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Abstract
Evidence suggests that global maize yield declines with a warming climate, particu‐
larly with extreme heat events. However, the degree to which important maize pro‐
cesses such as biomass growth rate, growing season length (GSL) and grain formation 
are impacted by an increase in temperature is uncertain. Such knowledge is neces‐
sary to understand yield responses and develop crop adaptation strategies under 
warmer climate. Here crop models, satellite observations, survey, and field data were 
integrated to investigate how high temperature stress influences maize yield in the 
U.S. Midwest. We showed that both observational evidence and crop model ensem‐
ble mean (MEM) suggests the nonlinear sensitivity in yield was driven by the intensi‐
fied sensitivity of harvest index (HI), but MEM underestimated the warming effects 
through HI and overstated the effects through GSL. Further analysis showed that the 
intensified sensitivity in HI mainly results from a greater sensitivity of yield to high 
temperature stress during the grain filling period, which explained more than half of 
the yield reduction. When warming effects were decomposed into direct heat stress 
and indirect water stress (WS), observational data suggest that yield is more reduced 
by direct heat stress (−4.6 ± 1.0%/°C) than by WS (−1.7 ± 0.65%/°C), whereas MEM 
gives opposite results. This discrepancy implies that yield reduction by heat stress is 
underestimated, whereas the yield benefit of increasing atmospheric CO2 might be 
overestimated in crop models, because elevated CO2 brings yield benefit through 
water conservation effect but produces limited benefit over heat stress. Our analysis 
through integrating data and crop models suggests that future adaptation strategies 
should be targeted at the heat stress during grain formation and changes in agricul‐
tural management need to be better accounted for to adequately estimate the ef‐
fects of heat stress.
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1  | INTRODUC TION

As the world's largest producer of maize, the United States has seen a 
steady increase in maize yield since the Green Revolution (Assefa et 
al., 2017), while increases in concurrent heat and drought across the 
United States since the 1950s have posed a significant risk for maize 
production (Mazdiyasni and AghaKouchak, 2015; Schauberger et al., 
2017) and resulted in stagnated crop production in many producing 
areas (Olesen et al., 2011). Future warming might more severely de‐
crease crop yield with frequent extreme heat events (Rahmstorf, & 
Coumou, 2011; Schlenker & Roberts, 2009), which causes oxidative 
damage to chloroplasts (Crafts‐Brandner & Salvucci 2002; Siebers, 
Yendrek, & Drag, 2015), destroys reproductive structures (Commuri 
& Jones, 2001), and accelerates crop senescence (Lobell, Sibley, & 
Ivan Ortiz‐Monasterio, 2012; Ruiz‐Vera, Siebers, Jaiswal, Ort, & 
Bernacchi, 2018). With warmer climates, current agricultural system 
models need to be upgraded to better represent crop responses to 
temperature‐related climate extremes and thus cope with the up‐
coming challenges of increasing food demands.

In recent decades, multiple approaches have been adopted 
to maintain yield increases through improved management prac‐
tices and breeding technology, like improved herbicide and weed 
management techniques, higher planting density, and new culti‐
vars with longer grain filling period (GFP) (Assefa et al., 2016; Tao, 
Yokozawa, Xu, Hayashi, & Zhang, 2006; Tollenaar & Wu, 1999; Zhu 
et al., 2018). However, the actual effects of these intensified man‐
agement practices might be counterproductive due to the diverse 
environmental conditions and their interaction with management 
practices (Lobell et al., 2014). Therefore, it is necessary to better 
understand the response of crop yield to climatic variation in field 
conditions.

The observed variation in maize yield is the product of many in‐
teractive processes that make a mechanistic understanding of the 
drivers of this variation difficult. Throughout the life cycle of maize 
plants, yield is driven by biomass accumulation and partitioning be‐
tween organs (Lizaso et al., 2018). Biomass accumulation can be 
expressed as growing season length (GSL) × average daily biomass 
growth rate (BGR). The partitioning of biomass to grains is often 
quantified using harvest index (HI = yield/above‐ground biomass 
accumulation). Thus, final yield is the product of BGR, GSL and HI. 
Warming influence on maize yield can be thereby dissected as the 
influence on GSL, BGR and HI. Warmer temperature often means 
a shorter GSL with accelerated development rate (Cheikh & Jones, 
1994). However, the influence of warming on BGR and HI is more 
complex than GSL. The direction and magnitude of influence depend 
on whether the threshold temperature has been exceeded, while the 
threshold temperature seems to be variable among different variet‐
ies and phenological stages (Rezaei, Webber, Gaiser, Naab, & Ewert, 
2015; Sánchez, Rasmussen, & Porter, 2014).

As a C4 plant, maize often has a higher optimal temperature 
for photosynthesis than C3 plants, thus warmer leaf tempera‐
tures in early vegetative growth can potentially lead to either 

no impacts or a positive impact on maize photosynthetic activ‐
ity (Crafts‐Brandner & Salvucci, 2002; Parent & Tardieu, 2012). 
However, maize yield becomes increasingly sensitive to high tem‐
perature during reproductive development (Cheikh & Jones, 1994; 
Siebers et al., 2017). Thus, the same level of warming treatment in 
different stages might result in different or even opposite influ‐
ence on maize yield (Siebers et al., 2017). In particular, identifying 
cropping system vulnerabilities and devising targeted adaptation 
strategies to deal with future warming should be on the premise 
of a clear understanding of how crop yields respond to warming 
during different development stages. Due to limited knowledge of 
crop stages (Butler & Huybers, 2015), analyses on the sensitivity 
of crop yields to temperature typically ignore that the response to 
temperature is stage dependent (Cheikh & Jones, 1994; Siebers et 
al., 2017). This might lead to considerable uncertainty when pro‐
jecting crop yield under future warmer climate.

Field warming experiments have been devised to explore 
the effects of warming in different growth stages on crop yield 
(Hatfield & Prueger, 2015; Ruiz‐Vera et al., 2018; Siebers et al., 
2017). It has been suggested that maize grain yield is significantly 
reduced under heat stress through pollen viability that in turn 
determines kernel number and HI, which explained most of the 
variation in maize yield (Edreira & Otegui, 2012, 2013; Lizaso et 
al., 2018). In terms of the timing of heating treatment, it appears 
that kernel number per plant was more reduced by heating during 
silking than before anthesis (Edreira & Otegui, 2012). Influence of 
heating on phenological development is also evident. Grain yield 
was significantly reduced due to shortening of GFP when tempera‐
tures were increased from 25°C to 31°C, despite the enhanced 
grain filling rate (Dias & Lidon, 2009). Heating during pre‐silking 
caused a larger delay in silking date than in anthesis date, leading to 
a lengthened anthesis‐silking interval (Cicchino, Rattalino Edreira, 
Uribelarrea, & Otegui, 2010), which is a good indicator of the final 
maize yield (Bolanos & Edmeades, 1996). However, these experi‐
ments are often limited to small scales and could not represent the 
complex and diverse crop systems, making the conclusion hard to 
be extrapolated to other regions.

