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[1] A global sensitivity analysis and Bayesian inference framework was developed for
improving the parameterization and predictability of a monthly time step process-based
biogeochemistry model. Using a Latin Hypercube sampler and an existing Terrestrial
Ecosystem Model (TEM), a set of 500,000 Monte Carlo ensemble simulations was
conducted for a black spruce forest ecosystem. A global sensitivity analysis was then
conducted to identify the key model parameters and examine the interaction structures
among TEM parameters. Bayesian inference analysis was also performed using these
ensemble simulations and eddy flux data of carbon, latent heat flux, and MODIS gross
primary production (GPP) to reduce the uncertainty of parameter estimation and
prediction of TEM. We found that (1) the simulated carbon fluxes are mostly affected by
parameters of the maximum rate of photosynthesis (CMAX), the half-saturation
constant for CO2 uptake by plants (kc), the half-saturation constant for Photosynthetically
Active Radiation used by plants (ki), and the change in autotrophic respiration due to 10�C
temperature increase (RHQ10); (2) the effect of parameters on seasonal carbon
dynamics varies from one parameter to another during a year; (3) to well constrain the
uncertainties of TEM predictions and parameters using the Bayesian inference
technique, at least two different fluxes of NEP, GPP, and ecosystem respiration (RESP) are
required; and (4) different assumptions of the error structures of the flux data used in the
Bayesian inference analysis result in different uncertainty bounds of the posterior
parameters and model predictions. We further found that, using the Bayesian framework
and eddy flux and satellite data, the uncertainty of simulated carbon fluxes has been
remarkably reduced. The developed global sensitivity analysis and Bayesian framework
could further be used to analyze and improve the predictability and parameterization
of relatively coarse time step biogeochemistry models when the eddy flux and satellite
data are available for other terrestrial ecosystems.
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1. Introduction

[2] Large-scale process-based biogeochemistry models
play an important role in providing more adequate estimates
of global CO2 budgets by integrating the information derived
from empirical studies. To date, a number of models, such
as the Terrestrial Ecosystem Model (TEM) [Melillo et al.,
1993; Zhuang et al., 2003] and other models [Running and
Coughlan, 1988; Running andHunt, 1993;VEMAPMembers,

1995; Potter et al., 1993] have been developed and applied
extensively. Those models usually make predictions by
solving differential equations with parameters for represen-
tative ecosystem types. Such parameters are often obtained
through model calibrations using observed annual data of
C and nitrogen (N) pools and fluxes [e.g., Raich et al.,
1991; McGuire et al., 1992]. The parameter values are
determined when the simulated annual fluxes agree well
with the observations at the site with some arbitrary criteria.
However, as argued by Thiemann et al. [2001], a sound
model calibration should be able to help reduce the uncer-
tainty in parameterizations while the uncertainties in mea-
sured data and model structures (i.e., model formulations)
are considered. Therefore a simple calibration technique by
matching model output to observed data through manually
tuning parameters may not be sufficient to reduce uncer-
tainty of both parameters and model predictions. Further,
simple calibration techniques may provide several sets of
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parameters for a single ecosystem, which allow the cali-
brated model to give similar predictions (so-called equifin-
ality, see Beven and Freer [2001]), especially when the
models are highly nonlinear. As a result, the calibrated
parameters become another source of uncertainty in model
predictions in addition to the incomplete understanding of
ecosystem processes and underlying mechanisms in the
models and the uncertainty in forcing data. Also, simple
calibration techniques may not provide information on what
data are essential to constrain the models, and they provide
no guidance on what data should be collected in field
experiments.
[3] To improve the parameterization and predictability of

ecosystem models, good progress has been made using
eddy flux data sets in a model-data fusion manner [e.g.,
Braswell et al., 2005; Williams et al., 2005; Aalto et al.,
2004;Wang et al., 2001, 2007; Santaren et al., 2007]. These
studies often strive to constrain a few parameters of their
models and these ecosystem models are mostly operated at
finer time steps (e.g., hourly or daily). How the eddy flux
data could be fused with coarse time step ecosystem models
(e.g., monthly) using Bayesian approaches to constrain
model parameter estimation and improve model predictabil-
ity has not yet been well studied.
[4] Traditionally, the Bayesian inference technique can be

implemented either iteratively or noniteratively. In the
iterative way, the posterior at a time step is used as the
prior for the next time step. The iterative methods include
the Markov Chain Monte Carlo (MCMC) method [Kuczera
and Parent, 1998; Knorr and Kattge, 2005], the Bayesian
recursive method [Gordon et al., 1993; Thiemann et al.,
2001; Kaheil et al., 2006], and the gradient-based Bayesian
inference method [Santaren et al., 2007]. In these methods,
the uncertainty of the parameters and prediction is reduced
gradually as some convergence criteria are met or the
maximum number of iterations is reached. However, in
such methods, the Bayesian inference has to be coded into
numerical models, so the inference procedure is not sepa-
rated from the procedure of ecosystem model simulations.
In contrast, the noniterative implementation of Bayesian
inference is separated from the numerical model simulations
[Poole and Raftery, 2000; Hong et al., 2005], and the
observational data are assimilated nonsequentially. Further,
the noniterative way allows us to use different likelihood
functions and different combinations of the observed and
derived data in our Bayesian analysis without reconducting
ecosystem model simulations.
[5] In this study, to demonstrate how eddy flux and

satellite data could be used to improve the parameterization
and predictability of a monthly time step process-based
biogeochemistry model TEM, we developed a global sen-
sitivity analysis and noniterative Bayesian inference frame-
work. With the framework, we aimed to address the
following questions: (1) How do TEM parameters affect
the simulated seasonal C dynamics? (2) How do the
parameters interact in influencing the overall model predic-
tions? (3) How do the assumed error structures of the flux
data affect the model parameterization and thus the overall
model predictions? (4) How much uncertainty of parameters
and model predictions can be reduced using the flux data
with the developed model-data fusion technique? and (5)

What flux data should be used to reduce the uncertainty of
the model parameterization and predictions?

