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Abstract Snow insulation effects modify soil and carbon dynamics in northern middle to high latitudes
(45°–90°N). This study incorporates these effects by introducing a snow model into an existing soil thermal
model in a biogeochemistry modeling framework, the Terrestrial Ecosystem Model. The coupled model is
used to quantify snow insulation effects on carbon and soil thermal dynamics in 45°–90°N region for the
historical period (2003–2010) and the future period (2017–2099) under two climate scenarios. The revised
model captures the snow insulation effects and improves the estimates of soil thermal dynamics and the land
freeze-thaw as well as terrestrial ecosystem carbon dynamics. Historical mean cold-season soil temperature
at 5 cm depth driven with satellite-based snow data is 6.4°C warmer in comparison with the original
model simulation. Frozen area in late spring is estimated to shrink mainly over eastern Siberia, in central to
eastern Europe, and along southern Canada in November. During each nongrowing season in the historical
period, 0.41 Pg more soil C is released due to warmer soil temperature estimated using the new model.
During 2003–2010, the revised model estimates that the region accumulated 0.86 Pg less C due to weaker
gross primary production, leading to a regional C loss at 0.19 PgC/year. The revised model projects that the
region will lose 38–51% permafrost area by 2100 and continue to be a C source under the low-emission
scenario (Representative Concentration Pathway 2.6) but to be gradually transitioning into a weak sink in the
latter half of the 21st century under the high-emission scenario (Representative Concentration Pathway 8.5).

1. Introduction

Rapid climatic changes in the Arctic have been reported over the past decades (Intergovernmental Panel on
Climate Change, 2014), with a general decrease in snow cover and frozen season duration, and continual
reduction of the Arctic permafrost (Lemke et al., 2007). Spatially, the changes of snow depth in the Arctic vary.
While a reduced snow depth was recorded in western North America over the past decades (Bulygina et al.,
2009; Dyer & Mote, 2006), there has been an increase in annual snow depth in eastern Siberia (Schindler &
Donahue, 2006). This spatial difference in the cryosphere in the past has, not-too-surprisingly, changed the
Arctic ecosystem dynamics. Observational studies have shown that there was a stronger atmospheric warm-
ing trend in the Arctic than the global mean due to polar amplification resulted from the strong snow-albedo
feedback (Serreze & Francis, 2006). Because this feedback is greatly affected by the changes in snow coverage
and duration in the Arctic, corresponding changes in air temperature are expected (Déry & Brown, 2007). This
will further influence soil temperature. Studies have shown that the warming trend is most likely to continue
(McCarthy, 2001) so are the climate-induced changes, including snow cover, permafrost stability, plant grow-
ing season length, and plant productivity in boreal and the Arctic ecosystems (Edenhofer et al., 2014,
Intergovernmental Panel on Climate Change, 2014). Furthermore, Community Climate SystemModel has pre-
dicted a 10–40% increase in winter snow fall and a shortened snow period (�14 ± 7 days in spring versus
+20 ± 9 days in fall) from the 20th to 21st century (Lawrence & Slater, 2010).

Changes in snowpack will alter soil thermal conditions. That largely explained why the magnitude of under-
ground temperature variations in the Arctic does not always directly respond to surface air warming
(Lawrence & Slater, 2010). Studies have highlighted the importance of changes in both near-ground air tem-
perature and snow cover on soil thermal regimes in comparison with other factors (Osterkamp, 2007;
Osterkamp & Romanovsky, 1999; Stieglitz et al., 2003). A model estimated that more than 50% of the total
thermal regime variations in the Arctic can be attributed to snow variability for the latter half of the twentieth
century (Lawrence & Slater, 2010). While it can be certain that winter snow cover affects soil temperature, the
overall impact on the soil thermal regime depends on the combination of many factors including timing,
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duration, density, thickness, and structure of snow as well as local environment (T. Zhang, 2005). To date, the
snow insulation effect in the Arctic has not been well quantified using recent satellite-based snow data.
Specifically, the existing studies have not explicitly considered the effects of varying snow depth and snow
thermal conductivity across space and time.

Further, changing soil temperature, especially in winters, affects ecosystem carbon cycling (Y. Zhang et al.,
2008). The Arctic contains a large amount of carbon in plant and soils, which was estimated to be
1,300 PgC with 472 ± 27 PgC in top 1-m soils (Hugelius et al., 2014), accounting for almost half of the
global belowground organic carbon (Batjes, 1996; Jobbágy & Jackson, 2000). This large carbon pool is vul-
nerable to warming soil temperature, which will accelerate carbon mobilization and decomposition pro-
cesses, leading to more carbon release to the atmosphere. Both long-term records and process-based
models confirmed that there has been an increasing carbon release due to soil warming from the
1990s to 2000s (Euskirchen et al., 2017; McGuire et al., 2012). Heterotrophic respiration in nongrowing
season is critical to the status of the Arctic soil carbon (Schimel et al., 2006). For instance, studies con-
ducted in boreal European forests and northern Alaska showed that net ecosystem carbon exchanges
are largely dependent on the amount of carbon respired during the nongrowing season (Euskirchen
et al., 2012; Oechel et al., 2014; Valentini et al., 2000).