Crop models have shown the potential to simulate and repro‐
duce the large‐scale spatiotemporal variability of crop yield (Elliott 
et al., 2015; Müller et al., 2017). Generally, crop models represent 
our understanding of response of crop plants to climatic variation, 
soil nutrient status, hydrological conditions, and agronomic man‐
agement practices. They are normally able to adequately simulate 
average conditions but fail to handle climate extremes (Eitzinger et 
al., 2013; Lobell et al., 2012; Sánchez et al., 2014). Such limitation 
is critical to evaluate crop response under ongoing climatic change, 
which is expected to bring more extreme weather for the agricul‐
tural sector across the world. In addition, some basic knowledge 
might have not been updated for decades. For example, the default 
parameters related to the physiological property of crop varieties 
might be unable to reflect the recent progress in cultivars through 
breeding techniques. Thus, it might bring substantial uncertainties 
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when using these models to reproduce historic or project future 
crop yield. Recently, an ensemble of multi‐model output has been 
widely used as an improved way of evaluating and projecting cli‐
mate change and management effects on crop production with re‐
duced uncertainty (Asseng et al., 2014; Rötter, Carter, Olesen, & 
Porter, 2011).

New techniques employing satellite data have been increasingly 
used in the agricultural sector to map crop types, delineate irriga‐
tion/non‐irrigation boundary, derive crop phenology information, 
and project field crop yield (Azzari, Jain, & Lobell, 2017; Deines, 
Kendall, & Hyndman, 2017; Guan et al., 2017; Lobell, Thau, Seifert, 
Engle, & Little, 2015; Zhu et al., 2018). Such observational informa‐
tion could be important input data to drive crop models or calibrate 
model parameters. The derived crop phenology information is likely 
to provide observational evidence to characterize the regional‐scale 
spatiotemporal patterns of field crop growth status (Zhu et al., 2018) 
and thus assist the understanding of response of crop yield to cli‐
matic variation during different growth stages.

Here we integrated satellite‐derived crop stage information, 
regional crop model output, surveyed yield data from the United 
States Department of Agriculture (USDA) and site‐level experi‐
ment data to dissect how high temperatures influence maize yield 
through different physiological processes. Surveyed yield data, 
together with satellite‐based crop stage information and modeled 
maize aboveground biomass (AGB) calibrated against site‐mea‐
sured AGB, enabled us to retrieve county‐level GSL, BGR (AGB/
GSL) and HI (Yield/AGB). This was used to decompose the tem‐
perature sensitivity of yield (SYield

T
) into the temperature sensitiv‐

ities of BGR (SBGR
T
), GSL (SGSL

T
), and HI (SHI

T
), which were estimated 

with a panel model (Schauberger et al., 2017; Schlenker & Roberts, 
2009; Tack, Barkley, & Nalley, 2015). Each component character‐
izes the temperature response of net assimilation rate determined 
by photosynthesis and respiration (SBGR

T
), plant development rate 

(SGSL
T
), and reproductive growth determined by grain size and grain 

weight (SHI
T
), respectively. In addition, SYield

T
, SBGR

T
, SGSL

T
, and SHI

T
 based 

on multiple crop model outputs were also analyzed to complement 
the survey and satellite data. The relative contribution of direct 
heat stress and indirect water stress (WS) to yield reduction was 
further estimated using statistical model and crop model simula‐
tion to investigate the underlying driver of maize yield reduction 
with climatic warming. In this study, we focused on three Midwest 
states dominated by rainfed maize—Indiana, Illinois, and Iowa—that 
account for approximately 40% of U.S. maize production (USDA, 
2015). Thus, the conclusions drawn from this study are likely to 
provide insight for understanding the temperature response of the 
whole U.S. rainfed maize production.

2  | MATERIAL S AND METHODS

2.1 | Satellite data derived crop stage information

In this study, 8‐day time series of 250 m daily surface reflectance 
MODIS datasets on board Earth Observing System (EOS) Terra and 

Aqua satellite platforms: MOD09Q1 (2000–2015) and MYD09Q1 
(2002–2015) Collection 6, were used. Here a scaled wide dynamic 
range vegetation index (WDRVI) was used to monitor the growing 
status of maize plants (Gitelson, 2004), because WDRVI has a higher 
sensitivity to changes at moderate to high biomass than the normal‐
ized difference vegetation index (NDVI). The scaled WDRVI is calcu‐
lated with the following equation:

where ρred and ρNIR are the MODIS surface reflectance in the red 
and NIR bands, respectively. The scaling factor α is introduced to 
degrade the fraction of the NIR reflectance at moderate‐to‐high 
green vegetation (Guindin‐Garcia, Gitelson, Arkebauer, Shanahan, 
& Weiss, 2012). Here α was set as 0.1 as a comparison of mul‐
tiple vegetation indexes indicates WDRVI with α = 0.1 showed a 
strong linear correlation with corn green LAI (Guindin‐Garcia et 
al., 2012). Before WDRVI calculation, the reflectance data were 
quality‐filtered using the quality control flags. Only the data pass‐
ing the highest quality control test are retained. A hybrid method 
combining shape model fitting (SMF) and threshold‐based analysis 
was implemented to derive maize phenology using MODIS WDRVI 
data at 250 × 250 m spatial resolution from 2000 to 2015 (Zhu 
et al., 2018). Shape model was obtained by averaging multiple 
years WDRVI observations to characterize the climatology of corn 
growth cycle (Zhu et al., 2018). The shape model was then geo‐
metrically scaled to fit each WDRVI time series, so the predefined 
phenological dates on the shape model can be scaled likewise to 
estimate phenological dates for each pixel. We have derived four 
key maize growth stages of emergence (late May), silking (Middle 
July), dent (late August), and maturity (late September) across the 
four states: Indiana, Illinois, Iowa, and Nebraska. Verification at 
the state level showed a good agreement between MODIS‐de‐
rived maize phenology and the National Agricultural Statistics 
Service (NASS)–reported state mean phenological dates (Zhu et 
al., 2018). In this study, we focused on the three rainfed states: 
Iowa, Illinois, and Indiana.

