reduction (Table 6).

The global monthly NPP comparison shows a similar spatial pattern to global
monthly GPP (Figure 7). The revised TEM estimates a consistent decrease in NPP,

Table 6. Comparison of total annual GPP/NPP across continents between MODIS,
TEM, and revised TEM (PgCyr21).

Continent MODIS TEM Revised TEM

GPP NPP GPP NPP GPP NPP

Africa 15.39 9.97 19.39 9.80 16.62 8.38
Asia 18.56 12.66 28.64 14.99 25.22 13.20
Australia 2.46 1.76 3.73 1.74 3.56 1.67
Europe 4.69 4.28 8.40 4.37 7.86 4.09
North America 10.26 7.75 13.68 7.40 12.75 6.91
South America 21.32 13.26 25.90 13.30 23.49 12.06
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though it provides more spatial variations and details in comparison with the
previous TEM. The NPP differences are most significant in tropic or subtropic
regions (Figure 8). The drought impacts in southern China and western Africa are
captured by the revised TEM with reduction of both GPP and NPP (Figure 9).

TEM estimated annual NPP are close to MODIS NPP. However, the spatial
variations of NPP show that the difference is up to 800 gCm22 yr21 (Figure 9). As
a result of GPP decrease, NPP also decreases by 10%. The average global annual
NPP decreases from 54.9 to 49.9 PgC yr21 from 2002 to 2010, while the MODIS
NPP is 51.3 PgC yr21 (Figure 10). Among different continents, the NPP reduction
from 2002 to 2010 for Australia (4%) and Europe (6%) is lower than that for Africa
(14%) and Asia (14%). The reduction of NPP in Asia and South America domi-
nates the global NPP reduction (Table 6).

Figure 8. Monthly NPP estimation comparison for August 2010 between TEM NPP and
revised TEM NPP.
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3.3. Limitations

There are several limitations of our study. First, our empirical approach does not
explicitly account for physiological and biochemical processes of plants’ responses

Figure 9. Annual NPP estimation betweenMODIS NPP, TEM NPP, and revised TEM NPP
for year 2010.
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to droughts. Instead, the approach considers various levels of droughts through the
incorporation of drought index and assumes that plants stop the photosynthesis
process if the extreme drought occurs and the plant productivity decreases to 0.0
(Figure 6). Further, the empirical approach does not consider the seasonal varia-
tions. However, plants are more vulnerable to severe drought in the growing season
due to greater water demand than in the nongrowing season (Welp et al. 2007).
Therefore, for the same PFT, an ‘‘early drought’’ or ‘‘late drought,’’ in terms of
occurrence time before or after the growing season, could place different impacts
on the productivity (Figure 4).

Second, the data availability remains a significant uncertainty source. First, the
global GPP and NPP datasets for different PFTs are rather limited. We use the
MODIS GPP product as a reference. However, it fails to capture the drought impact
under certain conditions (Gebremichael and Barros 2006) or for some PFTs

Figure 10. Global annual total GPP and NPP comparison between MODIS, TEM, and
revised TEM from year 2002 to 2010. The x axis is the year from 2002 to
2010, and the y axis is the global annual total GPP and NPP estimations.
Different colors represent GPP and NPP for MODIS, TEM, and revised TEM.

Earth Interactions d Volume 19 (2015) d Paper No. 16 d Page 17



(Gebremichael and Barros 2006; Heinsch et al. 2006; Turner et al. 2006). Further,
MODIS GPP only covers a relatively short period from 2001 to current. Thus,
using MODIS GPP to parameterize the revised TEM model might have also in-
troduced errors to our estimates of drought impacts.

Third, PDSI may not be the most suitable drought index to account for drought
impacts. As discussed earlier, there is no improvement for Arctic PFTs, such as wet
tundra, because PDSI values are consistently above zero. This is because that PDSI
is originally developed for semiarid climates such as Great Plains of the United
States (Heim 2002; Keyantash and Dracup 2002). Further, the calculation of PDSI
implies an implicit ‘‘memory’’ around 10 months (Alley 1984). Even though this
memory is not the same with the time lag in our approach, it may affect our
parameterization of time lags. Other drought indices (SPI/SPEI) could be alter-
natives to improve our approach since a few studies suggested they are more
flexible in calculations (Shi et al. 2013; Vicente-Serrano et al. 2013). In addition,
the determination of lower and upper bounds during parameterization has con-
sidered the PDSI classification (Table 1). However, these criteria need to be further
examined since plants may still be able to maintain photosynthesis under extreme
droughts (Reddy et al. 2004).

4. Conclusions
This study develops an empirical approach to estimate the drought impact on

ecosystem productivity. MODIS GPP data are used for the model parameterization
and verification. This approach improves GPP and NPP estimates using an eco-
system model under various drought conditions. Our analysis indicates that the
global GPP decreased from 106.4 to 95.7 PgC yr21, and global NPP decreased
from 54.9 to 49.9 PgC yr21 due to droughts from 2002 to 2010. Our analysis
suggests that, to improve the quantification of drought impacts, physiological and
biochemical processes shall be incorporated into ecosystem modeling. In addition,
more in situ observation data of droughts and carbon fluxes for different plant
functional types are needed.
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