Uncertainties in quantifying the carbon budget as the difference between plant productivity and respiration
as well as soil decomposition widely exist. For observations, differences in measuring methods and human
disturbance often induce uncertainties. For instance, a recent analysis based on observational data at 32 sites
in the northern high latitudes found that the Arctic tundra has been a carbon source in the 2000s, with
462 ± 378 TgC released to the atmosphere on an annual basis (Belshe et al., 2013). Another measurement
from January 2008 to December 2015 in Alaska indicated a cumulative carbon loss of 158 ± 53 and
668 ± 83 gC/m2 form heath tundra site and wet sedge tundra site, respectively (Euskirchen et al., 2017).
Using on-plot chambers, snow pit chambers, and direct eddy covariance towers, the observed annual
CO2 balance in north Alaskan tundra showed a carbon source from 2009 to 2011, ranging from 22 ± 23
to123 ± 29 gC/m2/year (Webb et al., 2016). Process-based terrestrial biogeochemical models and atmo-
spheric inversion models also have large uncertainties in their estimates. For instance, two ensemble model
simulations spanning over 1990–2006 otherwise suggested that the Arctic tundra is still acting as a carbon
sink of 110 and 566 TgC/year, both with large uncertainties between participated models (McGuire et al.,
2012, 2016). Retrospective simulations by Hayes et al. (2011) suggested a carbon sink in boreal Europe and
Asia but a net source of 27 TgC/year from 1987 to 2006 in boreal North America. Terrestrial biosphere model
intercomparison projects on Alaskan Arctic during 2003–2006 with 30 different models estimated that the
region acted from a carbon sink to a source of �0.01 ± 0.19 kgC/m2/year (Fisher et al., 2014).

To constrain the uncertainties of existing estimates of regional carbon budget and more adequately quantify
the snow insulation effects on both soil thermal and carbon dynamics, we revised an extant biogeochemistry
model, the Terrestrial Ecosystem Model (TEM; Zhuang et al., 2003, 2010). Specifically, a one-dimensional heat
transfer snow-soil temperature model was incorporated into the soil thermal model (STM, Zhuang et al.,
2001) within TEM. Field measurements of soil temperatures and C fluxes (http://ameriflux.lbl.gov/) were used
to calibrate the model. Using this new model, we examined the snow insulation effects on soil temperatures,
land freeze-thaw, and C dynamics in the Arctic. This study also took advantage of satellite data of snow cover
from AMSR-E/Aqua Level III product (https://nsidc.org/data/docs/daac/nsidc0271_ease_grid_swe_climatol-
ogy.gd.html, Armstrong et al., 2005), and the recent Arctic permafrost soil C map (http://bolin.su.se/data/
ncscd/, Hugelius et al., 2013, 2014). By using the snow depth and snow thermal conductivity derived from
the satellite-based snow data, two hypotheses were tested: (1) during the historical period of 2003–2010 land
freeze-thaw and soil temperature dynamics as well as subsequent regional terrestrial ecosystem C dynamics
are significantly different from the simulations without using these data and (2) the improved snow represen-
tation more adequately predicts the permafrost and C dynamics in the Arctic during the 21st century.

2. Methods
2.1. Model Description

In this study, TEM was coupled with an improved STM by including the effects of snow dynamics (Figure 1a).
Snow-soil heat exchange was explicitly modeled (Figure 1b). The extant STM was a one-dimensional model
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that models the heat fluxes within soil layers, with consideration of the phase change that accompanies
freezing and thawing processes. Soil temperatures were estimated for each depth interval and time step for
various soil layers (Zhuang et al., 2001). STM estimated snow layer thickness based on a simple algorithm,
and the heat conduction within snow layer has not been explicitly modeled (Zhuang et al., 2001), which
introduced discrepancies between observations and simulations when applied on a large spatial scale.
This study improved the original model by treating the snow thickness and snow thermal conductivity
explicitly in a snow-soil continuum. Snow thickness was estimated from satellite snow water equivalent
data, and snow density was calculated based on a snow-classification system of Sturm et al. (1995, 2010).
The simulated temperature at the snowpack bottom was used for the upper boundary condition of the
soil profile. Previous research has indicated that the temperature profile within the snowpack generally
follows a linear pattern (Cherkauer & Lettenmaier, 1999), which was employed in this study. STM-TEM was
run to equilibrium, so the heat flux at the snow-soil interface from the snow side equals the ground heat
flux at the soil-snow interface coming from the soil column, calculated from the existing STM. The upper
boundary condition of the upper snow surface temperature equals the near-ground air temperature,
while the lower boundary condition at the snow-soil interface was allowed to change as follows:

Ksnow
ΔT snow
ΔZsnow

¼ G ¼ �Ksoil
ΔT soil

ΔZsoil
(1)

where Ksnow is the snow thermal conductivity (W/m/K), and Ksoil is the soil thermal conductivity (W/m/K).
ΔZsnow (m) was the snow depth, and ΔZsoil (m) is the simulated soil column depth. ΔTsnow (°C) is the tempera-
ture change through the snowpack from snow surface (where the temperature was defined as air tempera-
ture) to the bottom of snowpack, and ΔTsoil (°C) in this particular module is the temperature change through
the STM-simulated soil column. Temperature at the bottom of snowpack was assumed to be the same as
temperature at the soil surface; thus, equation (1) can be expanded as follows:

T snowbase ¼
Tair þ Ksoil

Ksnow·ΔZsoil
·ΔZsnow·T soilbase

1þ Ksoil
Ksnow·ΔZsoil

·ΔZsnow
(2)

Air temperature at current time step and calculated soil temperature profile from the previous time step were
substituted into equation (2) to solve for the initial snowpack bottom temperature at this time step, which
was then fed back to STM as the upper boundary condition for an intermediate soil temperature profile.

Figure 1. Schematic diagram of the coupled Terrestrial Ecosystem Model (TEM)-Soil Thermal Model (STM), and snow-soil
column structure and sublayers in the revised STM.
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These calculations were iterated multiple times in order to balance the monthly heat flux at the interface
between snow and soil. The temperature at the snowpack bottom from the final iteration was taken as
the upper boundary condition to solve for the final soil temperature profile for the current time step. In
contrast, the previous version of STM simply used air temperature as the upper boundary condition
(Zhuang et al., 2001).

The snow thermal conductivity used in equation (2) was approximated from its density, following the empiri-
cal relationship summarized by Sturm et al. (1997). The snow depth Zsnow in the heat flux equation was
calculated from the snow water equivalent data, obtained from the satellite data product (Armstrong et al.,
2005). Each ecosystem type had a prescribed constant bulk snow density. This density was estimated for
the whole snow layer without distinguishing the density differences between fresh and old snow within a
month. A minimum acceptable snow thickness of 0.01 m was set in the model.

TEM was a process-based biogeochemical model that quantifies the net ecosystem production (NEP), the
difference between gross primary production (GPP), the autotrophic respiration (RA) that included both
growth and maintenance respiration of living vegetation, and the heterotrophic respiration (RH) that repre-
sented soil decomposition. GPP, the amount of chemical energy synthesized as biomass in an ecosystem,
was calculated as (Zhuang et al., 2003)

GPP ¼ Cmaxf PARð Þf LEAFð Þf Tð Þf Ca;GVð Þf NAð Þf FTð Þ (3)

where Cmax is the maximum rate of C assimilation, PAR is photosynthetically active radiation, LEAF is the leaf
area relative to the maximum annual leaf area, T is temperature in °C, Ca is atmospheric carbon dioxide con-
tent, GV is the relative canopy conductance, and NA is nitrogen availability. f(NA) is defined as the feedback of
nitrogen availability on the carbon assimilation. f(FT) reflects the influence of freeze-thaw on vegetation CO2

uptake.

In TEM, soil respiration is represented by RH, which is calculated as follows:

RH ¼ KdCsf MVð Þe0:0693T (4)

where Kd is the heterotrophic respiration rate at 0°C, Cs is carbon storage in soils, and T is the monthly mean
soil temperature at top 20 cm depth that influenced respiration (the exponential form of T on RH reproduces
the temperature sensitivity of soil decomposition). f(MV) is a nonlinear relationship that defines the influence
of volumetric soil moisture (MV) on soil decomposition (Tian et al., 1999):

f MVð Þ ¼ MV �MVminð Þ MV �MVmaxð Þ
MV �MVminð Þ MV �MVmaxð Þ � MV �MVopt

� �2 (5)

whereMVmin (0%),MVopt (50%), andMVmax (100%) are the minimum, optimum, andmaximum volumetric soil
moisture content considered for soil respiration. When soil temperature is below�1°C, f(MV) is assumed with
a very small value of 0.001.

The extant TEM has been well parameterized and calibrated to various ecosystem types (Zhuang et al., 2003).

2.2. Data Sets

Monthly climate data for the period of 2003–2010 including air temperature (°C), precipitation (mm), and
radiation (W/m2) obtained from Climate Research Unit database (Mitchell et al., 2004) were used to run his-
torical simulations. Aside from these time series data, gridded global-scale soil texture data were organized
based on the Food and Agriculture Organization (1974) soil map of the world. The input vegetation map
was obtained from Melillo et al. (1993), and the elevation values for the whole study region were obtained
from 10-min digital global elevation data (NCAR/NAVY, 1984). Global Monthly EASE-Grid Snow Water
Equivalent (SWE) data derived from the AMSR-E instrument carried on the NASA Earth Observing System
Aqua satellite (https://nsidc.org/data/docs/daac/nsidc0271_ease_grid_swe_climatology.gd.html, Armstrong
et al., 2005) were used for the revised model. This data set has been evaluated for a list of chosen areas in
northern high latitudes. For instance, satellite-based SWE was well close to observations for Canadian
high plains and Russian steppe area with R2 between 0.75 and 0.8. The accuracy for mountainous
and heavily forested areas was less with R2 around 0.5 (Armstrong & Brodzik, 2002; Armstrong et al.,
2005; Chang et al., 1987).
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Using site-level measurements from the standardized AmeriFlux data set (http://ameriflux.lbl.gov/), carbon
dynamics were calibrated. The calibration site description was documented in Table 1, and the comparison
between modeled and observed carbon fluxes has R2 from 0.71 to 0.83 (Figure 2).