2.2 | Derivation of county‐level maize yield, AGB, 
GSL, and HI

The observed variation in maize yield is the end result of integra‐
tion of many processes with different sensitivities to high temper‐
ature stress. To this end, we decompose the total yield variation 
into three components: BGR, GSL, and HI. County‐level corn grain 
yield dataset from 2000 to 2015 covering the three states (Illinois, 
Indiana, Iowa) was retrieved from the Quick Stats 2.0 database. 
The unit system for maize yield is bushel per acre (bu/ac). This 
dataset was used together with remote sensing modeled county‐
level AGB to estimate HI (Yield/AGB). HI generally characterizes 
dry matter partitioning between source organ and sink organ and 
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is mainly related to processes determining grain size and grain 
weight.

Thirty‐two site‐year maize AGB data measured at the end of 
growing season across the U.S. Midwest were collected (details on 
geolocation and year information can be found in Table S1). This field 
experiment measurement was used to construct a regression model 
between WDRVI and AGB. To this end, WDRVI in 3 × 3 pixel win‐
dows centered on the site measured AGB was obtained and a quality 
control procedure was applied to the WDRVI time series to remove 
low‐quality, cloud/aerosol‐contaminated observations. Pearson cor‐
relation was then estimated between the WDRVI time series centered 
on the site and the surrounding eight pixels. Three WDRVI time se‐
ries scoring the highest correlation and the center one were averaged 
for constructing the regression model. Previous studies have showed 
the integrated enhanced vegetation index (EVI) over the growing sea‐
son is a good proxy of vegetation AGB (Ponce‐Campos et al., 2013). 
Similarly, we integrated WDRVI (IWDRVI) by summing WDRVI over 
the growing season, which was based on the previous study‐retrieved 
phenology dates (Zhu et al., 2018). A linear regression model was con‐
structed between in situ measured AGB and processed IWDRVI with 
the above method. The model shows IWDRVI has a good explaining 
power (R2 = 0.75, p < 0.0001) with the equation: AGB = (16.4 ± 2.5)∗

IWDRVI(0.8 ± 0.08) (±SE) (Figure 1). We also applied the same procedure 
to NDVI and enhanced vegetation index 2 (EVI2), which are also com‐
monly used vegetation indexes for temporal monitoring of vegetation 
greenness and productivity, but the R2 of NDVI (R2 = 0.68) and EVI2 
(R2 = 0.64) is lower than the one using WDRVI as the predictor. With 
this regression model, AGB was spatially estimated with satellite‐re‐
trieved IWDRVI. Finally, the 16 years of satellite data derived GSL and 
AGB were integrated to county level to estimate HI (Yield/AGB) and 
daily BGR (AGB/GSL) for each county.

2.3 | Statistical analysis of temperature sensitivity 
across different growth stages

Temperature sensitivity of maize yield (SYield
T

) was estimated using a 
panel data model (Equation 3) with growing season mean surface 
air temperature (Tsa) and precipitation (Prcp) as the explanatory 
variables:

�1t captures the yield increasing trend in recent years. Countyi cor‐
responds to fixed effects of county i and accounts for time‐invariant 
county differences, like the soil quality. t stands for each year. εi,t 
stands for the error term for county i at year t. �2 or � ln (Yield)

�Tsa
 defines 

the temperature sensitivity of yield. The temperature sensitivity of 
BGR (SBGR

T
), HI (SHI

T
), and GSL (SGSL

T
) can be estimated with Equation (3) 

in a similar way. Here, the dependent variable Yield (BGR, GSL and 
HI) was logged, so the estimated temperature sensitivity represents 
the percentage change in Yield (BGR, GSL and HI) with 1°C tempera‐
ture increase.

The climate data used here were obtained from the University of 
Idaho Gridded Surface Meteorological Data (http://metdata.north‐
westknowledge.net/) with a spatial resolution of 4 km (Abatzoglou, 
2013). It is a gridded product covering continental United States 
from 1979 to 2016. This dataset is created by combining the attri‐
butes of two datasets: temporally rich data from the North American 
Land Data Assimilation System Phase 2 (Mitchell, 2004) and spatially 
rich data from the Parameter‐elevation Regressions on Independent 
Slopes Model (PRISM) (Daly et al., 2008). After validation using an 
extensive network of weather stations across the United States, this 
dataset proved to be suitable for application in a landscape‐scale 
ecological model. Then growing season mean Tsa and Prcp were es‐
timated by integrating daily climate variable according to MODIS‐
derived growing season starting and ending date.

As Yield=HI ⋅BGR ⋅GSL, SYield
T
 can be written as follows:

These equations indicate that the percentage change in yield with 
1°C warming can be dissected into percentage changes in BGR, GSL, 
and HI, which corresponds to physiological processes of carbon assim‐
ilation rate through photosynthesis, crop development rate, and maize 
reproductive growth determining biomass partitioning, respectively. 
We further divided the dataset of yield, BGR, GSL, and HI into five 
groups according to the quintile of mean growing season temperature. 
This separation helps us to understand how maize physiological pro‐
cesses respond to warming as temperature increases.

Although the coefficient in a linear model is easy to interpret, the 
actual response of crop yield and associated physiological processes 

(3)log
(
Yieldi,t

)
= �1t+�2Tsai,t+�3Prcpi,t+Countyi+�i,t

(4)� ln (Yield)
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=
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+
� ln (BGR)
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+
� ln (GSL)
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(5)
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HI ⋅�Tsa
+

�BGR

BGR ⋅�Tsa
+

�GSL
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F I G U R E  1    The regression model used to relate the integrated 
wide dynamic range vegetation index (IWDRVI) with aboveground 
biomass (AGB). Each point corresponds to a site‐measured AGB 
and MODIS‐derived IWDRVI. The shaded area indicates the 95% 
confidence interval
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to climate variables is more likely to be nonlinear (Rezaei et al., 2015; 
Schlenker & Roberts, 2009). Therefore, an alternative model (6) was 
used by adding a quadratic function of Tsa and Prcp to capture the 
nonlinear climatic response of yield formation:

The sensitivity of HI, GSL, and BGR can be modeled similarly by 
replacing Yield with the corresponding variables.

The total temperature sensitivity of yield estimated above can 
be regarded as the integrated effects of high temperature stress 
and thermal time accumulation during different phenological stages. 
Following previous studies (Schlenker & Roberts, 2009; Tack et al., 
2015), yield sensitivity was expressed as:

Here high temperature stress is quantified with high tempera‐
ture degree days (HDD), which characterizes the higher‐than‐opti‐
mal thermal time accumulation. Growing degree days (GDD) drives 
crop development and characterizes the thermal time accumulation 
in the absence of extreme conditions. s stands for the three growth 
stages VP, An, and GFP. Based on Equation (7), warming effects on 
yield through HDD in GFP can be estimated as �Yield

�HDDGFP

�HDDGFP

�Tsa
.

