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Abstract

Three interval constrained methods, including the interval constrained Kalman
smoother, the interval constrained maximum likelihood ensemble smoother and the
interval constrained ensemble Kalman smoother are developed to conduct inversions
of atmospheric trace gas methane (CH4). The negative values of fluxes in an uncon-5

strained inversion are avoided in the constrained inversion. In a multi-year inversion ex-
periment using pseudo observations derived from a forward transport simulation with
known fluxes, the interval constrained fixed-lag Kalman smoother presents the best
results, followed by the interval constrained fixed-lag ensemble Kalman smoother and
the interval constrained maximum likelihood ensemble Kalman smoother. Consistent10

uncertainties are obtained for the posterior fluxes with these three methods. This study
provides alternatives of the variable transform method to deal with interval constraints
in atmospheric inversions.

1 Introduction

The atmospheric inversion modeling, often called the top-down approach, is an im-15

portant way to quantify the magnitudes of various sources and sinks of trace gases
(Enting, 2002). It proceeds by comparing the forward model simulations from an at-
mospheric transport model driven by sources and sinks from prior knowledge to the
spatiotemporally discrete observations. The prior sources and sinks are then opti-
mized to provide improved estimates through some optimization schemes, which are20

often reduced to minimizing a cost function that characterizes the differences between
the forward model simulation and observations (e.g., Gurney et al., 2002).

Methods deduced from the Bayesian theorem (Tarantola, 2005), including the fixed-
lag Kalman smoother (KS) (Hartley and Prinn, 1993; Bruhwiler et al., 2005), fixed-lag
ensemble Kalman smoother (EnKS) (Peters et al., 2005) and fixed-lag maximum like-25

lihood ensemble filter (Zupanski et al., 2007), have been widely used to invert the
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various trace gas fluxes. When used properly, those methods give reasonable poste-
rior inferences conditioned on the available observations. However, in applying these
methods to do inversions, sometimes the inverted results are of some physically in-
accessible values. Therefore, these methods should be improved to impose proper
constraints, for instance, interval constraints as shown in this study, in addition to the5

constraints provided by observations.
To apply the interval constraints imposed over the state variables, the variable trans-

form method can be applied efficiently, as was done in Tang and Zhuang (2010). How-
ever, the variable transform involved is non-linear, and is thus difficult to deal with using
the KS, which is developed based on linear dynamics. Another problem with the vari-10

able transform method is the difficulty to interpret the posterior uncertainties, which
are not defined in the same space of the inverted fluxes. In this note, we show the
way to solve the problem using the interval constrained inversion methods. The pro-
posed methods directly optimize the state variables in its original space, and the inter-
val constraints are imposed either through a posterior correction or a direct constrained15

minimization. Three different methods developed are the interval constrained fixed-lag
Kalman smoother (ICKS), interval constrained fixed-lag maximum likelihood ensemble
smoother (ICMLES) and the interval constrained fixed-lag ensemble Kalman smoother
(ICEnKS). These methods are evaluated with an inversion using pseudo observations
of atmospheric CH4 concentrations derived from a forward atmospheric transport of20

CH4 with known fluxes.

2 Methods

2.1 The inversion problem and its lagged-form

z=Hs+v (1)

where z is the vector of observations, s is the vector of sinks and sources, H is the25

sensitivity matrix that maps the flux s into measurement space, and v is the uncertainty
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of the approximated observations Hs with respect to real observation z.
An inversion is to solve for s in Eq. (1) using the Bayes theorem, by assuming vari-

ables z, s and v as random variables with certain probability distributions (Tarantola,
2005).

In the lagged form, the forward equation Eq. (1) is5

zJ =
[
HJ,J HJ,J−1 ··· HJ,1

][
sT
J sT

J−1 ··· sT
1

]T
+v (2)

= [Hu Hv ]
[
sT
u sT

v

]T
+v (3)

where su is defined by fluxes that are still being estimated, from time J back to time
J−L+1, and sv is defined by fluxes that are no longer updated, from time J−L back
to time 1. The observation operators Hu and Hv are defined accordingly for su and10

sv . Since sv is no longer updated once it is obtained, we combine the term Hv (sv )
into the measurement and denote the state variable by s to simplify the presentations
hereinafter, unless explicitly stated otherwise.