2. Methodology

[6] We developed a global sensitivity analysis and
Bayesian inference framework and applied it to TEM for
a black spruce ecosystem where the eddy flux data of
carbon (C), water, and energy have been observed and
derived [Goulden et al., 1998; Zhuang et al., 2001, 2002;
Clein et al., 2002; Wofsy and Dunn, 2001; Dunn et al.,
2007]. To improve the parameterization and predictability
of TEM with the framework, we first defined the prior
distributions for TEM parameters in controlling C and N
processes, and ecosystem evapotranspirations (EET). We
then conducted a set of Monte Carlo model simulations with
the parameters sampled from the prior distributions using
the Latin Hypercube Sampling technique (LHS [Iman and
Helton, 1988]). A global sensitivity analysis with the first-
order impact ratio (FOIR) was performed to rank key
parameters of TEM [Saltelli et al., 2004]. The interaction
structures or correlations of TEM parameters conditioned on
observational data were also examined with techniques
described by Ratto et al. [2001]. Finally, we applied
Bayesian inference on TEM parameters and model predic-
tions with the MODIS GPP data from 2000 to 2006 [Turner
et al., 2006] and the observed or derived monthly eddy flux
data. We used the 24 monthly data points from January
2003 to December 2004 from the site, which cover two
complete annual cycles, for our Bayesian inference analysis.
The remaining observed and derived data from 1994 to
2006 were then used to show the improvement in TEM
simulations with the Bayesian inference technique, by
comparing to conventional calibration methods [e.g., Raich
et al., 1991]. Below we first introduce parameters used in
TEM and the study site. We then describe the details of our
workflow and methods for the global sensitivity analysis
and Bayesian inference (see Figure 1).

2.1. Description of the Terrestrial Ecosystem Model
and the Study Site

[7] The Terrestrial EcosystemModel (TEM) uses spatially
referenced information on climate, elevation, soils, vegeta-
tion, and water availability to make monthly estimates of
vegetation and soil C and N fluxes and pool sizes. The
model is well documented and has been used to examine
patterns of regional and global terrestrial C dynamics [e.g.,
Raich et al., 1991; McGuire et al., 1992, 2001; Melillo et
al., 1993; Zhuang et al., 2001, 2002, 2003, 2004]. The
version of TEM used in this study explicitly couples
biogeochemical processes with the soil thermal dynamics
of permafrost and nonpermafrost soils [e.g., Zhuang et al.,
2001, 2002, 2003, 2006; Euskirchen et al., 2006; Balshi et
al., 2007]. We defined the net ecosystem production (NEP)
used in TEM as the difference between the gross primary
production (GPP) and the ecosystem respiration (RESP, the
sum of autotrophic respiration, RA, and heterotrophic res-
piration, RH [McGuire et al., 2001; Zhuang et al., 2002,
2003]). These fluxes are influenced by changes in atmo-
spheric CO2, climate variability and change, the freeze-thaw
status of the soil, disturbance history, and regrowth after
disturbances.
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[8] In this study, we considered all TEM parameters
related to C and N processes and EET for natural ecosys-
tems and initial pool sizes of C and N in the vegetation and
soils (see Table 1 [Raich et al., 1991; McGuire et al.,
1992]). This could help identify which parameters are more
important in determining carbon fluxes with our global
sensitivity analysis, and which can be constrained using
observational data with our Bayesian inference framework.
We excluded the parameters related to the soil thermal
module in this version of TEM, using their values from
our previous study [Zhuang et al., 2003]. Our analyses were
conducted for a mature black spruce ecosystem in the
Northern Study Area of NASA’s Boreal Ecosystem-
Atmosphere Study (BOREAS [Sellers et al., 1997; Dunn
et al., 2007]), which is located at 55.88�N, 98.48�W, in
central Manitoba, Canada. The conventional calibration was
also conducted to provide base values of the parameters for
comparison. Specifically, in the conventional calibration,
we ran TEM continuously with long-term average climate
data and an atmospheric CO2 concentration of 340 ppmv.
The parameter values were changed manually until the
simulated fluxes and pool sizes matched the field data with
a certain tolerance (e.g., 1%), and the obtained parameter
values were then considered as optimal for the site. Three
criteria were used to judge the success of conventional
calibration: (1) the modeled annual NPP and GPP match
the observations; (2) the annual nitrogen uptake is close to
observations; and (3) the annual NEP converges to nearly
zero with the prescribed tolerance (e.g., 1% [see Zhuang et
al., 2001; Clein et al., 2002, for details]). For the Bayesian
inference, the prior distributions for these parameters were
assumed uniform with lower and upper bounds obtained
either from literature review or from our previous studies
(see Table 1). Based on the prior samples generated from
LHS sampling, a set of 500,000 (a number determined by
experience) Monte Carlo ensemble TEM simulations was
conducted for the ecosystem from 1975 to 2006. The
driving climate data, developed from the meteorological
station at nearby Thompson Airport, Manitoba (around 50 km
away from the site), were obtained from the Canadian
National Climate Data and Information Archive (http://
climate.weatheroffice.ec.gc.ca/climateData/canada_e.html).
Soils and elevation data derived from our previous study

were used to drive TEM simulations at the site [Zhuang et
al., 2002; Clein et al., 2002]. The Bayesian inference
analyses were conditioned on different combinations of
the measured eddy flux NEP data, the derived RESP data,
and the MODIS GPP and EET data. The EET was based on
latent heat measurements. The monthly NEP and EET data
were aggregated from half-hourly measurements. The RESP
data were obtained with a regression method based on
measured nighttime NEP and local climate data. The
derived GPP data were calculated as the sum of NEP and
RESP [Goulden et al., 1997], and were only used for
validation of the results from the Bayesian inference
analysis. To obtain independent GPP data from eddy flux
data for the Bayesian inference, we used the 1 km � 1 km
GPP derived from the MODIS (Moderate Resolution Im-
aging Spectroradiometer) sensor [Running et al., 2004]. We
first selected the 1 km � 1 km grid cell that covers the tower
(at 55.88007�N, 98.48139�W) where the carbon and water
fluxes were measured for the black spruce ecosystems used
in this study. We then aggregated the GPP for the grid cell
using 8-day temporal resolution GPP data for the period
from 2000 to 2006 to obtain monthly GPP. Compared to the
derived GPP from eddy flux measurements, the satellite-
based data overestimated GPP in the middle of the growing
season (from May to August), and underestimated GPP near
the onset (late April and early May) and senescence
(September) of the growing season in our study period.
Overall, the MODIS GPP has a linear fitting y = 0.83x +
4.60 (g C m�2 mon�1), R2 = 0.95 (p < 0.001), with x being
the MODIS GPP and y the GPP flux measurement.

2.2. Global Sensitivity Analysis and Bayesian Inference
Framework

[9] Our framework was based on Bayes’ theorem:

Pr qjVð Þ / Pr Vjqð ÞPr qð Þ ð1Þ

where Pr(qjV) is the posterior after Bayesian inference
conditioned on available observations V (hereafter the bold
letter indicates a matrix). q is the matrix of parameters and
TEM outputs (e.g., GPP) and V is the matrix of observation
or the matrix of the differences between prior simulations
and the corresponding observations, whose element Vij
denotes the type j data V(�)j at time step i. Pr(Vjq) is the
likelihood function, which will be calculated as a function
of TEM Monte Carlo simulations and the available eddy
flux data. Pr(q) is the prior of the TEM parameters and our
estimated C fluxes (e.g., GPP, RESP and NEP) and EET.
[10] To address our research questions, we first conducted

TEM ensemble simulations with parameter priors. Second, the
likelihood function Pr(Vjq) was calculated based on model
simulations and observations. Third, the global sensitivity
analysis was applied, and fourth, the Bayesian inference
was conducted. Below we detail each step (Figure 1).
2.2.1. The Prior Monte Carlo Simulations
[11] Monte Carlo TEM simulations were conducted based

on the prior distributions of parameters to provide C fluxes
for the global sensitivity analysis and Bayesian inference
analysis. The prior distributions of TEM parameters were
assumed with uniform shapes (Table 1). Initial parameter
value ranges were assigned based on either literature review
or estimates. These parameters are related to (1) initial pools

Figure 1. Flowchart of the global sensitivity analysis and
Bayesian inference framework.
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Figure 2. TEM simulations before applying the Bayesian inference framework. 500,000 sets of
parameters were used to compose the above results. The error bar denotes the 95% credible interval or
confidence interval of the simulated fluxes at that month; the gray solid line is the value at the 50%
confidence level.