Soil thermal parameters were calibrated at several sites (Table 1). At each site, a set of climate and soil thermal
data were obtained from the standardized AmeriFlux data set (http://ameriflux.lbl.gov/). The representative
sites include the following: Imnavait Alaska site for the alpine tundra ecosystem (Ueyama et al., 2013),
Barrow Alaska site for wet tundra-type land cover (Zona et al., 2016), BOREAS NSA old black spruce forest
Canada site for boreal forest type (McCaughey et al., 1997), and North Sylvania Wilderness Michigan site
for coniferous forest type (Desai et al., 2005).

2.3. Model Parameterization and Regional Simulation

The revised STM was parameterized using site measurement at various depths. The model estimates can be
expressed as follows:

bY ¼ f Xjθð Þ þ e (6)

wherebY ¼ y1; y2;⋯; ynð Þ is the model outputs vector containing time series of soil temperatures. f is the sim-
plified expression of the simulation process functions built within the TEM. X is the input data that drives the
model. θ = (θ1, θ2,⋯, θm) is the vector of a set of m unknown parameters to be calibrated. e = [e(θ1), e(θ2),
⋯e(θm)] are independently and identically distributed errors of the simulation.

The goal of parameterization here was to identify the topsoil layer parameter set that minimized the statis-
tical error e by generating thousands of parameter sets for the model using Latin hypercube sampling
method (Iman, 2008). To ensure the reliability of the parameterization and calibration results, the parameters
sample size was set to be 10,000. It should be noted that soil thermal parameters are not uniform throughout
the soil profile. In this study, only the parameters of the top organic soil layer were calibrated for several rea-
sons. First, the topsoil layer is where main microbial activity takes place due to its rich C and abundant
microbes (Fierer et al., 2003; Fisk et al., 2003; Taylor et al., 2002). Second, the topsoil layer is strongly affected
by snow insulation effects and air temperatures (Brady & Weil, 2013). Third, in situ measurements of soil tem-
perature are mostly down to soil depth of 20 cm. Finally, the parameters for deep soil layers have been cali-
brated in our previous studies (Zhuang et al., 2001, 2003). The prior ranges and optimized values of the
calibrated topsoil layer parameters in this study were ecosystem type specific (Table 2).

Two sets of model simulations were conducted for the historical period of 2003–2010: (1) the simulations
with the previous version of TEM (TEM_S1 model), not considering the thermal effects of changing snow
cover and (2) the simulations with the revised STM-TEM (TEM_S2 model) that used satellite-derived snow
water equivalent data. TEM_S2 simulations were driven with AMSR-E SWE data, in addition to the climate for-
cing data used in TEM_S1. To predict future ecosystem C fluxes and soil C changes, the revised model was run

Table 1
Description of Calibration Sites

Site name Location

Calibrated
soil layer
thickness

(cm)
Ecosystem

type
Vegetation

cover Soil type

Annual mean
temperature

(°C)

Annual
precipitation

(mm) Reference

Imnavait US-ICt 68.6°N, 149.3°W 22 Alpine tundra Sedge, shrubs Permafrost �7.4 318 Ueyama et al. (2013)
Barrow US-Brw 71.3°N, 156.6°W 20 Wet tundra Sedge, shrubs Permafrost �12.6 85 (summer) Ikawa and Oechel (2014)

and Kwon et al. (2006)
BOREAS NSA old
black spruce

55.9°N, 98.5°W 20 Boreal forest Black spruce Kame and
clay soil

�3.2 517 McCaughey et al. (1997)
and Bond-Lamberty
et al. (2005)

Sylvania Wilderness
US-Syv

46.2°N, 89.3°W 20 Coniferous
forest

Hemlock-
hardwood

Spodosol 3.81 826 Desai et al. (2005)

Ivotuk US-Ivo 68.4°N, 155.7°W 22 Alpine tundra Tussock, shrubs Permafrost �10.9 202 Riedel et al. (2005)
Atqasuk US-Atq 70.5°N, 157.4°W 20 Wet tundra Sedge Sandy, permafrost �11.9 55 (summer) Oberbauer et al. (2007)
Howland Forest/
US-Ho1

45.2°N, 68.7°W 20 Coniferous
forest

Spruce,
hemlock

Glacial tills 6.2 1148 Hollinger et al. (1999)
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from 2017 to the end of 2099, driven by two future climate scenarios Representative Concentration Pathways,
RCP 2.6 and RCP8.5 from the general circulation model Hadley Centre Global Environmental Model, version 2
(Baek et al., 2013; Martin et al., 2011) developed by the Met Office Hadley Centre in UK. The climate and
atmospheric CO2 data were obtained from the World Climate Research Programme’s Coupled Model
Intercomparison Project phase 5 multimodel data set (https://esgf-node.llnl.gov/projects/cmip5/, Taylor
et al., 2012). Gridded soil carbon stock data from the Arctic permafrost soil C map (http://bolin.su.se/data/
ncscd/) produced by Hugelius et al. (2013, 2014) were used as initial soil C for each grid for all model
simulations. Total soil organic C in this data set has been quantified with an uncertainty range of ±15%
(Hugelius et al., 2014).