When daily maximum temperatures exceed 30 degree, maize 
kernel set was shown to be reduced by 1.7% per degree day under 
rainfed conditions in Africa (Lobell, Bänziger, Magorokosho, & Vivek, 
2011). Here we also used 30 degree as the threshold to estimate 
HDD to characterize high temperature stress. GDD and HDD were 
estimated with the following equations using hourly temperature 
values, which were obtained by fitting a sine function to interpolate 
daily maximum Tsa and minimum Tsa.

where t represents the hourly time step, N is the total number of 
hours in each growing period, and DD is degree days. It has been 
proved that interpolating daily temperature to hourly value is better 
in capturing sub‐daily heat stress (Tack et al., 2015).

The selected three periods are generally distinguished by their 
main roles in determining the final yield: vegetative period is related 
to leaf development and expansion, anthesis is related to pollination 
and determines grain number, and GFP is related to photosynthate 
translocation to kernels and determines grain weight. Maize growth 

stage information is retrieved from the previous study (Zhu et al., 
2018). VP is defined as the duration from emergence to 10 days 
ahead of silking. GFP is defined as the duration from 10 days after 
silking to maturity. Although we did not exactly extract anthesis 
timing from the remote sensing data, a previous study suggests that 
the anthesis is around 1 week before silking (Bolanos & Edmeades, 
1996). Hence, in this study, we use 10 days before and after silking 
date as a conservative estimation of anthesis.

To obtain the sensitivity of maize yield to GDD and HDD in dif‐
ferent growth stages, the following panel model was used follow‐
ing previous studies (Schlenker & Roberts, 2009; Tack et al., 2015):

where �0t captures the yield increasing trend, Countyi corresponds 
to the county fixed effects, and �1−�6 defines the sensitivity of yield 
to GDD and HDD in the three growth stages. Thus, yield sensitivity 
to HDD can be estimated with the first‐order difference:

In terms of the sensitivity of HDD to warming in VP 
(

�HDDVP

�Tsa

)
, an‐

thesis 
(

�HDDAn

�Tsa

)
, and GFP 

(
�HDDGFP

�Tsa

)
, daily temperature was uniformly in‐

creased by 1°C or 2°C for each stage and then the difference between 
HDD under warming scenario and the original HDD was used as the 
sensitivity of HDD to warming. Finally, warming effects on yield 
through high temperature stress (HDD) in different growth stages 
can be estimated with the corresponding terms in Equation (7).

2.4 | Relative contribution of heat and water stress 
to yield decline

Warming trends not only increase the frequency of extreme heat 
events but also WS by regulating both water demand and water sup‐
ply (Lobell et al., 2013). Thus the warming influence on yield can be 
interpreted as the joint effect of high temperature stress (HDD) and 
WS with the following equation:

HDD, GDD, and WS were integrated over the whole growing 
season.

Sensitivity of HDD, GDD, and WS to temperature 
(

�HDD

�Tsa
,
�GDD

�Tsa
,
�WS

�Tsa

)
 

was estimated with simple linear model through regressing county‐
level HDD (GDD, WS) over temperature.

To estimate the yield sensitivity to HDD, GDD, and WS, we con‐
struct a panel model to regress yield over HDD, GDD and WS:

where �0t captures the linear increasing trend of yield and Countyi 
corresponds to the county fixed effects. Then, 

(6)
log

(
Yieldi,t

)
= �1t+�2Tsai,t+�3Tsa

2
i,t
+�4Prcpi,t

+�5Prcp
2
i,t
+Countyi+�i,t

(7)
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+
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=

3∑
s=1
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8
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⎧
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⎫
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(9)HDD∞

30
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N�
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DDt,DDt=
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0,when Tsa<30
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⎫
⎪⎬⎪⎭
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GFP
i,t

+�6HDD
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(11)�2=
�Yield
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; �4=

�Yield

�HDDAn
; �6=

�Yield

�HDDGFP

(12)
�Yield
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�Yield
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�HDD
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Warming effects on yield through high temperature stress and 
WS can be thus separately estimated as �2

�HDD

�Tsa
 and �3

�WS

�Tsa
.

Here, WS was characterized by the ratio of potential evapo‐
transpiration (PET) to evapotranspiration (ET). ET and PET from 
2001 to 2015 based on MODIS ET product (MOD16) were em‐
ployed. This product has a spatial resolution of 1 km with 8‐day 
temporal resolution. ET and PET in MOD16 were estimated using 
the improved ET algorithm based on the Penman–Monteith equa‐
tion with MODIS‐derived land surface temperature, vegetation 
cover, and global meteorology data (Mu, Zhao, & Running, 2011). 
Although various metrics have been proposed to measure WS (Jin 
et al., 2016), there is no consensus on which one is the best. So far, 
this observational data‐generated ET product is the only one with 
fine spatial and temporal resolution. MODIS‐based growing season 
PET/ET was calculated for pixels with 70% area covered by maize 
cropland and then averaged to county level to be consistent with 
the other variables.

2.5 | Uncertainty quantification

Our sensitivity analysis depends on yield statistical data, satel‐
lite‐derived phenological date, and vegetation indexes. All of these 
variables are subject to uncertainties: (1) uncertainties in the county 
yield statistical data and satellite‐derived GSL, IWDRVI; (2) uncer‐
tainties of parameters in the regression model converting IWDRVI to 
AGB. Here we quantified the uncertainties rooted in these datasets 
through running the panel model for thousands times with the sam‐
ples generated from a given parameter's confidence interval.

We estimated each county's yield uncertainty based on field 
level yield data published in a previous study (Lobell et al., 2014), 
where each county includes 100 samples of yield reports. This data‐
set enables us to use 1,000 times bootstrap to estimate the stan‐
dard error (SE) of yield in each county. The normalized SE (SE/mean) 
is shown in Figure S1. As the field data end in 2012 and we found 
92% normalized SE during 2000–2012 were smaller than 10%, we 
set the normalized SE during 2013–2015 as 10%, which will be a 
conservative estimation of yield associated uncertainty. As to the 
uncertainty related to GSL, we similarly estimated its SE through 
1,000 times bootstrap based on MODIS‐derived pixel level maize 
GSL information within each county (Figure S2). In terms of BGR 
and HI, we used the following equations to estimate the associated 
uncertainty.

The normalized SE (SE/mean) for BGR and HI is shown in Figures 
S9 and S10.