Figure 3. The first-order impact ratios (FOIRs) for the most influential parameters for the three C fluxes
(GPP, RESP, and NEP) during the growing season (10-year average of 1988–1997) in (a) May, (b) June,
(c) July, (d) August, and (e) September. The error bar denotes the standard deviation deduced using the
bootstrap method.
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of C and N; (2) process parameters of C and N fluxes; and
(3) process parameters of EET. We used the LHS algorithms
[Iman and Helton, 1988] to generate parameter samples for
the TEM Monte Carlo simulations. The LHS draws n
samples for k random variables q1, . . ., qk over the feasible
space described by their probability distributions. Sampling
was conducted in three steps: (1) each variable was divided
into n nonoverlapping intervals on the basis of equal
probability in terms of the cumulative distribution function;
(2) one value from each interval was selected randomly with
respect to the probability density in the interval; and (3) the
n values obtained for q1 were randomly paired with the n
values of q2. Then these n pairs were further randomly
paired with the n values of q3 to form n triplets and so forth,
until n sets of k-tuples are formed. These n sets of param-
eters were used to drive the TEM for Monte Carlo simu-
lations. In this study, we did not incorporate correlations
among the parameters for their prior samples, but, if
available, they can be incorporated into the samples through
the Spearman rank correlation matrix at step (3) [e.g., see
Iman and Conover, 1982].
2.2.2. Calculation of Likelihood Function
[12] To calculate the likelihood function (Pr(Vjq)) in

equation (1), following other studies [Hong et al., 2005;
Santaren et al., 2007], we assumed the monthly flux data

are statistically independent from month-to-month and from
one flux type to another. We also assumed that the observed
and derived data obey the following error distribution
[Thiemann et al., 2001]:

pi vtijsti; bi; qð Þ ¼ w bið Þs�1
ti expb�c bið Þ vti=stij j2= 1þbið Þc ð2Þ

[13] Such an error distribution allowed us to examine the
effects of different error structures on Bayesian inference
results, using different specified values of bi 2 (�1, 1]. For
example, equation (2) is a normal distribution when bi = 0.
It is a double exponential distribution when bi = 1. It tends
to be a uniform distribution as bi approaches �1. i = 1, . . .,
N are labels for different types of data. Variations sti

2 were
assumedas constant during the timeperiodof ti�1< t ti. c(bi)
c(bi) and w(bi) are defined as:

c bið Þ ¼ G 3 1þ bið Þ=2½ �
G 1þ bið Þ=2½ �

� �1= 1þbið Þ
ð3Þ

and

w bið Þ ¼ G 3 1þ bið Þ=2½ �f g1=2

1þ bið Þ G 1þ bið Þ=2½ �f g3=2
ð4Þ

[14] We further assumed TEM outputs follow the error
distribution defined by equation (2) in the logarithmic
space. Thus we had:

p Vjs;b;qð Þ ¼
YN
i¼1

YT
t¼1

w bið Þs�1
ti exp �c bið Þ vti=stij j2= 1þbið Þ

h i
/ exp �

XN
i¼1

c bið Þ
XT
t¼1

vti=stij j2= 1þbið Þ

" #
ð5Þ

where s = {sti} and V = {vti} are matrices with a size of
T � N, and b = {bi} is a vector with size of N. Further,
we assumed sti are constant (equals to si) during the
period of 0 < t  T after the implementation of some
variable transformations, such as the logarithm transfor-
mation we assumed. We then used the Jeffery’s prior
p(sti) = 1/si, si > 0 [Box and Tiao, 1973] and summed
up the effect of sti, which was accomplished by defining
a new integration variable xti = vti/sti in equation (5) and

Table 2. Ranks of the First-Order Impact Ratios (FOIRs) for

Different Annual Carbon Fluxesa

Acronym GPP RESP NEP

CMAX 1 1 1
kI 2 2 2
kc 3 3 3
Tmin 4 16 8
CFALL 5 5 5
kn2 6 7 7
MINLEAF 7 17 17
ALEAF 8 13 18
BLEAF 9 15 11
NMAX 10 9 12
Fldcap 11 21 9
NUP 12 10 13
NFALL 13 11 16
kn1 14 12 15
CLEAF 15 14 19
Rootz 16 19 14
RAQ10A0 17 8 10
KRC 18 6 6
KDC 19 22 21
Tmax 20 23 24
VEGC2N 21 18 23
Wiltpt 22 27 22
RHQ10 23 4 4
MOISTOPT 24 20 20
Toptmin 25 25 26
Toptmax 26 24 25
Porosity 27 29 31
Ns 28 26 27
RAQ10A1 29 28 29
RAQ10A3 30 31 30
RAQ10A2 31 34 34
Nav 32 32 33
Cv 33 30 28
Nv 34 33 32
Cs 35 35 35

aThe impact ratios in bold are greater than 5%, those in italics are
between 0.5% and 5%, and the rest are below 0.5%.

Table 3. Sum of All FOIRs for the Three C Fluxes Simulated

With TEM During the Growing Seasona

GPP RESP NEP

May 0.81 ± 0.018 0.79 ± 0.005 0.46 ± 0.122
June 0.77 ± 0.006 0.77 ± 0.003 0.67 ± 0.031
July 0.74 ± 0.009 0.76 ± 0.005 0.59 ± 0.070
August 0.73 ± 0.010 0.76 ± 0.003 0.55 ± 0.055
September 0.73 ± 0.007 0.76 ± 0.003 0.50 ± 0.050

aValues are given in the form of mean ± 1 standard deviation.
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integrating against xti from zero to infinity to obtain the
likelihood function:

p Vjb;qð Þ ¼ 1

2N

YN
i¼1

G 1þ bið Þ T � 1

2

	 
� �
w bið Þ½ �T

� c bið Þ
XT
t¼0

vtij j2= 1þbið Þ

" # 1=2�Tð Þ 1þbið Þ

/
YN
i¼1

XT
t¼1

vtij j2= 1þbið Þ

" # 1=2�Tð Þ 1þbið Þ

ð6Þ

[15] We used the term after the symbol / in equation (6)
as the likelihood function throughout this study.
2.2.3. Global Sensitivity Analysis
[16] Based on prior TEM ensemble simulations and

likelihood calculations, the global sensitivity analysis was
conducted to (1) identify the key parameters in determin-
ing C fluxes with the first-order impact ratio (FOIR) and
(2) examine the interaction structures among TEM param-
eters. Such an analysis also helps explain the importance of
partitioning NEP measurements into GPP and RESP in
order to constrain the TEM simulations with the Bayesian
inference technique. The credible intervals or confidence

intervals for fluxes simulated by TEM with prior parameter
samples were also presented by values at statistical levels
2.5% and 97.5%.
[17] The FOIR is defined as:

Ik ¼
Var E Y jqk½ �ð Þ

Var Yð Þ ð7Þ

where Ik states how much variance of the output Y is
contributed by the kth parameter qk, or, how much
uncertainty in the output would be reduced, in the first-
order approximation, by fixing the parameter qk at its true
value [Saltelli et al., 2004]. For a nonlinear model, the sum
of Ik for all parameters will usually be less than 1.0 due to
possible interactions among parameters. Therefore the sum
of all Ik can also be used to indicate how important the
interactions among parameters are in contributing to the
uncertainty of the model output. We calculated the FOIR
using the simulated monthly and annual GPP, RESP and
NEP during the growing season from May to September
[Clein et al., 2002] with a 10-year average from 1988 to
1997. The 10-year average smoothing was employed to
remove modulations due to interannual climate variability.
The uncertainties of FOIRs were estimated with the
bootstrap method [Davison and Hinkley, 1997].

Figure 4. Plot of interaction structure of kc against all other parameters when conditioned on different
combination of flux data (a) EET and MODIS GPP; (b) EET and NEP; and (c) EET, MODIS GPP, and
NEP. bi = 0 (i.e. normal error distribution) was used throughout the computation. Data points from
January 2003 to December 2004 were used to show interaction structures of TEM parameters.
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[18] Using a similar method described by Ratto et al.
[2001], we analyzed the interaction structure among the
parameters of TEM with the following steps:
[19] (1) Normalizing the likelihood function such that:

XNS
s¼1

ws Vjb; qð Þ ¼ 1 ð8Þ

where NS is the number of TEM Monte Carlo simulations,
which was 500,000 in this study. V denotes the differences
between the simulated and observed fluxes, and b, q are
parameters of TEM and the likelihood function, respec-
tively. This step reassigns the probability to different sample
points in the parameter space according to the difference
between the simulated and measured or derived eddy fluxes.
The sample point with a smaller difference will receive a
higher probability or weight.

[20] (2) Calculating the first- and the second-order
moments for all model parameters:

Ê qkð Þ ¼
Xs¼NS

s¼1

qk;s ws Vjb; qð Þ ¼ m̂k ð9Þ

V̂ qkð Þ ¼
Xs¼NS

s¼1

q2k;s ws Vjb; qð Þ � m̂2
k ¼ ŝ2

k ð10Þ

[21] (3) Rescaling the input parameters (i.e., parameters
in Table 1):

eqk ¼ qk � m̂k

ŝk

ð11Þ

Table 4. TEM Parameter Values at Different Statistical Levels After Bayesian Inference, Conditioned on EET, MODIS GPP, and NEP

Data With bi = 0

Acronym Base Valuea Posterior 2.5% Posterior 50% Posterior 97.5% Statistical Modeb Parameter Classc

Initial Pool Sizes
Cs 12791.1 6329.080 12540.700 19674.600 16262.300 PC
Cv 9006.52 2287.590 8761.220 19657.500 2287.590 EH
Nav 0.16125 0.130723 0.434495 0.885501 0.406843 PC
Ns 527.72 260.469 661.564 972.342 665.901 PC
Nv 30.044 10.622 26.617 38.927 24.031 PC

Soil Texture Properties
Porosity 54 30.8008 43.9686 58.0861 52.5254 PC
Fldcap 34.58 25.3488 30.5547 39.4260 27.7920 PC
Wiltpt 21.5875 20.1166 22.3403 24.8450 23.1154 PC

Vegetation Parameters
Rootz 2.3977 1.5885 1.8264 2.4041 1.8283 WC
kc 100 23.6180 144.0210 473.0020 466.9930 PC
kI 75 23.9540 124.4270 503.8300 24.7819 EH
Tmin �8.0 �8.8810 �3.2604 �1.1644 �3.2604 WC
Toptmin 5.5 0.9889 8.3278 14.4576 12.9523 PC
Toptmax 20.0 15.3681 20.5690 24.8717 23.1597 PC
Tmax 29.0 25.1608 29.4578 34.8365 25.2474 EH
RAQ10A0 2.35665 1.9357 2.8443 3.3448 2.9422 WC
RAQ10A1 �0.053077 �0.054452 �0.052801 �0.051206 �0.053454 PC
RAQ10A2 0.0023842 0.002294 0.002361 0.002436 0.002372 PC
RAQ10A3 �0.00004110 �0.000042 �0.000041 �0.000040 �0.000040 EH
kn1 4.2 1.333 6.529 9.835 6.925 PC
kn2 4.2 0.684 4.155 9.807 2.142 PC
MINLEAF 0.5 0.2332 0.4938 0.9751 0.5409 PC
ALEAF 0.42893 0.11847 0.49348 0.97255 0.92480 PC
BLEAF 0.33295 0.11483 0.38680 0.92465 0.41803 PC
CLEAF 0.32228 0.02992 0.27364 0.49645 0.35742 PC
MOISTOPT 0.5 0.2070 0.5073 0.7789 0.5187 PC
RHQ10 2.0 1.1027 2.3541 2.8599 2.4120 WC
CMAX 768.07 683.76 1185.95 1480.55 1351.57 WC
CFALL 0.002037 0.000141 0.002861 0.011826 0.005423 EH
KRC �6.467 �7.191340 �5.213690 �3.140830 �4.382210 PC
KDC 0.00216527 0.000935 0.003744 0.006763 0.002847 WC
NMAX 0.374677 0.0516254 0.2858710 0.672993 0.2102410 PC
NFALL 0.007955 0.003192 0.007544 0.011723 0.006800 PC
NUP 29.2639 13.974000 68.446300 97.392000 93.683800 PC
VEGC2N 375.0 207.0490 372.7000 576.2950 207.0490 EH

aThe base values of the TEM parameters are obtained from conventional calibration.
bThe statistical mode values are TEM parameter values corresponding to the maximum posteriori for the black spruce site in this study.
cFor the parameter classification, WC means well-constrained parameters, PC means poorly constrained parameters, and EH means edge-hitting