Additional simulations were conducted to examine the uncertainties of snow insulation parameters of the
snow thermal conductivity Ksnow and soil thermal conductivity (Ksoil), in affecting winter thermal dynamics
and their effects on C dynamics. Specifically, for each ecosystem type, three simulations were conducted,
including a baseline simulation that used the calibrated snow thermal conductivity and two other simulations
by varying the calibrated snow conductivity by ±25%. Similarly, for each ecosystem type, three simulations
were conducted to examine the effects of changing soil thermal conductivity.

3. Results and Discussion
3.1. Model Verification

The revised STM-TEM well reproduced the observed soil temperature at topsoil layers for alpine tundra, wet
tundra, boreal forest, and coniferous forest ecosystem types, especially over the cold seasons (Table 3 and
Figure 3). The revised performed better than the original model. The uncertainty analysis by varying snow
and soil thermal conductivity showed a similar sensitivity in affecting winter thermal and C dynamics.

Figure 2. Simulated and observed net ecosystem production fluxes at (a) Ivotuk for alpine tundra, (b) Atqasuk for wet tun-
dra, (c) BOREAS for boreal forest, and (d) Howland forest for coniferous forest.
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Across different ecosystem types, snow bottom temperatures from the test simulations differed between
�18.6% and 22.1% from the simulated baseline temperature. Differences in RH and NEP estimated from
test simulations were between�7.6% and 13.1% for RH, and between�7.2% and 11.8% for NEP, respectively
(Table 4).

Snow insulation effects enhanced winter soil respiration. Our revised estimates of the total cold-season
respiration fell well within the range of previous field studies in boreal and tundra ecosystems. For instance,
total cold season CO2 emissions at Adventdalen, Svalbard, (near 78°N, 16°E) from October 2007 to May 2008
were estimated to be 41.8 gCO2/m

2/year with the revised model, which was close to the diffusive flux cham-
ber measurement of 53 ± 18 gCO2/m

2/year at this Arctic tundra site spanning from 2 October 2007 to 29 May
2008 (Björkman et al., 2010). Soda lime chamber CO2 flux measurements at a Canadian mixed tundra site
(Tundra Ecological Research Station at Daring Lake, Northwest Territories, Canada, near 65°N, 111.5°W) with
both dry heath and wet sedge vegetation types reported total cold season respiration between 34 and
126 gCO2-C/m

2/year over 294 days from the end of August 2006 to mid-June 2007 (Grogan, 2012). In
comparison, our model estimation of 114.4 gC/m2/year during the period was well at the high end of their
measurements. A recent eddy covariance study for northern Alaska alpine tundra (Imnavait Creek, near
68.5°N, 149.5°W) estimated cold-season net ecosystem exchanges of 121, 72, and 105 gCO2-C/m

2/year (cold
season respiration of 118, 67, and 98 gCO2-C/m

2/year) for the three consecutive cold seasons between 2007
and 2010 (Euskirchen et al., 2012), which were comparable to our NEP estimates of 104.9, 103.8, and
104.5 gCO2-C/m

2/year (soil respiration of 102.3, 101.9, and 103.0 gCO2-C/m
2/year) over the same period,

respectively. Site-level comparisons between simulated and observed NEP showed that the revised model
better captured annual C fluxes with R2 of 0.79 at Ivotuk alpine tundra site during the cold season in 2006,
0.75 at Ataqsuk wet tundra site from 2003 to 2004, 0.80 at BOREAS boreal forest site in 2003, and 0.74 at
Howland coniferous forest site from 2003 to 2004, respectively.