2.2 The fixed-lag interval constrained Kalman smoother

By assuming normal distributions of the prior estimate and the measurements, the cost15

function solved by an interval constrained inversion is

minJ1 = (s−s−)T
(
Q−)−1

(s−s−)

+[z−H(s)]T R−1 [z−H(s)]

lbi <si <ubi , i =1,···,m (4)

where m is the length of the state vector s, and the superscript − denotes the prior20

estimate.
There are different ways to solve Eq. (4), e.g. the L-BFGS-B algorithm (Zhu et al.,

1997). However, a two-stage strategy is used in this study to obtain the posterior
estimate of the state variable and the covariance.
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At the first stage, Eq. (4) is solved as an unconstrained problem, which uses the
Kalman update

s+ = s−+K
[
z−H(s−)

]
(5)

Q+ = (I−KH)Q− (6)

where the Kalman gain is5

K=Q−HT
(

R+HQ−HT
)−1

(7)

Extension to including correlations between on-line (variables are still being updated)
and off-line (variables that are no longer updated) state variables is straightforward (see
Bruhwiler et al., 2005; Tang and Zhuang, 2010). However, for the specific problem in
our study, the gain from accounting for such correlation is rather small, as we showed10

in Tang and Zhuang (2010).
At the second stage, the estimate from Kalman update at the first stage is updated

to satisfy the interval constraints by minimizing the cost function

minJ2 = (s−s
+)T
(
Q+)−1

(s−s
+)

lbi <si <ubi , i =1,···,m (8)15

Eq. (8) is solved iteratively with the active set method (Murty, 1988), just as docu-
mented in Tang and Zhuang (2010). When a set of active constraints are identified, the
constraints are set to equality, such that

c(s++)=o (9)

where the linear operator c chooses the proper active constraints. Then a new solution20

is found using the Kalman update

s++ = s+−Q+cT (cQ+cT )−1(c(s+)) (10)

Q++ = Q+−Q+cT (cQ+cT )−1cQ+ (11)
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After the new solution is obtained, if there are still constraints being violated, the iter-
ation is repeated until all interval constraints are satisfied. Zigzag may happen during
iterations. Anti-cycling rules are sometimes needed to stop the iteration (Murty, 1988).
However, we have not experienced such situation in this study.

2.3 The fixed-lag interval constrained maximum likelihood ensemble smoother5

The maximum likelihood ensemble filter for unconstrained problem was proposed in
Zupanski (2005), and documented in Zupanski et al. (2008). It uses a set of N+1
ensemble simulations to approximate the covariance, and update the maximum likeli-
hood estimation in the space spanned by the ensemble. In their formulation (Zupan-
ski, 2005), a Hessian pre-conditioning is used to make the minimization problem well-10

posed. The posterior maximum likelihood estimation is obtained through the variable
transform

s+ =s−+
(
Q−)1/2

(I+C)−T/2ξ (12)

where the matrix C is defined as

C = ZTZ (13)15

Z(s) = [z1(s),z2(s),···,zN (s)] (14)

zi (s) = R−1/2[H(s+q
−
i )−H(s)

]
(15)

where qi=si−s
−, i=1,···,N are the prior perturbations, derived from the ensemble sim-

ulations with respect to the prior maximum likelihood estimator s−.
The gradient function used in minimization is20

gξ = (I+C)−ξ− (I+C)−1/2Z(s)TR−1/2

×
{
z−H

[
s−+

(
Q−)1/2

ξ
]}

(16)
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The posterior covariance is

Q+ =
(
Q−)1/2

[
I+Z(s+)TZ(s+)

]−1(
Q−)T/2

(17)

which is similar to that of the ensemble transform Kalman filter (Bishop et al., 2001).
To apply the maximum likelihood ensemble smoother for the interval constrained

inversion in this study, we find it is useful to solve the problem in terms of s, rather than5

in term of the transformed variable ξ. This enables the direct application of available
constrained minimization algorithms, e.g. the L-BFGS-B algorithm (Zhu et al., 1997).

The gradient function used for minimization is then

gs =
(
Q−)−1

(s−s−)−
(
Q−)−T/2Z(s)TR−1/2 [z−H(s)] (18)

Let the singular vector decomposition of
(
Q−)1/2

be10 (
Q−)1/2 =UEDEVT

E (19)

where DE is a diagonal matrix of size N×N, with diagonal values filled by the eigen
values.