parameters.
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[22] (4) Computing the correlation coefficient among
parameters (e.g., kth and jth parameter):

r̂k;j ¼
Xs¼NS

s¼1

eqk;s eqj;s ws Vjb; qð Þ 2 �1; 1½ � ð12Þ

[23] We calculated the interaction structures among TEM
parameters conditioned on the observed or derived data of
(1) EET and MODIS GPP; (2) EET and NEP, and (3) EET,
MODIS GPP and NEP, respectively. We applied the fol-
lowing rules to interpret our results: If two parameters are
positively correlated, then these two parameters act as a
quotient/difference effect when driving the response vari-
able in the model. That means, when one parameter
increases its value, another parameter also has to increase
in order to have the same effects on the response variable
associated with these two parameters. If two parameters are
negatively correlated, then the two parameters act as a
product/sum effect, which means that the values of two

parameters should be changed in opposite directions to
maintain the same effects on a response variable.
[24] The 500,000 sets of simulated C fluxes and EET

based on prior parameter samples were analyzed to estimate
the 95% credible intervals (i.e., intervals confined between
values at 2.5% and 97.5% statistical levels, as defined
conventionally) of the fluxes of EET, GPP, RESP, and
NEP (see Figure 2, denoted by error bounds). Also esti-
mated are median values at the 50% statistical level.
2.2.4. Bayesian Inference on Model Parameters
and Prediction
[25] With the outputs from Monte Carlo simulations, and

the well-defined likelihood function equation (6), the
Bayesian inference defined by equation (1) can be imple-
mented to make inference on our chosen TEM parameters
and the simulated C fluxes and EET. We employed the
Sampling Importance Resampling (SIR) algorithm by Skare
et al. [2003] to construct the posterior distributions for both
model parameters and modeled fluxes with following steps:

Figure 5. (a) Percentage change in the length of 95% credible interval after Bayesian inference when
compared to the prior marginal distributions. Zero or negative values indicate that no information is
extracted from the eddy flux data using Bayesian inference for the parameter. (b) Percentage change of
the relative distance for a parameter’s distribution after Bayesian inference compared to its prior.
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[26] (1) Computing the importance ratio h(qj) = p(qjjV)/
p(qj), using equation (6) for each sample, so that a vector of
length 500,000 is formed. In this study, with the uniform
prior, the importance ratio is just the value of likelihood
function.
[27] (2) Let S�j =

P
i 6¼j h(qi) be the sum of all importance

ratios excluding h(qj).
[28] (3) For k = 1, . . ., m, draw parameter samples jk with

probabilityqjk fromthe500,000samples,whereqj/h(qj)/S�j.
We used the Probability Proportional to Size (PPS) sampling
technique [Hong et al., 2005] to draw the samples. The
resampling was done with replacement.
[29] (4) For the picked jk , get the corresponding qjk , k =

1, . . ., m. In our analysis, we set m = 50,000. This number
was chosen according to the suggestion that, to produce
stable results, setting the ratio of prior sample size to posterior
sample size as 10 is appropriate [Green et al., 1999; Bates
et al., 2000].

[30] In step (2), i = j is removed to reduce the correlation
between the modifying factor Zj, which is conventionally
used to define qj / h(qj)/Zj = h(qj)/

P
h(qj), and the impor-

tance ratio h(qj), from corr{h(qj), Zj} = corr{h(qj),
P

h(qj)} =
(1) to corr{h(qj), Zj} = corr{h(qj), S�j} = O(1/n), so that
elements with higher importance ratio are more easily drawn
in SIR.
[31] Using the NEP flux data only, the parameters related

to C dynamics of biogeochemistry models operated at daily
time step or even finer time steps could be well constrained
with Bayesian inference techniques [e.g., Santaren et al.,
2007]. However, this may not be the case for monthly time
step biogeochemistry models, such as TEM, since the
monthly NEP data obtained by aggregating measurements
at finer timescales contain less information than the original
data. Thus to make recommendations for the C fluxes to be
measured and derived to improve parameter estimations for
TEM, rather than just using NEP fluxes, we conducted
Bayesian inference analyses conditioned on different com-

Figure 6. The normalized frequency plots for RHQ10, Toptmin and kc, which are corresponding to
(a) well-constrained (WC), (b) poorly constrained (PC), and (c) edge-hitting (EH) parameters,
respectively. The mode values are corresponding to the set of parameters which have the highest value
of the likelihood function in the ensemble simulation. The base values were obtained from the
conventional calibration.
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Figure 7. The posterior TEM outputs after Bayesian inference with a normal error distribution (bi = 0).
The error bar denotes the 95% credible interval of the variables in that month; the gray solid time series
are the median values at the 50% confidence level after the Bayesian inference. The data points from
January 2003 to December 2004 were used in Bayesian conditioning; the rest of data, including the
derived GPP from April 1994 to December 2006 were used for verification.

Figure 8a. Scatterplots of the posterior TEM outputs against observations after Bayesian inference
when the double exponential error structure, i.e., bi = 1, was assumed. The data points from January 2003
to December 2004 were used in Bayesian conditioning; the rest of data, including the derived GPP from
April 1994 to December 2006, were used for verification.
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binations of MODIS GPP flux data, the measured NEP, and
the derived flux RESP. The effects of data error structures
(measurement/derivation uncertainty) of C and EET fluxes
on Bayesian inferences were examined using three different
bi values, which are 1 (double exponential distribution), 0
(normal distribution), and �1/3 (near-uniform distribution),
for the likelihood function (equation (6)).
[32] We examined how the uncertainty of TEM parame-

ters was reduced with the Bayesian inference technique by
calculating the modes (the maximum posteriori) and the
95% credible intervals (or confidence intervals) of the
posterior distributions, as well as the percentage change in
the 95% credible intervals of the parameters. The percent-
age change in the 95% credible intervals was calculated as
the difference between the 95% credible interval length of
the prior and posterior distributions divided by the 95%
credible interval length of the prior distribution. A positive
percentage change in the 95% credible interval indicates the
posterior has less uncertainty than the prior, and a negative
change means the parameter is poorly constrained or edge-
hitting. In addition, the percentage changes in the relative
displacement of the parameters marginal distribution were
also calculated according to the following formula

dq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
Pr qð Þ log 2 Pr qð Þ

Pr qð Þ þ Pr qjVð Þ þ Pr qjVð Þ log 2 Pr qjVð Þ
Pr qð Þ þ Pr qjVð Þ

	 

dq

s

ð13Þ

as an assessment of the change from the shape of the
parameter’s prior marginal distribution Pr(q) to that of the
posterior marginal distribution Pr(qjV) after Bayesian
inference. The percentage change in displacement was
normalized with the maximum of dq, which is equal to
(2log2)1/2 [Endres and Schindelin, 2003]. Therefore a
significant change in distribution shape after Bayesian
inference would give a nonzero value, and a value of zero
would correspond to no change in the distribution’s shape.
[33] We examined how the uncertainty of model predic-

tions of EET, GPP, RESP, and NEP was reduced by
calculating the modes and 95% credible intervals for both
simulations with the prior and the posterior parameters. The
Root Mean Square Error (RMSE) and the coefficients of
linear regression between the modes of the posterior TEM
flux distributions, the TEM simulated fluxes with parame-
ters obtained using the conventional calibration [e.g., Raich
et al., 1991], and the measured and derived data were also
used to assess the improvement of the model predictability.