3.2. Soil Thermal Dynamics

Soil temperature estimation at 5-cm depth in the snow-free summer months from both models was close
(less than 0.05°C difference) over the entire study area, while soil temperatures in cold season (from
October to the next May, Figure 4) had noticeable differences due to snow. Soil cooled slower from
October to November and also warmed slower from April to May, comparing to the original estimation

(Figure 4). Earlier warm winter soil conditions allowed longer transition
before soils frozen, affecting winter soil thermal conditions. Mean soil
temperatures at 5 cm depth from November to the following March
in the revised estimations were approximately 6.4°C warmer than that
of the original model (Figure 4). This increase of soil temperature corre-
sponded well to the observed snow insulation effects on ground ther-
mal conditions from a previous snow manipulation experiment in a
mixed boreal forest in New Hampshire (Hardy et al., 2001). Snow insula-
tion affected the soil column as a whole, increasing temperatures of the
soil column from surface downward. The insulation effect weakens

Table 2
Prior Range and Optimized Soil Parameter Values in Soil Thermal Model

Parameter description Alpine tundra Wet tundra Boreal forest Coniferous forest

Prior water content (%) [0.1, 0.8] [0.1, 0.8] [0.1, 0.8] [0.1, 0.8]
Optimized water content (%) 0.365 0.829 0.568 0.501
Prior frozen soil thermal conductivity (Wm�1 K�1) [0.01, 4] [0.01, 4] [0.01, 4] [0.01, 4]
Optimized frozen soil thermal conductivity (Wm�1 K�1) 1.4 3.126 2.620 1.027
Prior thawing soil thermal conductivity (Wm�1 K�1) [0.01, 4] [0.01, 4] [0.01, 4] [0.01, 4]
Optimized thawing soil thermal conductivity (Wm�1K�1) 0.049 0.603 0.742 0.887
Prior frozen soil heat capacity (KJm�3 K�1) [300, 3,500] [300, 3,500] [300, 3,500] [300, 3,500]
Optimized frozen soil heat capacity (KJm�3 K�1) 3191.4 2995.2 2,520.0 2,888.5
Prior thawing soil heat capacity (KJm�3 K�1) [300, 3,500] [300, 3,500] [300, 3,500] [300, 3,500]
Optimized thawing soil heat capacity (KJm�3 K�1) 2,060.5 1,906.8 1,431.5 999.0

Table 3
Site-Level Topsoil Temperature Calibration Statistics for the Revised Model for
Major Ecosystem Types

Site Ecosystem type RMSE (°C) R2 Slope

Imnavait Alpine tundra 2.16 0.84 1.76
Barrow Wet tundra 2.76 0.79. 0.93
Boreas Boreal forest 2.49 0.73 0.94
Sylvania Coniferous forest 2.06 0.93 0.93
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Figure 3. Simulated and observed 5-cm soil temperatures from two versions of the model at (a) Imnavait for alpine tundra,
(b) Barrow for wet tundra, (c) BOREAS for boreal forest, and (d) Sylvania wilderness for coniferous forest.

Table 4
Uncertainty of the Revised Model (S2) in Winter Snow Bottom Temperature (Tsnowbott), RH, and NEP, in Response to Varying
Conductivity Parameters of Ksnow and Ksoil, Respectively

Ecosystem type ΔKsnow ΔKsoil
T snowbottbaseline

(°C) ΔTsnowbott
RHbaseline
(gC/m2) ΔRH

NEPbaseline
(gC/m2) ΔNEP

Alpine tundra +25% — �9.7 +15.79% 1.68 �4.76% �1.7 �5.88%
�25% — �18.56% +13.10% +11.76%
— +25% �16.49% +7.14% +5.88%
— �25% +19.59% �4.79% �5.90%

Wet tundra +25% — �18.1 +8.29% 19.1 �5.76% �19.2 �5.24%
�25% — �11.60% +7.85% +7.85%
— +25% �9.39% +3.66% +3.64%
— �25% �10.50% �3.14% �3.14%

Boreal forest +25% — �6.8 +16.18% 23 �5.65% �23.5 �5.11%
�25% — �17.65% +6.52% +6.81%
— +25% �14.71% +5.22% +5.53%
— �25% +22.06% �7.56% �7.23%

Coniferous forest +25% — �5.8 +12.07% 7.9 �2.53% �10.6 �2.83%
�25% — �13.79% +5.06% +2.83%
— +25% �12.06% +3.80% +1.89%
— �25% +15.52% �3.79% �2.82%

Note. RH = heterotrophic respiration; NEP = net ecosystem production.
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gradually as the vertical depth increases. Although still warmer than the original estimation at 20 cm depth,
the revised soil temperature estimation deviated less from the original one by 4.9°C in winter. This was also
confirmed by the snow manipulation experiment data taken from surface down to 20 cm and even deeper
(Hardy et al., 2001).

Soil temperature changes influenced ground freeze/thaw status (F/T), especially during the transitional sea-
sons. F/T was assessed based on the near-surface soil temperature at 2 cm. Average �0.9°C was used as the
freezing point to classify the ground F/T status (Kozlowski, 2004, 2009; Rivkina et al., 2000). The revised model
estimated larger unfrozen ground area (0.9% to 2.4%) compared to the original model during May and
November. Larger later spring unfrozen ground area was estimated over the Siberia and northwest
Canada, and larger early winter unfrozen ground areas were mainly along the southern Canadian border
and central to eastern Europe (Figure 5). These discrepancies were due to snow insulation effects.