This provides an approximation to the gradient as

gs = UED−2
E UT

E (s−s−)15

−UED−1
E VT

EZ(s)TR−1/2 [z−H(s)] (20)

For a full rank covariance matrix Q−, minimization of the cost function in Eq. (4) using
s as an independent variable and using ξ as an independent variable will give same
results. Numerical difficulty may be encountered when Q− is approximated with an en-
semble whose size is less than the dimension of the system, or if Q− is dominated by20

some leading order eigen values. In such cases, a truncated form may be used. This
only uses eigen vectors that contribute most of the variance, e.g. 95% of the covari-
ance, a criteria often used in screening the eigen values. The posterior covariance for
the constrained estimation is still derived using Eq. (17).
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Another feature of the ICMLES is that it is initialized by sampling the ensembles from
a truncated multi-dimensional Gaussian distribution. This makes all prior ensemble
members satisfy the constraints. After the posterior update, a new ensemble is created
by sampling the updated truncated Gaussian distribution, and is used for next update.
The methods to sample from a truncated multi-dimensional Gaussian distribution will5

be presented in Sect. 2.5.

2.4 The fixed-lag interval constrained ensemble Kalman smoother

The fixed-lag interval constrained ensemble Kalman smoother (ICEnKS) is imple-
mented to solve the minimization problem by Eq. (4). After initialized with a set of
constrained ensemble simulations (see Sect. 2.5 for the method to sample from a trun-10

cated Gaussian distribution), the forecast statistics are computed as

s
−
=

N+1∑
i=1

s
−
i (21)

Q− =
(
Q−)1/2(Q−)T/2

(22)(
Q−)1/2 =

1
√
N

[
s
−
1 −s

−
,···,s−

N+1−s
−]

(23)

The ensemble is updated by solving the constrained minimization problem for each15

member simulation

minJ3 =
1
2

(
s−sj

)T P−1
f

(
s−sj

)
+

1
2

[
yj −H(s)

]T R−1[yj −H(s)
]
, j =1,···,N+1

lbi ≤ si ≤ubi , i =1, ···, m (24)

where20

yj =y+εj , j =1,···,N+1 (25)
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is the perturbed observations, with εj drawn from the distribution N(o,R).
After updating the ensemble members, the posterior ensemble statistics are com-

puted as

s
+
=

N+1∑
i=1

s+
i (26)

Q+ =
(
Q+)1/2(Q+)T/2

(27)5 (
Q+)1/2 =

1
√
N

[
s+

1 −s
+
,···,s+

N+1−s
+
]

(28)

2.5 Sampling from a truncated multi-dimensional Gaussian distribution

We now describe the method that is needed by ICMLES and ICEnKS to create ensem-
bles from a truncated multi-dimensional Gaussian distribution. Our method is a gener-
alization of the method presented in Prakash et al. (2010).10

Given a sub-optimal approximation of the square root of covariance matrix Q1/2 (of
size m×n), the goal of sampling is to get n samples satisfying the condition

sj =s+Q1/2uj , j =1, ···, n (29)

where u is drawn from a n-dimensional normal distribution N(o,I), truncated with
proper bounds determined by the interval constraint and Q1/2.15

In implementation, Q1/2 should be of the shape

Q1/2 =



q1,1 0 ··· 0 0
q2,1 q2,1 ··· 0 0

···
qn,1 qn,2 ··· qn,n−1 qn,n
qn+1,1 qn+1,2 ··· qn+1,n−1 qn+1,n

···
qm,1 qm,2 ··· qm,n−1 qm,n


(30)
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Usually from the posterior update, the structure of
(
Q+)1/2

is different from the one in

Eq. (30). A qr factorization of
(
Q+)T/2

can be performed first to get the required shape
of matrix, i.e. the R matrix from a qr factorization.

Specifically, for j -th sample, the i -th (i ≤n) component sj (i ) is obtained by sampling
uj (i ) recursively from N(0,1), truncated with bounds5

˜lbi =
1
qi ,i

[
lbi −s(i )−

i−1∑
k=1

qi ,ku(k,j )

]
(31)

ũbi =
1
qi ,i

[
ubi −s(i )−

i−1∑
k=1

qi ,ku(k,j )

]
(32)

The sampling is done with the rejection sampling algorithm (von Neumann, 1963),
using a uniform distibution as the instrumental distribution.