3. Results

3.1. Key Parameters to Influence Carbon Fluxes
in TEM

[34] FOIR (first-order impact ratio) values indicate the
importance of TEM parameters in affecting annual GPP,
RESP, and NEP (Table 2). The CMAX, ki, and kc are the
most important parameters (with FOIR > 5%) in determining

Figure 8b. Same as for Figure 8a, but the normal error structure, i.e., bi = 0, was assumed.
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GPP. In contrast, the importance of CMAX, ki, and kc in
determining RESP is mostly indirect, through their impact
on RA, the autotrophic respiration, which is related with
GPP [Raich et al., 1991]. During the growing season, for
GPP and RESP, the FOIR of CMAX is greater than 0.3,
suggesting the parameter explains more than 30% variation
of these two fluxes (Figure 3). The impact of CMAX on
NEP is complicated because of the interaction in GPP and
RESP dynamics during the growing season. CMAX has the
highest FOIR in June (>0.2) and the lowest in September
(around 0.1), and its standard deviation deduced from the
bootstrap analysis [Davison and Hinkley, 1997] is also
highest for C flux simulations throughout the growing
season. The parameter RHQ10, the exponential increase
in RH for every 10�C increase in temperature, also has high
FOIR value, suggesting the importance of soil respiration
RH in determining NEP.
[35] The second group of important parameters (whose

FOIR is less than 5% but greater than 0.5%) includes those
related to phenology during the growing season (see
Tables 1 and 2). Specifically, the CFALL and Tmin are
important to GPP, while CFALL, KRC and kn2 are impor-
tant to RESP. For NEP, in addition to CFALL, KRC, kn2,
and Tmin, parameter Fldcap which controls the soil water
availability in TEM, seems to be important. The FOIR
values for parameters related to N dynamics (e.g., NMAX,
NUP, kn1, NFALL, except kn2) are not high during the

growing season (data not shown), implying that N cycling
mostly manifests itself through the interaction with carbon
cycling. This agrees with the algorithm in TEM that N
cycling acts as a constraining or modulating process rather
than a controlling process [McGuire et al., 1997; Tian et al.,
1999]. In addition, the ranking of FOIRs suggests that the
initial pool sizes of C and N in vegetation and soils are not
important in constraining the uncertainty of simulated C
fluxes (Table 2).
[36] For GPP, RESP and NEP, their sums of all FOIR

values are less than 1.0 during the growing season (see
Table 3). The FOIR sum for NEP is much smaller than those
for GPP and RESP, leading us to analyze the interaction
structure among parameters in the following section.

3.2. Interaction Structure of TEM Parameters

[37] The interaction structure of TEM parameters condi-
tioned on EET observations and the MODIS GPP data
indicates that there is a significant positive correlation
between parameter kc and CMAX (Figure 4a). This suggests
a higher CO2 uptake potential (denoted by CMAX) is
associated with a higher half saturation point of CO2 uptake
(denoted by kc). This agrees well with the quotient relation-
ship between these two parameters [see Raich et al., 1991,
equation (1.6)] in the GPP formulation. However, the
negative correlation between parameter kc and ki, as
expected from the product relationship between the two,

Figure 8c. Same as for Figure 8a, but the near-uniform error structure, i.e., bi = �1/3, was assumed.
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is not revealed [Raich et al., 1991]. Rather, a small positive
correlation is found, contrary to the GPP formulation that
for a fixed capability of C uptake, a lower half saturation
point of photosynthetically active radiation (PAR) should be
accompanied by a higher half saturation point of CO2

uptake by plants. To test if a longer time series of GPP
data can help show the expected negative interaction
structure, we conducted a number of inference analyses
with longer time series of GPP data and found the negative
correlation between kc and ki were indeed well identified,
but the overall interaction structure is different from that
obtained when partition information is used (data not
shown). The interactions between N related parameters
and the ones related to C dynamics (data not shown) are
difficult to interpret due to the complex structure of TEM
and the lack of data for constraint. Not surprisingly, the N
related parameters are either poorly constrained or edge-
hitting (Table 4). When EET and NEP were used to deduce
the interaction structure, much less correlation was obtained
among the parameters (Figure 4b). Our further analyses
indicated that a longer time series of these fluxes data does
not help either to characterize the interaction structure of the
parameters, though the positive correlation between kc and
CMAX still exists. This suggests that by only using one
type of C flux data (i.e., NEP or MODIS GPP and EET) in
Bayesian analysis, we cannot fully reveal the interaction
structures between the parameters, such as, the quotient
relationship between kc and ki, derived from empirical
studies [Raich et al., 1991]. Thus this explains that when

only the observed EET and NEP were used in Bayesian
inference (see Figure 9a), the NEP agrees well with meas-
urements, but the simulated GPP and RESP are significantly
different from the observed data. The same argument is also
valid for the case that when EET and MODIS GPP were
used in Bayesian inference, the RESP and NEP are very
different from the observed data (result not shown). Condi-
tioning TEM simulations on EET, NEP and MODIS GPP
data (or other combinations of GPP and RESP partitioned
from NEP) provides better interaction structures of param-
eters in comparison to other simulations (e.g., Figure 4). For
example, the deduced large negative correlation (�0.5)
between kc and ki suggests that proper combination of
data that incorporates partition information of GPP and
RESP from observed NEP should be used in Bayesian
inference to well characterize the interaction structure of
TEM parameters.