With the estimated SE for each variable corresponding to each 
county‐year, 1,000 random samples were generated within its 95% 
confidence interval (mean ± 1.96∗SE). Therefore, we run the panel 
model (Equations 3, 10, and 13) 1,000 times with each sample set. 
The mean of panel model‐reported temperature sensitivity confi‐
dence interval was used to quantify the uncertainty related to the 
data source.

2.6 | Crop model output

Here, nine global gridded crop model simulations at 0.5° × 0.5° reso‐
lution were selected based on whether maize yield, total biomass, 
and growing season duration were submitted. These simulations re‐
sulted from the joint effort of the Agricultural Model Intercomparison 
and Improvement Project (AgMIP) (Rosenzweig et al., 2013) and 
Inter‐Sectoral Impact Model Intercomparison Project 1 (ISIMIP1) 
(Warszawski et al., 2014) for assessing the impact of climate change 
and management practices on global staple crop production. We se‐
lected rainfed maize simulation forced by WFDEI.CRU, as this forc‐
ing data covered the longest simulation until 2012. In terms of the 
management scenario, “harmnon” was selected, meaning the simu‐
lation using harmonized fertilizer inputs and assumptions on grow‐
ing seasons. More details on the simulation protocol could be found 
in Elliott et al. (2015) and the dataset is described. Then the daily 
climate data (temperature and precipitation) were integrated over 
the growing season to estimate the temperature sensitivity of yield, 
BGR, HI, and GSL with model outputs.

The nine crop models used here can be basically divided into 
two groups: (a) designed solely for agricultural systems, like pAPSIM, 
pDSSAT, pDSSAT‐pt (pDSSAT‐pt is pDSSAT model with the Priestley–
Taylor method estimating potential ET), GEPIC, PEGASUS, and CGMS‐
WOFOST (b) evolving from the terrestrial ecosystem model and covering 
both natural and agro ecosystems, like CLM‐Crop, LPJ‐GUESS, and 
LPJmL. Models in the first group often have a more detailed representa‐
tion of crop development processes and have a different parameteriza‐
tion of high temperature stress over crop vegetative and reproductive 
stages. More details on how temperature stress was implemented in the 
nine crop models can be found in Table S2.

We then applied the abovementioned statistical models to 
0.5 × 0.5 gridded AgMIP outputs to investigate (a) how warmer 
climates influence maize yield through different processes related 
to BGR, GSL, and HI; and (b) the relative contribution of high tem‐
perature stress (characterized with HDD) and WS to maize yield in 
crop models. We employed model output ET, yield, and estimated 
PET using the Penman–Monteith equation forced by WFDEI.CRU 
as well.

(14)�1=
�Yield

�GDD
, �2=

�Yield

�HDD
, �3=

�Yield

�WS

(15)BGR=
AGB

GSL
=
�IWDRVI�

GSL

(16)HI=
Yield

AGB
=

Yield

�IWDRVI�

(17)
Var(BGR)=

(
�BGR

��

)2

Var(�)+

(
�BGR

��

)2

Var(�)

+

(
�BGR

�IWDRVI

)2

Var(IWDRVI)+

(
�BGR

�GSL

)2

Var(GSL)

(18)
Var(HI)=

(
�HI

��

)2

Var(�)+

(
�HI

��

)2

Var(�)

+

(
�HI

�IWDRVI

)2
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(
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2.7 | APSIM model experiment

The APSIM model is a process‐based crop model that explicitly ac‐
counts for the high temperature stress and WS during different crop 
growth stages, which is also included in ISIMIP1 (pAPSIM, the par‐
allel version APSIM). It simulates a number of crops under various 
climatic and management conditions, and hence is used worldwide 
to address various research questions related to agricultural sys‐
tems (Holzworth et al., 2014). The APSIM‐Maize module is inherited 
from the CERESMaize, with modifications on stress representation, 
biomass growth rate, and phenological development. This flexible 
process‐based model allows us to investigate the different roles of 
high temperature stress across stages in determining maize yield 
variation.

Water stress in APSIM is calculated as the ratio of water supply 
to water demand. Water demand is driven by the potential biomass 
growth rate and transpiration efficiency that is adjusted for vapor 
pressure deficit (VPD). Water supply is calculated as the amount of 
water above the crop's wilting point in soil layers containing roots. 
This amount is multiplied by a KL factor that accounts for the ability 
of roots to extract water from a soil layer. As temperature rises, it 
will increase water demand through VPD and will reduce the supply 
of soil water through elevated ET.

Here, we designed two grid‐based simulation experiments to 
further investigate how WS and high temperature stress influence 
maize yield with increasing temperature: sim1 is a control simula‐
tion using default temperature stress and WS; sim2 is a simulation 
with temperature stress blocked. More details on model setup 
can be found in the Supplementary Information. Here we only 
block high temperature stress, because WS is more complex to 
manipulate. Sim1 includes both high temperature stress and WS 
during photosynthesis, anthesis, and grain filling, whereas sim2 
only includes WS. Thus, high temperature stress can be separately 
estimated by comparing the two simulation outputs. The simula‐
tion is run for the three states over 2000−2015 and forced with 
University of Idaho Gridded Surface Meteorological Data as well. 
Soil parameters, such as soil hydraulic properties and soil organic 
matter fractions, were extracted from the State Soil Geographic 
(STATSGO) database, as collected by the National Cooperative 
Soil Survey over the course of a century. For each simulation grid, 
the soil information was obtained through the R package “soil 
DB” (http://ncss-tech.github.io/AQP/). Management information 
like planting density and fertilizer application amount was taken 
from the USDA NASS survey report at the state level. Crop sowing 
date was derived from the Crop Calendar Dataset (Sacks, Deryng, 
Foley, & Ramankutty, 2010). The generic maize hybrid (“B_110”) 
included in APSIM version 7.7 was used and it refers to a hybrid 
with a 110‐day relative maturity. The phenology‐related parame‐
ters characterizing GFP thermal time requirement were spatially 
parameterized based on MODIS‐derived crop stage information 
(Zhu et al., 2018). Spatially explicit parameters are expected to im‐
prove model simulation with a better match with the actual maize 
phenological development.