The remaining components of sj (i ) with i>n, are determined by10

sj (i )=min

(
max

(
lbi −s(i ),

k=n∑
k=1

qi ,kuj (k)

)
,ubi −s(i )

)
(33)

2.6 Implementation and comparison experiment of inversions using pseudo
observations

The three different methods are coded with Fortran 95. The linear algebra is carried out
with publicly available packages of BLAS and LAPACK in the Intel compiler. The state15

variable is defined as a vector of scaling factors of the flux adjustments defined with
respect to the prior fluxes. Thence, the posterior fluxes are the sum of prior fluxes and
their inverted adjustments. The interval constraints are set by confining the scaling fac-
tors in the range [−0.95, 2.0] for all flux adjustments, except for that of the stratospheric
destruction, which is set to [−0.2, 0.2].20
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A similar set up to that in Tang and Zhuang (2010) is used for the comparison ex-
periment, so only necessary information is briefed here. Specifically, the sensitivity
matrix is derived by running a group of tagged-CH4 simulations using the GEOS-Chem
model (Bey et al., 2001; Wang et al., 2004), driven by the GEOS-5 meteorology data at
a resolution of 4◦×5◦. Pseudo measurements are taken by sampling at 211 locations5

(excluding the towers) involved in the dataset of globalview-CH4 2009 (GLOBALVIEW-
CH4, 2009). Sampling errors are simulated by using the relative residual error method
(Palmer et al., 2003) derived by an optimized reference run against the globalview data.
The prior fluxes are obtained by adding random perturbations to a set of known fluxes
(11 seasonal fluxes and 7 yearly constant fluxes, see Tang and Zhuang, 2010), and10

are then used to obtain prior CH4 concentrations at those sampling locations. The in-
version is assessed by comparing the inverted fluxes and CH4 concentrations to the
known fluxes and CH4 concentrations from the reference run.

3 Results and discussion

The prior fluxes and sampled prior CH4 concentrations are shown in Fig. 1. Linear15

regression indicates the prior fluxes are rather poor approximations to the true fluxes.
This makes the inversion difficult to get posterior fluxes to agree well with the known
truth, as we will show below.

We first showed the results from the unconstrained inversion (Fig. 2). A lag length
of 6 is used in all the inversions. It was shown in Tang and Zhuang (2010) such a lag20

length is sufficient to give stable inversions. All methods showed good posterior CH4
concentrations compared to the observed data. However, because of the over-posed
set up of the problem, unrealistic negative values of fluxes are inferred due to some
spurious correlations among the different fluxes. We also compared the inversion using
the MLES formulation in Zupanski (2005). It was found that their formulation provides25

slightly better posterior CH4 concentrations. This can be explained by the use of eigen
value screening in our study, which actually implies a greater null space of the state
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variables than that using the formulation in Zupanski (2005). Inclusion of correlation
among on-line and off-line state variables does not help to keep the inverted fluxes
within their feasible ranges (result not shown). Therefore, constrained inversion meth-
ods should be applied. This was achieved by using the variable transform technique
in Tang and Zhuang (2010). There, reasonable posterior fluxes were obtained, but5

the posterior uncertainty is difficult to interpret. Thus, inversion methods that directly
impose the constraint in the space of state variables are useful.

With the interval constrained methods, all inverted fluxes are in their feasible ranges
(Fig. 3 and Table 1). The statistics of the posterior CH4 concentrations are similar to
that from the unconstrained inversion for KS and EnKS. The ICMLES did not provide10

better posterior CH4 concentrations than other methods when compared to the obser-
vations. For the posterior fluxes, ICKS performed the best, followed by the ICEnKS
and ICMLES. The posterior for the wetland emissions from the northwestern region
(defined by 45◦ N north, 180◦ W to 0◦ W) in a typical year inverted from the three differ-
ent interval constrained methods is shown in Fig. 4. We found that the three methods15

showed consistent estimates. All three methods have allowed the flux to be nega-
tive in the presence of uncertainty in the low emission months. This is a problem for
unconstrained inversions, but not an issue for interval constrained inversions.