3.3. Reduced Uncertainty of Parameters

[38] With assumption of a normal error distribution (i.e.
bi = 0) for observed or derived flux data, the 95% credible
intervals for all parameters were calculated with Bayesian
inference framework using the two-year (2003–2004) data
of EET, MODIS GPP and NEP (Table 4). The percentage
changes of the 95% credible interval length for most
parameters are small or moderate, suggesting the flux data
are not able to well reduce the uncertainty of most param-
eters (Figure 5a). For instance, Wiltpt almost has the same
amount of uncertainty from prior to posterior, whereas the

Table 5. Root Mean Square Errors (RMSE), the Slope, Intercept, and R2 Coefficient of the Linear Regression of the TEM Flux Modes

Against Eddy Flux Tower Data and MODIS GPP When Different Types of Flux Data Are Used in Bayesian Inference Analysesa

Inference Strategy

RMSE Slope Interception R2

03-04 94-06 03-04 94-06 03-04 94-06 03-04 94-06

EET Flux Data
NEP and EET 8.2 17.5 0.85 0.60 5.4 7.9 0.82 0.77
MODIS GPP, NEP, and EET 8.2 17.5 0.85 0.60 5.4 7.9 0.82 0.77
MODIS GPP, RESP, and EET 8.3 17.6 0.87 0.60 5.4 8.2 0.82 0.75
Base value simulation 16.8 24.4 0.51 0.51 6.4 6.6 0.86 0.89

GPP Flux Data
NEP and EET 49.5 60.0 1.91 1.92 8.86 14.97 0.76 0.65
MODIS GPP, NEP, and EET 17.6 24.9 0.96 0.91 1.30 4.69 0.93 0.87
MODIS GPP, RESP, and EET 7.9 24.3 0.96 0.93 2.03 5.31 0.92 0.88
Base value simulation 21.7 27.0 0.89 0.86 �1.20 1.54 0.91 0.88

MODIS GPP Data
NEP and EET 67.6 67.0 2.58 2.27 9.40 9.60 0.89 0.72
MODIS GPP, NEP, and EET 27.7 29.2 1.20 0.95 3.71 �0.63 0.93 0.86
MODIS GPP, RESP, and EET 28.4 25.9 1.20 1.04 4.65 2.13 0.93 0.89
Base value simulation 21.7 29.2 0.89 0.95 �1.20 �0.63 0.91 0.86

RESP Flux Data
NEP and EET 50.9 63.7 4.68 5.29 �49.77 �57.47 0.72 0.68
MODIS GPP, NEP, and EET 13.0 16.7 0.98 1.00 1.05 1.54 0.93 0.92
MODIS GPP, RESP, and EET 12.2 17.9 1.06 1.09 0.76 1.08 0.95 0.92
Base value simulation 18.0 21.5 1.09 1.12 �10.19 �12.15 0.89 0.88

NEP Flux Data
NEP and EET 5.3 13.4 0.90 0.70 1.03 �1.13 0.94 0.58
MODIS GPP, NEP, and EET 9.7 20.3 0.75 0.44 0.08 �1.18 0.83 0.32
MODIS GPP, RESP, and EET 9.9 20.2 0.74 0.46 �1.63 �2.46 0.85 0.40
Base value simulation 14.4 23.5 0.60 0.39 �0.16 �1.64 0.77 0.40

aAlso given are the RMSE, the slope, intercept ,and R2 coefficient of the linear regression of TEM simulated flux with parameters at their base values
against MODIS GPP and eddy flux tower data. Data points from January 2003 to December 2004 are used in Bayesian inference. The linear regressions are
conducted for the training period 03-04, and the overall period 94-06, respectively. All values are statistically significant (p < 0.001). Units for EET are mm
H2O m�2 mon�1. Units for carbon fluxes are g C m�2 mon�1.
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posterior of Tmax even has negative percentage change (two-
side edge-hitting) in its 95% credible interval when
compared with its prior uniform distribution due to the
parameter interactions. In contrast, nearly 30% or more
changes occur for RAQ10A0, CMAX, Tmin, KRC and Rootz.
CMAX, KRC and Tmin have relatively high or moderate
FOIR values during the growing season. The changes in
the 95% credible intervals of RAQ10A0 and Rootz are
caused by their correlations with other parameters (see
Figure 4c). This suggests that it is important to consider
the parameter interactions in quantifying the uncertainty of
model simulations.
[39] We obtained four values for each parameter after the

implementation of Bayesian inference at statistical levels of
2.5%, 50% or median, and 97.5% as well as the mode (see
Table 4). The modes represent the most likely values for
parameters corresponding to the best fit between TEM
simulations and the observed fluxes. Thus we may use this
set of parameters as ‘‘true’’ parameters for TEM applica-
tions. This Bayesian inference-based parameterization
method fully makes use of the available observed and
derived flux data. If the new observed data are available,
the parameters are readily updated and the uncertainty of
parameters will be further reduced.

[40] The percentage change in the relative distance be-
tween the prior and posterior marginal distributions indi-
cates that most parameters changed their shapes moderately
and, some parameters changed their shapes negligibly, after
the Bayesian inference (Figure 5b). This suggests that the
observed data only exert limited constraints on TEM
parameters using Bayesian inference.
[41] Using changes in 95% credible interval length and

the shape of the marginal distribution, in conjunction with
the normalized frequency plot (Figure 6), we were able to
sort the posterior parameters into three classes, which are
well-constrained (WC), poorly constrained (PC) and edge-
hitting (EH) parameters (Table 4). The well-constrained
parameters show a good convergence with a unimodal
shape in their frequency plot. The poorly constrained
parameters show either a flat shape or a multimodal
shape. Most parameters are poorly constrained (small per-
cent changes in shape or multimodal, see Figure 6b).
Specifically, parameters Rootz, Tmin, RAQ10A0, RHQ10,
CMAX and KDC are well-constrained (Figure 6a) and
parameters Cv, ki, Tmax, RAQ10A3, CFALL and VEGC2N
are edge-hitting (Figure 6c). Well-constrained parameters are
closely related to algorithms of GPP formulae or autotrophic
or heterotrophic respiration processes in TEM. Many param-
eters are moderate or poorly constrained, due to (1) they are

Figure 9a. Scatterplots of the posterior TEM outputs against observations after the Bayesian inference
with the combination of EET and NEP data being used for conditioning. Data points from January 2003
to December 2004 were used in the Bayesian conditioning.
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not directly related to algorithms of carbon uptake or release
or (2) they often greatly interact with each other (e.g., with kc),
so that the flux data are not able to well constrain them.
[42] The base values of parameters developed through the

conventional calibration are different from the statistical
mode, i.e., the parameters which produce the best fit
between TEM simulations and the observed flux data, and
are mostly within the posterior 95% credible intervals
(Figure 6 and Table 4).

3.4. Reduced Uncertainty of Model Predictions

[43] The median values at 50% statistical level and the
bounds of 95% credible intervals of the posterior C fluxes,
including GPP, RESP, and NEP indicate that the uncertainty
range of the posterior is remarkably reduced in comparison
to the simulations using the prior parameters (see Figure 2
and Figures 7 and 8a, 8b and 8c). The comparisons of C
fluxes between modes of the Monte Carlo simulations and
the eddy fluxes data indicate that TEM is able to more
accurately reproduce the observed data depending on the
type of the fluxes data used in the Bayesian inference
framework (Table 5). Specifically, NEP is improved when
both the MODIS GPP and the observed NEP and EET were
used in our Bayesian inference analysis. When only the
observed flux data NEP and EET were used in Bayesian
inference, the mode NEP of the Monte Carlo simulations

has the least RMSE, the linear regression coefficient is
closest to 1.0, and the R-square value is highest. However,
the posterior GPP and RESP are significantly different from
the flux data in both the verification and Bayesian inference
periods due to lack of constraint on the correlations among
the parameters (Table 5 and Figures 9a–9b). For EET, the
TEM simulations always appeared greater than the measure-
ments, which may be due to underestimation of measure-
ments of these fluxes [Amthor et al., 2001], or due to the
simple algorithms of EET in TEM [Melillo et al., 1993].