3  | RESULTS

According to the regression model (Figure 1), spatially explicit AGB 
was estimated with MODIS‐derived IWDRVI. BGR, GSL, and HI 
at county level were also retrieved. Their multi‐year mean reveals 
there is a clear variation in the spatial pattern of BGR, HI, and yield, 
and lower values are often identified in those southern counties 
(Figure 2). However, GSL is relatively homogeneous across the coun‐
ties, implying varieties with different maturity groups were selected 
to adapt to the local thermal time environment. Thus the correla‐
tion between GSL and yield is quite low (R2 = 0.004), but this does 
not contradict the fact that longer GSL leads to higher yield for a 
given site. The spatial variation of yield is more correlated with HI 
(R2 = 0.88) and BGR (R2 = 0.74), implying the dominant role of daily 
biomass accumulation and partitioning to grain in driving the yield 
variation spatially.

SYield
T
 was estimated and then decomposed into three compo‐

nents: SBGR
T

, SHI
T
, and SGSL

T
 with Equation (5). Each component rep‐

resents different physiological controls of temperature on maize 
yield through reproductive growth during anthesis and GFP (SHI

T
), 

photosynthesis dominated carbon assimilation (SBGR
T
), and plant de‐

velopment rate (SGSL
T
). Although SYield

T
 varies considerably among indi‐

vidual crop models, a similar estimation of SYield
T
 is identified between 

the model ensemble mean (MEM, −7.1 ±3.1% per °C) and observa‐
tions (−7.2 ± 0.9% per °C) (Figure 3). When we looked into each com‐
ponent, MEM overestimated SGSL

T
 while underestimated SHI

T
 compared 

with the corresponding estimation based on observational evidence. 
As model parameters are normally based on the knowledge of crop 
development and growth processes late 20th century, this discrep‐
ancy probably suggests that the development rate of newly adopted 
maize cultivar might have better adapted to warmer climate while 
little progress has been achieved for dealing with warming effects 
during maize reproductive growth. Instead, management practices 
intended to improve yield, such as higher application of nitrogen fer‐
tilizer, might lead to higher sensitivity of heat stress during grain for‐
mation processes (Ordóñez, Savin, Cossani, & Slafer, 2015; Wahid, 
Gelani, Ashraf, & Foolad, 2007). In terms of the sensitivity of BGR, 
both MEM and data show a weak response, consistent with the fact 
that maize photosynthesis has a relatively high optimal temperature 
(Dekov, Tsonev, & Yordanov, 2000). Some models, like LPJ‐GUESS, 
overestimated the warming influence on BGR but underestimated 
the influence on HI, which suggests that in these models, excessive 
temperature stress is imposed on processes related to photosynthe‐
sis while the stress during grain formation is overlooked.

The temperature sensitivity analysis was further divided into five 
groups based on the quintile of growing season mean temperature, 
which provides an insight into how temperature sensitivity evolves 
as the mean temperature increases in the future. Generally, SYield

T
 

estimated with observational evidence is significantly enhanced in 
warmer divisions, which changes from 0.3 ±1.1% per degree Celsius 
to −16.6 ±4.3% per degree Celsius from the lowest to highest tem‐
perature quintile (Figure 4a). It is noted that the increase in SYield

T
 is 

mainly driven by SHI
T
, which varies from 1.5 ±1.4% per degree Celsisu 

http://ncss-tech.github.io/AQP/
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to −12.6 ±3.8% per degree Celsius, correspondingly. This result con‐
firms the conclusion based on field experiments that warming during 
grain formation is more influential (Edreira & Otegui, 2012; Siebers 

et al., 2017). Despite increasing background temperature, SGSL
T
 keeps 

a relatively stable value of approximately −2.6% per degree Celsius 
and SBGR

T
 shows a small enhancement. Therefore, it can be inferred 

F I G U R E  2    Spatial pattern of multi‐year mean biomass growth rate (BGR), growing season length (GSL), harvest index (HI), and Yield at 
county level over 2000–2015 across the three Midwest states (a–d). Correlation between yield and multi‐year mean BGR, GSL, and HI with 
each point representing a county (e–g). The correlation analysis suggests that yield variation is spatially correlated with HI and BGR but not GSL
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that warming‐induced yield decline is mainly driven by GSL in the 
three lower temperature divisions, whereas the effects of warming on 
HI become more dominant in the two higher temperature divisions 
(Figure 4a).

When model output was similarly divided based on the quintile 
of growing season mean temperature, MEM of SYield

T
, SBGR

T
, SGSL

T
, and SHI

T
 

was used to gain insight into how warming effects were represented 
in crop models. The individual model performance is shown in 
Figure S6. Compared with the estimations with observational data, 

MEM reproduces the patterns of SYield
T

, SBGR
T

, SGSL
T

, and SHI
T
 across the 

temperature gradient (Figure 4b). Changes in MEM SHI
T
 drive the 

increasing SYield
T
 (Figure 4b), but SHI

T
 is underestimated relative to 

observational data. In terms of SGSL
T
, it is overestimated for all five 

temperature quintiles (approximately −5.4% per degree Celsius rel‐
ative to −2.6% per degree Celsius in observational data estimation). 
The stable SGSL

T
 estimated with both crop models and observational 

data suggests that maize plant development is quasi‐linearly driven 
by temperature (Edreira & Otegui, 2012; Hatfield & Prueger, 2015) 

F I G U R E  3    Temperature sensitivity of yield, harvest index (HI), biomass growth rate (BGR), and growing season length (GSL) based on 
satellite data and National Agricultural Statistics Service ‐reported yield (grey vertical line) and crop models, where the horizontal color lines 
within the shaded area indicate sensitivity estimation in each model and vertical purple lines indicate model ensemble estimation. The error 
bars represent the 95% confidence interval of estimated sensitivity. The observational data‐based temperature sensitivity uncertainties 
were estimated through resampling. The mean sensitivity and confidence interval for MEM and observational data are also reported in  
Table S3. This figure suggests that yield sensitivity is mainly driven by HI, but model ensemble overestimated effects through GSL
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F I G U R E  4    Temperature sensitivity of yield, harvest index (HI), biomass growth rate (BGR), and growing season length (GSL) when 
yield, HI, BGR, and GSL were divided by the quintile of growing season mean temperature based on satellite data and National Agricultural 
Statistics Service yield (a) and based on crop models (b). The error bars in (a) represent the 95% confidence interval of estimated sensitivity. 
Boxplots in (b) indicate the median (horizontal line), 25th–75th percentile (gray box), and 5th–95th percentile (whiskers) of crop model‐
estimated temperature sensitivity. This figure suggests that the nonlinear response of yield sensitivity is mainly driven by HI. Although the 
model ensemble shows a similar pattern, it overestimated effects through GSL
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and is relatively more heat tolerant compared with wheat plants, 
which show an accelerated senescence when exposed to heat stress 
(Lobell et al., 2012). The small enhancement in SBGR

T
 estimated with 

both crop model and observational data suggests that photosynthe‐
sis‐dominated BGR is likely to be slightly influenced under future 
warmer climate, which might result from the higher optimal tem‐
perature of C4 photosynthesis.