The revised model estimated that permafrost area in July of 2010 was approximately 19.9 × 106 km2, in which
the active layer depth was shallower than 3 m. When the revised model was run to the end of 2099 under
RCP2.6 and RCP8.5 scenarios, permafrost areas in July were estimated to shrink to 12.3 × 106 and
9.7 × 106 km2, respectively. These projected permafrost areas were comparable with the estimates of
10.0 × 106 and 2.1 × 106 km2 for RCP2.6 and RCP8.5, respectively, by Slater and Lawrence (2013) and within
5 × 106 � 17 × 106 km2 for RCP8.5 by Koven et al. (2015).

3.3. Snow Effects on Carbon Dynamics
3.3.1. Seasonal Carbon Dynamics
By explicitly considering the snow insulation effects, the revised model estimated higher soil respiration com-
pared to the original model estimation (Figure 6b). During the coldest months, the revised model estimated
81.9 TgC/month more soil respiration on average (Figure 6b). This led to 458.0 Tg more soil C released during
each nongrowing season (Figure 7a) if January to March and November to December was defined as non-
growing season in the region. During these months, monthly regional NEP of two versions deviated by
91.6 TgC (Figure 6c). As soil warming slows transitioning fromwinter to summer, the revised model estimates
smaller spring GPP and negative NEP. Comparison between two estimations confirmed that the most signif-
icant seasonal NEP differences occurred in April and May, with 861.7 Tg less C accumulation each spring
(Figures 6c and 7c) while the soil respiration was close to the original (16.6 Tg more C). GPP estimated

Figure 4. Spatial differences of monthly mean soil temperatures at 5-cm soil depth between the original model and the revised model.
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from the revised model is similar to the original estimates after June, when there is no snow (Figure 6a). The
revised model estimated 567.0 Tg less positive NEP. This is mainly due to slightly higher soil respiration
induced by higher soil temperature (Figures 4 and 8). Two estimations during late fall season (September
to October) were close, with 105.9 Tg less C lost each fall from the revised model on average (�87.4 TgC
from the revised, compared to �193.4 TgC). The temporal pattern of monthly NEP agreed well with
observations of Euskirchen et al. (2017), as well as the ensemble model simulations by McGuire et al.
(2012) and Fisher et al. (2014), yet the detailed magnitude of which varied widely.
3.3.2. Interannual Variability of Carbon Dynamics
Monthly and seasonal deviations of the revised model from the previous estimation accumulated during
2003–2010, leading to nearly 0.7 Pg/year more soil C respired and 1.6 Pg/year less C sequestered to the eco-
system. Cumulative NEP differences between the two simulations by the end of the historical period

Figure 5. Freeze/thaw status in two transitional months of 2007 estimated with the original model (S1) and the revised model (S2).

Figure 6. Monthly regional carbon fluxes over 2003–2010 estimated from two versions of the model: (a) gross primary pro-
duction (GPP), (b) heterotrophic respiration (RH), and (c) net ecosystem production (NEP).
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amounted to 3.3 PgC (Figures 9 and 10). The original model estimated that the study area was a carbon sink
at 768.6 TgC/year (Figure 9), while the revised model, by explicitly considering snow thickness and thermal
conductivity, estimated a carbon source at �894.9 TgC/year (Figure 9). Spatial discrepancies between two
NEP simulations were more evident in the region from southern Alaska and southern Canada, as well as in
east Europe and Siberia (Figure 10). Specifically, Alaska was estimated as a C sink from 4.5 to 198.3 TgC/year
during 2003–2010. On average, the revised estimation of annual NEP in Alaska was 66.6 TgC/year

Figure 7. Regional net ecosystem production (NEP) for different seasons over 2003–2010 estimated with two versions of the model: (a) Nongrowing season
(November–March); (b) growing season (June–August); (c) transitional spring season (April–May); and (d) transitional fall season (September–October).

Figure 8. Regional heterotrophic respiration (RH) for different seasons over 2003–2010 estimated with two versions of
the model: (a) Nongrowing season (November–March); (b) growing season (June–August); (c) transitional spring season
(April–May); and (d) transitional fall season (September–October).
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(�0.048 kgC/m2/year), which was generally consistent with the
multimodel mean NEP estimation of 0.01 ± 0.19 kgC/m2/year by
Fisher et al. (2014), and the much narrower range from McGuire
et al. (2012) between a sink of 297 TgC/year and a source of
�80 TgC/year for the entire Arctic. The original TEM estimated that
the Arctic stored 722 PgC in soils (excluding Greenland) in compar-
ison to 716 PgC simulated with the revised model at the end of
2010 (Figure 11). Differences between the two simulations were
small, yet considering the relatively short period of time, this loss
rate can be significant in the long run.