4. Discussion

4.1. Effect of Data Error Structures on Parameter
Estimation and Model Prediction

[44] One of the uncertainty sources for model predictions
is the errors in the measured and derived data. Here we
further examined how error structures of data affect param-
eter estimation and model prediction of TEM. We used three
different values of bi to represent different error structures
associated with the eddy flux data in our Bayesian inference
analysis. They are 1, 0, �1/3, which mathematically corre-
spond to the double exponential distribution, normal distri-
bution and near-uniform distribution. Not surprisingly, the
three sets of analyses result in different uncertainty ranges
and modes for the TEM posterior simulations of EET, GPP,

Figure 9b. Same as for Figure 9a, but the combination of EET, RESP, and MODIS GPP data used in
Bayesian inference.
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RESP, and NEP (Table 5 and Figures 8a–8c). Specifically,
among the three sets of analyses, the one with double
exponential error distribution (i.e., bi = 1) has the least
uncertainty range and the one with near-uniform error
distribution (i.e., bi = �1/3) has the greatest uncertainty
range, for the posterior of all the fluxes being analyzed; and
the mode of the case with near-uniform error distribution
fits the data worse than those from the cases with double
exponential error distribution and normal error distribution.
If more data points were used in the Bayesian inference, the
simulated mode fluxes inferred with greater value of bi are
closer to the eddy flux data, and the posterior distributions
of the parameters are skewed into narrower shapes (e.g.,
Figure 10). The one with normal error distribution (i.e. bi =
0) has its mode close to the eddy flux data, except EET, and
all the eddy flux data are inside the uncertainty range (see
Figure 7 and Table 5) while its posterior parameters are not
overconstrained (e.g., Figure 10); thus it is chosen as the
best inference of this study. The impact of different error
structures on the posterior parameters is similar to that on
the posterior fluxes. For instance, the well-constrained
parameter Tmin is overconstrained when the double expo-
nential error distribution is used in computing the likelihood
function (see Figure 10). The posterior of Tmin for the case
with a near-uniform error distribution is too divergent
because of the overestimation of data error. The normal
error distribution resulted in parameters having a good

convergence in posterior shapes, in addition to the good
agreement of posterior fluxes with the eddy flux data.
Overall, it suggests that the developed framework is capable
of analyzing the effect of error structure of the eddy flux
data on the uncertainty of parameters and model predictions.
If the error structures of the observed data are available, we
could use both observed mean values and their associated
errors in our Bayesian analyses.
[45] Williams et al. [2005] pointed out that the correct

estimation of observational errors was crucial to the quality
of their results from the ensemble Kalman filter technique
used in their model-data fusion analysis, because the mag-
nitude of observational errors determines to what extent the
simulated fields will be corrected to match the observations.
The error variances are often specified by knowledge of
instrumental characteristics or generated from replicate
samples while the error correlations are often assumed to
be zero. Similarly, Raupach et al. [2005] have stressed the
importance of specifying the data uncertainty (errors) in
model-data fusion analysis as the errors affect the eventually
predicted uncertainty of the parameters and model outputs.
They also pointed out the challenges in evaluating the
uncertainty properties of observational data including error
magnitudes, error correlations among observations, tempo-
ral structure of the observation errors and error distributions
(e.g., Gaussian versus lognormal etc.). For example, in their
implementation of Metropolis algorithms, Braswell et al.
[2005] fixed an error for their data points due to the lack of
necessary information to determine how errors vary in each
data point. Our study provides an example of how to
analyze the impact of different error structures on the
posterior with our Bayesian inference framework, together
with the parameterized likelihood function equation (6).

4.2. Data Selection for the Bayesian Inference

[46] An important contribution of this study is to provide
a method for examining how different eddy fluxes affect the
Bayesian inference analysis, thus improving model param-
eters and predictability. Here we conducted different sets of
analyses conditioned on different combinations of the
observed and derived flux data. When no partitioning
information of eddy flux NEP is used, the posterior dis-
tributions of EET, GPP, RESP, and NEP, including their
modes and bounds, are different from that when partitioning
information is used (Figures 8a–8c and 9a–9b and Table 5).
Among the three sets of combinations, the combination of
EET and NEP is the least informative (Figure 4 and Table 5).
When NEP was replaced with data containing NEP parti-
tioning information (e.g., component RESP) and the
MODIS GPP, the inference provides a similar mode to the
one derived using NEP, MODIS GPP, and EET in inference
analysis (Table 5), but the uncertainty bounds are slightly
different due to the stochastic property of the Bayesian
inference.
[47] The partitioned component RESP of the measured

NEP could introduce useful information to constrain TEM,
in conjunction with the MODIS GPP (Figures 4, 7, 8a–8c
and 9a–9b). Our results showed that, in order to derive the
reasonable inference of TEM parameters, the flux data used
should at least have enough information to constrain param-
eters controlling the ecosystem production and respiration.
This conclusion is also supported from another finding in

Figure 10. Normalized frequency plots for posterior Tmin

when different error structures were used to compute the
likelihood functions.
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our experiment (results not shown) that if we use data of
MODIS GPP in the growing season together with RESP in
the nongrowing season in Bayesian analysis, the inference
is still able to show the interaction structure among the
parameters.

5. Conclusion

[48] We developed an integrated framework of global
sensitivity analysis and Bayesian inference to analyze and
improve parameterization and predictability of a monthly
time step biogeochemistry model TEM. Using the frame-
work, we were able to, for the first time, identify the key
parameters of TEM model and examine the interaction
structures of parameters and their effects on seasonal C
dynamics. We showed that the improved parameterization
of TEM could substantially reduce the uncertainty of C flux
simulations in comparison with eddy flux data. We found
that, unlike ecosystem models operated at a finer time step
[e.g., Santaren et al., 2007], the NEP measurement alone is
able to constrain the estimated C fluxes, the partition
information of GPP and RESP, or satellite-based GPP
besides monthly NEP should also be used in Bayesian
inference analysis to constrain coarse-time step ecosystem
models such as TEM. Further, the assumed error structures
of the flux data resulted in different uncertainty bounds of
the posterior parameters and model predictions, suggesting
that the error structure of the observed data should be
developed and used in Bayesian inference analysis. We
conclude that the developed Bayesian inference framework
could be used to improve parameterization and predictabil-
ity of relatively coarse time step biogeochemistry models
when eddy flux data and other data (e.g., satellite-based)
and their associated errors are available.
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