We also used an alternative panel model (Equation 6) by adding 
quadratic function of Tsa and Prcp to capture the nonlinear response 
of yield, HI, BGR, and GSL to climate variation. The temperature re‐
sponse of yield, HI, BGR, and GSL was expressed as the normalized 
quadratic function of temperature. This alternative analysis demon‐
strated that as temperature rises, the nonlinear response of yield is 
mainly driven by HI while yield decline through GSL is linear, which 
is in line with the statistical analysis using grouped temperature gra‐
dient (Figure 5). The temperature response curves also confirm that 
the optimal temperature of BGR is higher than that of HI and yield 
(Edreira & Otegui, 2012).

As the nonlinear reduction of yield and HI by warming remains 
unclear, a panel data model was used to investigate the different 

sensitivity of yield to HDD during vegetative period 
(

�Yield

�HDDVP

)
, 

anthesis 
(

�Yield

�HDDAn

)
, and GFP 

(
�Yield

�HDDGFP

)
. The analysis suggests that 

yield is the most sensitive to HDD during GFP (−0.46 ± 0.07% per 
degree days) (Figure 6a), which is in line with field heating experi‐
ments (Edreira, Mayer, & Otegui, 2014; Ruiz‐Vera et al., 2018; 
Siebers et al., 2017). The yield sensitivity to HDD during anthesis (−
0.33 ±0.11% per degree days) is slightly higher than HDD during VP 
(−0.30 ± 0.12% per degree days) (Figure 6a). The yield sensitivity to 
GDD is small in all three periods and even shows a positive response 
for GDD in VP and GFP (Figure 6a). Meanwhile, the increase in HDD 
during GFP is the largest of the three stages, probably due to the 
high background temperature (Figure 6b). According to Equation 
(7), when a uniform 1°C and 2°C warming is applied to whole grow‐
ing season temperature, yield is reduced by 5.9% and 21.7%, re‐
spectively. When 1°C (2°C) warming was separately applied to HDD 
during “VP,” “Anthesis,” and “GFP,” maize yield will be reduced by 
1.8% (6.9%), 1.3% (5.2%), and 3.3% (13.1%), respectively (Figure 6c). 
This nonuniform response suggests that the warming‐induced 
higher HDD during GFP exclusively accounted for more than half of 
yield reduction and was the main driver of yield decline.

In addition to direct heat stress, it was previously suggested that 
an extreme heat event might threaten maize yield indirectly through 

F I G U R E  5    Response of Yield (a), biomass growth rate (BGR) (b), growing season length (GSL) (c), and harvest index (HI) (d) to growing 
season mean temperature. The vertical dashed lines indicate the optimal mean temperature of Yield, HI, or BGR derived from observational 
evidence. The response function is normalized by the maximum value in each response. The X‐axis range is determined by the minimum and 
maximum mean growing season temperature across the U.S. Midwest during 2000–2015. The confidence interval of temperature response 
curve for each model results is also reported in Figure S8
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WS (Lobell et al., 2013). A better discernment of the effect of WS 
and heat stress would help farmers to make proper decisions to bet‐
ter adapt to future warming challenges. A panel model analysis was 
used here to estimate the relative contribution of WS (PET/ET) and 
high temperature stress (HDD) on yield. The model result suggests 
that 1°C warming will increase GDD, HDD, and WS by 50 ±3.3 de‐
gree days, 17 ±1.2 degree days, and 0.011 ±8 × 10

−4, respectively 
(Figure 7a). However, a unit increase in GDD, HDD, and WS causes 
yield decline of −0.0054 ± 0.001%, −0.27 ±0.04%, and −1.54 ±0.48%, 
respectively (Figure 7a). Taken together, the regression model shows 
that 1°C warming will reduce yield by 0.2 7± 0.15%, 4.6 ±1.0%, and 
1.7 ±0.65% through GDD, HDD, and WS, respectively (Figure 7a), 
suggesting that the warmer temperature reduces maize yield mainly 
through direct high temperature stress. The mean sensitivity and con‐
fidence interval is also reported in Table S4.

When the same panel model was applied to crop model output 
from AgMIP, the model results generally showed small warming ef‐
fects through GDD but varied substantially in terms of the warming 
effects through WS and HDD. Compared with the observational ev‐
idence, MEM underestimated the direct high temperature influence 
through HDD but overestimated the indirect influence through WS 
(Figure 7b). As suggested in a field CO2 enrichment experiment on 
maize, water conservation effects of increasing CO2 might result in 
more yield benefit under WS conditions (Hussain et al., 2013; Jin et al., 
2017) but its yield benefit under heat stress may be limited (Siebers 
et al., 2015). This implies that in current crop models the direct high 
temperature stress on yield is underestimated, whereas the yield ben‐
efit of elevated atmospheric CO2 is overestimated. This discrepancy 
could bias the projection of maize yield variation given future higher 
atmospheric CO2 and more frequent heat waves.

F I G U R E  6    Sensitivity of maize yield based on National Agricultural Statistics Service report to growing degree days (GDD) and high 
temperature degree days (HDD) in different growing stages: vegetative period (VP), anthesis, and grain filling period (GFP) (a). Boxplot 
of HDD increase in response to 1°C and 2°C warming (b). Boxplots indicate the median, 25–75th percentile, and 5th–95th percentile of 
HDD increase across all counties during 2000–2015. Estimation of yield reduction is based on to the regression model (Equation 7). Yield 
reduction of “All season” indicates the temperature was increased uniformly across the whole growing season, whereas “VP,” “Anthesis,” and 
“GFP” means temperature was increased exclusively for HDD during “VP,” “Anthesis,” and “GFP.” The yield reduction here characterizes the 
relative contribution of high temperature stress during a specific maize stage. Error bars in (a) and (c) represent the 95% confidence interval 
of estimated sensitivity through resampling, which are also reported in Tables S4 and S5
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F I G U R E  7    The effect of warming‐induced direct heat (HDD) and indirect water stress (WS) on maize yield based on National 
Agricultural Statistics Service yield report, MODIS‐derived crop stages information, and MODIS PET/ET product (MOD16) (a). The numbers 
marked on the arrows indicate the effects of 1°C warming on yield through growing degree days (GDD), high temperature degree days 
(HDD), and water stress (WS), corresponding to the coefficients in Equation (12). Comparison of warming effects on maize yield through 
GDD, HDD, and WS (potential evapotranspiration [PET]/evapotranspiration [ET]) estimated from observational evidence and crop models 
(b). Error bars for observational data represent the 95% confidence interval through sampling (details in Table S6) and error bars in model 
ensemble represent the stand deviation of multi‐model estimated yield responses (b)
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Although the MEM suggests a lower influence of temperature 
through HDD, there are individual models with close estimation to 
observational data. For example, the APSIM crop model suggests 
a higher influence of temperature through HDD than through WS 
(Figure 7b). We also applied the APSIM model default WS metric, 
the ratio of water supply to water demand, as the WS term to con‐
struct an alternative panel model to test whether the results are ro‐
bust to the selection of WS metric. This alternative metric produced 
a similar estimation of warming effects on yield through GDD, HDD, 
and WS as the one using PET/ET as the WS metric (Figure S4).