At the end of the projection period of 2017–2099 under RCP2.6 and
RCP8.5 scenarios, soil C stocks (excluding Greenland) were esti-
mated to be between 591.2 and 614.6 PgC, respectively
(Figure 12). Warmer climate will likely enhance soil respiration, lead-
ing to a decrease in regional soil C stocks in the first half of the 21st
century under both climate scenarios. Under the low CO2 emission
scenario (RCP2.6), soil C stocks will likely be steady in the latter half
of the century. This agrees with several studies which indicate that
the soil carbon loss more than offsets the increase of plant produc-

tivity due to CO2 fertilization effects (Mack et al., 2004; Natali et al., 2014; Schaefer et al., 2011). However, the
continued warming and increasing atmospheric CO2 under the highest CO2 emission scenario (RCP8.5) may
transition the region into a weak carbon sink, with roughly an increase of 18 Pg soil C from the early 2060s to
the end of 2099 (Figure 12). This transitional trend into a C sink under the high warming scenario in the 21st
century was mainly due to greater plant productivity that overwhelmed the elevated soil decomposition,
which was comparable to previous studies of McGuire et al. (2000) and Qian et al. (2010).

There are a few limitations to this study. First, the inherent nature of monthly step STM-TEM limited themodel
to quantify fine-scale (e.g., daily or diurnal) temporal thermal variation and evolution that affects ecosystem C
cycling. Further, we have kept snow and soil thermal conductivity as well as snow density constant for each
ecosystem over time, which will also bias the simulated soil thermal and C dynamics. Finer temporal resolu-
tion models will be more capable of addressing detailed processes and feedbacks such as the effects of snow
density and thermal conductivity changes over time (Bormann et al., 2013; De Michele et al., 2013). Recent
studies on nonlinear snow thermal conductance and heat fluxes by Jafarov et al. (2014) and Slater et al.
(2017) could help our model development in this regard. Second, the revised model was calibrated to a lim-
ited number of observation sites with some degrees of human disturbance for only typical vegetation and
soil types in the Arctic. The calibration data sets were all obtained from North America that mostly included
soil thermal records from topsoil layers only and for a relatively short temporal extent. With more data
becoming available such as described in Boike et al. (2013), and from Global Terrestrial Network for
Permafrost, and U.S. Geological Survey sites, a more comprehensive study that utilizes various site-level cli-
mate and soil thermal records from undisturbed and less biased sites for all vegetation and soil types would
help draw more robust conclusions. Third, all sites were calibrated using AMSR-E satellite SWE instead of in

Figure 10. Simulated cumulative net ecosystem production differences between two versions of the model by the end of 2010.

Figure 9. Cumulative regional annual net ecosystem production (NEP) over 2003–
2010 from two versions of the model.
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situ data due to data limitation. The spatial variability of snowpack
due to topography, vegetation cover, and blowing wind leads to
simulation errors when applied to site-level modeling. In order to
quantify the influence of snow heterogeneity on soil thermal
dynamics, a dynamic process-based snow model is needed
(Broxton et al., 2015; Hiemstra et al., 2002, 2006). Further, unfrozen
water has been indicated important in affecting winter soil respira-
tion (Schaefer & Jafarov, 2016). Future model development could
benefit from better soil moisture simulation in response to freeze-
thaw dynamics. For instance, introducing scaling factors to model
winter soil respiration affected by unfrozen water is necessary.
Finally, we recognize that there might be biases using satellite
observations (MEaSUREs Global Record of Daily Landscape
Freeze/Thaw Status, Version 3, and Arctic Soil Freeze/Thaw Status
from SMMR and SSM/I, Version 2, for instance) to characterize the
landscape freeze/thaw status, because the data might have actually
reflected canopy conditions rather than ground (Kim et al., 2011).
Thus, more appropriate observational freeze/thaw data for model
evaluation are also desirable.

Figure 11. Estimated annual regional carbon over 2003–2010 from two versions
of the model.

Figure 12. Projected net ecosystem production (NEP) (upper panel) and soil organic carbon (lower panel) in the Arctic from
the revised model over 2017–2099, under Representative Concentration Pathway 2.6 (RCP2.6) and RCP8.5 scenarios.
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4. Conclusions

Considering varying snow thickness and thermal conductivity, our revised model was more capable of esti-
mating topsoil temperature profile in the Arctic. In the historical period, the revised model estimated 6.4°C
warmer soil in nongrowing season, and a slower soil temperature transition in early spring and late fall, com-
pared to the original model. The presence of snow also influenced ground freeze/thaw status. The frozen
front estimated by the revised model during the historical period lay slightly northward over eastern
Siberia in May, and in central to east Europe and along southern Canada in November. This study highlighted
the prominent role of snow cover in the C cycling of northern ecosystems. On average, near 0.41 Pgmore soil
C was respired in each nongrowing season during 2003–2010 in the revised simulation due to snow insula-
tion effects. Slower soil temperature transition in spring limits CO2 uptake by plants, reducing GPP, and
ultimately reducing seasonal sink by 0.86 PgC. Overall, the northern 45°–90°N region was a C source at
0.89 PgC/year during the historical period according to the revised simulation, opposed to a C sink at
0.77 PgC/year. Historical regional soil organic C stocks decreased by 0.19 PgC/year. Future projections under
the low-emission scenario will likely stay as a carbon source. However, future projection under the high-
emission scenario indicated that the region may gradually transition from a source into a weak sink in the
latter half of the 21st century due to high plant productivity.
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