In addition, we tested the impact of ensemble sizes on the two ensemble-based
interval constrained approaches. For ICEnKS, increasing the ensemble size to 20020

or decreasing the ensemble size to 50, both give inferior results to the one using an
ensemble size of 100 (see Fig. 5, Table 2). Similar results are observed for the ICMLES
when the ensemble size is increased or decreased (see Fig. 6, Table 2). The reason
is that the covariance matrix is mostly determined by half of the eigen values, which is
around 50 for the lag length of 6. This implies a pair-wised ensemble would be of size25

100 (for ICEnKS), and an unpair-wised ensemble would be around 50 (for ICMLES).
An over-sampled ensemble or a sub-sampled ensemble will degrade the results.
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4 Conclusions

When the inversion is done with unconstrained methods, the inverted fluxes are found
sometimes to be of physically infeasible values. This problem is solved with the interval
constrained methods, including the interval constrained Kalman smoother, the interval
constrained maximum likelihood ensemble smoother and the interval constrained en-5

semble Kalman smoother. A comparison experiment to invert CH4 fluxes against the
pseudo observations of atmospheric CH4 concentrations from a forward transport of
CH4 with known fluxes indicates that the three methods are able to constrain the inver-
sion to provide physically feasible posteriors. These methods provide alternatives to
the traditional variable transform method to deal with interval constraints in inversions.10
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Table 1. Statistics of the interval constrained inversion experiments against the observations.

Methods Flux RMSE Flux R2 Concentration RMSE Concentration R2

ICKS 3.14 0.60 6.95 0.99
ICMLES 4.05 0.46 20.0 0.91
ICEnKS 3.16 0.59 8.5 0.98
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Table 2. Statistics of the interval constrained inversion experiments against the observations
with different ensemble sizes.

Methods Flux RMSE Flux R2 Concentration RMSE Concentration R2

ICMLES-20 4.00 0.41 24.3 0.90
ICMLES-100 4.29 0.42 29.2 0.80
ICEnKS-50 3.17 0.58 9.4 0.98
ICEnKS-200 3.25 0.57 10.5 0.98
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Fig. 1. (a) Prior fluxes; (b) prior CH4 concentrations used in the inversion experiment.
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Fig. 2. (a) Posterior fluxes from unconstrained KS inversion; (b) posterior CH4 concentrations
from unconstrained KS inversion; (c) posterior fluxes from unconstrained MLES inversion, using
Zupanski (2005)’s formulae; (d) posterior CH4 concentrations from unconstrained inversion,
using Zupanski (2005)’s formulae. An ensemble size of 50 is used for MLES inversion. The
regressions are statistically significant with p<0.0001.
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Fig. 2. (e) posterior fluxes from unconstrained MLES inversion, using formulae in this study; (f)
posterior CH4 concentrations from MLES inversion, using formulae in this study; (g) posterior
fluxes from unconstrained EnKS inversion; (h) posterior CH4 concentrations from EnKS inver-
sion. A ensemble size of 50 is used for MLES inversion, and an ensemble size of 100 is used
for EnKS inversion. The regressions are statistically significant with p<0.0001.
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Fig. 3. (a) Posterior fluxes from ICKS inversion; (b) posterior CH4 concentrations from ICKS
inversion; (c) posterior fluxes from ICMLES inversion; (d) posterior CH4 concentrations from
ICMLES inversion; (e) posterior fluxes from ICEnKS inversion; (f) posterior CH4 concentrations
from ICEnKS inversion. A ensemble size of 50 is used for ICMLES inversion, and an ensemble
size of 100 is used for ICEnKS inversion. The regressions are statistically significant with
p<0.0001.
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Fig. 4. Comparison of posterior inference from different interval constrained inversions for the
wetland emissions from the north western region defined by 45◦ N north, 180◦ W to 0◦.
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Fig. 5. (a) Posterior fluxes from ICEnKS inversion, with ensemble size equals to 50; (b) poste-
rior CH4 concentrations from ICEnKS inversion, with ensemble size equals to 50; (c) posterior
fluxes from ICEnKS inversion, with ensemble size equals to 200; (d) posterior CH4 concentra-
tions from ICEnKS inversion, with ensemble size equals to 200. The regressions are statistically
significant with p<0.0001.
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Fig. 6. (a) Posterior fluxes from ICMLES inversion, with ensemble size equals to 20; (b) poste-
rior CH4 concentrations from ICMLES inversion, with ensemble size equals to 20; (c) posterior
fluxes from ICMLES inversion, with ensemble size equals to 100; (d) posterior CH4 concentra-
tions from ICMLES inversion, with ensemble size equals to 100. The regressions are statisti-
cally significant with p<0.0001.
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