A model experiment was designed to better understand how WS 
and heat stress influence maize yield through different physiological 
processes. In this experiment, sim1 is the control run with both high 
temperature stress and WS, whereas sim2 blocked the high tempera‐
ture stress. The results show that as temperature increases, there is no 
significant change in SBGR

T
 and SGSL

T
 between sim1 and sim2 but SHI

T
 is sig‐

nificantly enhanced in sim2 (Figure 8). As GSL is mainly driven by ther‐
mal time accumulation, SGSL

T
 shows a similar response with increasing 

background temperature in both sim1 and sim2. Thus, the other two 
components SBGR

T
 and SHI

T
 represent the main effects of high tempera‐

ture stress on yield. The comparison between sim1 and sim2 suggests 
that, as temperature rises, high temperature stress reduces maize yield 
primarily through process related to grain formation, whereas the high 
temperature‐induced WS influences yield mainly through processes 
related to BGR, such as photosynthesis or respiration (Figure 8).

4  | DISCUSSION

By integrating satellite observations, crop model simulations, sur‐
veys, and experimental data, we examined the response of maize 
yield and its constituent processes to high temperature stress in an 
analytical way. The results suggest that the nonlinear response of 

yield 
(
SYield
T

)
 can be decomposed into small effects on SBGR

T
, linear 

(
SGSL
T

)
, and non‐linear 

(
SHI
T

)
 processes, and that heat stress during 

GFP poses a striking threat for maize yield decline. Photosynthesis‐
dominated BGR is only marginally influenced by temperature stress, 
which is likely to result from the higher optimal temperature of C4 
photosynthesis. With the advancement in computing power and 

finer spatial and spectral information brought with new satellite 
data, the methodology here can be readily extrapolated to other re‐
gions and further improve our understanding of maize and other 
crop yield performance under extreme conditions.

Our analysis also pinpoints both strengths and weaknesses of 
crop models in charactering high temperature stress on maize yield 
and provides an important feedback for the crop modeling commu‐
nity. Most models underestimated the warming effects through HI 
while overstated the temperature sensitivity of GSL. Meanwhile, the 
indirect WS effect was overestimated in most crop models, which 
might bring substantial uncertainties when projecting maize yield 
under future hotter conditions. One explanation for the discrepancy 
between estimations based on model and observational datasets 
is possibly the issue of different scales, since crop models oper‐
ated at 0.5◦

× 0.5◦ grids and observational datasets were analyzed 
at the county level. However, it is more likely due to the limitation 
of models in accurately representing heat stress influence, such as 
slow updates of key parameters related to heat and drought resis‐
tance and lack of explicitly accounting for heat stress effect during 
the development stages of different maize cultivars. Rezaei, Siebert, 
Hüging, and Ewert (2018) also found that ignoring cultivar changes 
in analyses of historic changes in phenology leads to an overestimate 
of the temperature sensitivity of the phenology of winter wheat in 
Germany. A similar model parametrization bias may exist in other 
crops, e.g. maize in the United States.

In addition, most evaluated models, except CLM‐Crop, lack a 
canopy energy balance scheme to simulate leaf temperature and 
therefore use air temperature instead of leaf temperature to pa‐
rameterize effects of heat stress. However, air temperature can 
deviate significantly from leaf temperature, especially under dry 
conditions or elevated CO2 where canopies can be several degrees 
hotter than the air due to reduced transpiration. Thus, improve‐
ment in canopy energy balance among all models is necessary for 
better representing the heat stress effects on crop yield (Webber 
et al., 2017).

The selected metric here to quantify heat stress and WS is 
also important for evaluating their relative contributions to yield 
decline. Threshold‐based thermal time accumulation has been 
widely used to characterize heat stress (Deryng, Sacks, Barford, & 
Ramankutty, 2011; Lobell et al., 2012; Schlenker & Roberts, 2009). 

F I G U R E  8    Temperature sensitivity 
of yield, harvest index (HI), growing 
season length (GSL), and daily biomass 
growth rate (BGR) divided by quintile of 
growing season mean temperature in two 
APSIM simulation results. sim1 (circle) is 
the simulation with both water and high 
temperature stress and sim2 (triangle) is 
the simulation with only water stress
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In terms of WS, several metrics have been proposed, such as VPD, 
PET/ET, soil moisture content, and the ratio of water supply to 
water demand (Jin et al., 2016; Lobell et al., 2014). Higher VPD 
means an increase in atmospheric water demand and can decrease 
photosynthetic activity through reducing stomatal conductance. 
Soil water content regulates transport of water in the soil–plant–
atmosphere continuum and determines the amount of extractable 
water by crop plants. PET/ET and the ratio of water supply to 
water demand accounts for both atmospheric water demand and 
soil water availability. These two metrics also give a similar esti‐
mate of WS effects on maize yield (Figure S4). Due to the different 
roles of VPD and soil water content in determining the plant phys‐
iological processes, it might be useful to disentangle the two ef‐
fects. However, there are limited controlled experiments designed 
to address the different responses of crop plants to atmospheric 
water demand (VPD) and soil water dryness, partly because VPD 
is often hard to be controlled in the field conditions (Gray et al., 
2016). In this context, more field experiments are necessary to 
mechanistically understand the relative contribution of different 
sources of WS on crop yield.

Overall, our analysis through model‐data integration suggests 
that warming‐induced decline in maize yield is mainly driven by 
direct heat stress imposed on reproductive processes, whereas in‐
direct WS only contributes a small fraction. Therefore, future adap‐
tation strategies should be targeted at the heat stress during grain 
formation. As model parameterization used here often represents a 
static management system from around the year 2000 (Elliott et al., 
2015), the discrepancy in temperature sensitivity between crop 
model simulations and observational data suggests that changes in 
management systems need to be better accounted for to achieve 
progress in heat stress estimates (Glotter & Elliott, 2016).
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