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Abstract
Evidence	suggests	that	global	maize	yield	declines	with	a	warming	climate,	particu‐
larly	with	extreme	heat	events.	However,	the	degree	to	which	important	maize	pro‐
cesses	such	as	biomass	growth	rate,	growing	season	length	(GSL)	and	grain	formation	
are	impacted	by	an	increase	in	temperature	is	uncertain.	Such	knowledge	is	neces‐
sary	 to	 understand	 yield	 responses	 and	develop	 crop	 adaptation	 strategies	 under	
warmer	climate.	Here	crop	models,	satellite	observations,	survey,	and	field	data	were	
integrated	to	investigate	how	high	temperature	stress	influences	maize	yield	in	the	
U.S.	Midwest.	We	showed	that	both	observational	evidence	and	crop	model	ensem‐
ble	mean	(MEM)	suggests	the	nonlinear	sensitivity	in	yield	was	driven	by	the	intensi‐
fied	sensitivity	of	harvest	index	(HI),	but	MEM	underestimated	the	warming	effects	
through	HI	and	overstated	the	effects	through	GSL.	Further	analysis	showed	that	the	
intensified	sensitivity	in	HI	mainly	results	from	a	greater	sensitivity	of	yield	to	high	
temperature	stress	during	the	grain	filling	period,	which	explained	more	than	half	of	
the	yield	reduction.	When	warming	effects	were	decomposed	into	direct	heat	stress	
and	indirect	water	stress	(WS),	observational	data	suggest	that	yield	is	more	reduced	
by	direct	heat	stress	(−4.6	±	1.0%/°C)	than	by	WS	(−1.7	±	0.65%/°C),	whereas	MEM	
gives	opposite	results.	This	discrepancy	implies	that	yield	reduction	by	heat	stress	is	
underestimated,	whereas	the	yield	benefit	of	increasing	atmospheric	CO2 might	be	
overestimated	 in	 crop	models,	 because	elevated	CO2	 brings	yield	benefit	 through	
water	conservation	effect	but	produces	limited	benefit	over	heat	stress.	Our	analysis	
through	integrating	data	and	crop	models	suggests	that	future	adaptation	strategies	
should	be	targeted	at	the	heat	stress	during	grain	formation	and	changes	in	agricul‐
tural	management	need	to	be	better	accounted	for	to	adequately	estimate	the	ef‐
fects	of	heat	stress.
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1  | INTRODUC TION

As	the	world's	largest	producer	of	maize,	the	United	States	has	seen	a	
steady	increase	in	maize	yield	since	the	Green	Revolution	(Assefa	et	
al.,	2017),	while	increases	in	concurrent	heat	and	drought	across	the	
United	States	since	the	1950s	have	posed	a	significant	risk	for	maize	
production	(Mazdiyasni	and	AghaKouchak,	2015;	Schauberger	et	al.,	
2017)	and	resulted	in	stagnated	crop	production	in	many	producing	
areas	(Olesen	et	al.,	2011).	Future	warming	might	more	severely	de‐
crease	crop	yield	with	frequent	extreme	heat	events	(Rahmstorf,	&	
Coumou,	2011;	Schlenker	&	Roberts,	2009),	which	causes	oxidative	
damage	to	chloroplasts	(Crafts‐Brandner	&	Salvucci	2002;	Siebers,	
Yendrek,	&	Drag,	2015),	destroys	reproductive	structures	(Commuri	
&	Jones,	2001),	and	accelerates	crop	senescence	 (Lobell,	Sibley,	&	
Ivan	 Ortiz‐Monasterio,	 2012;	 Ruiz‐Vera,	 Siebers,	 Jaiswal,	 Ort,	 &	
Bernacchi,	2018).	With	warmer	climates,	current	agricultural	system	
models	need	to	be	upgraded	to	better	represent	crop	responses	to	
temperature‐related	climate	extremes	and	 thus	 cope	with	 the	up‐
coming	challenges	of	increasing	food	demands.

In	 recent	 decades,	 multiple	 approaches	 have	 been	 adopted	
to	maintain	yield	 increases	 through	 improved	management	prac‐
tices	and	breeding	technology,	like	improved	herbicide	and	weed	
management	 techniques,	 higher	 planting	 density,	 and	 new	 culti‐
vars	with	longer	grain	filling	period	(GFP)	(Assefa	et	al.,	2016;	Tao,	
Yokozawa,	Xu,	Hayashi,	&	Zhang,	2006;	Tollenaar	&	Wu,	1999;	Zhu	
et	al.,	2018).	However,	the	actual	effects	of	these	intensified	man‐
agement	practices	might	be	counterproductive	due	to	the	diverse	
environmental	conditions	and	their	interaction	with	management	
practices	(Lobell	et	al.,	2014).	Therefore,	it	is	necessary	to	better	
understand	the	response	of	crop	yield	to	climatic	variation	in	field	
conditions.

The	observed	variation	in	maize	yield	is	the	product	of	many	in‐
teractive	processes	 that	make	a	mechanistic	understanding	of	 the	
drivers	of	this	variation	difficult.	Throughout	the	life	cycle	of	maize	
plants,	yield	is	driven	by	biomass	accumulation	and	partitioning	be‐
tween	 organs	 (Lizaso	 et	 al.,	 2018).	 Biomass	 accumulation	 can	 be	
expressed	as	growing	season	 length	 (GSL)	×	average	daily	biomass	
growth	 rate	 (BGR).	 The	 partitioning	 of	 biomass	 to	 grains	 is	 often	
quantified	 using	 harvest	 index	 (HI	=	yield/above‐ground	 biomass	
accumulation).	Thus,	final	yield	is	the	product	of	BGR,	GSL	and	HI.	
Warming	influence	on	maize	yield	can	be	thereby	dissected	as	the	
influence	on	GSL,	BGR	and	HI.	Warmer	 temperature	often	means	
a	shorter	GSL	with	accelerated	development	rate	(Cheikh	&	Jones,	
1994).	However,	 the	 influence	of	warming	on	BGR	and	HI	 is	more	
complex	than	GSL.	The	direction	and	magnitude	of	influence	depend	
on	whether	the	threshold	temperature	has	been	exceeded,	while	the	
threshold	temperature	seems	to	be	variable	among	different	variet‐
ies	and	phenological	stages	(Rezaei,	Webber,	Gaiser,	Naab,	&	Ewert,	
2015;	Sánchez,	Rasmussen,	&	Porter,	2014).

As	 a	C4	 plant,	maize	 often	 has	 a	 higher	 optimal	 temperature	
for	 photosynthesis	 than	 C3	 plants,	 thus	 warmer	 leaf	 tempera‐
tures	 in	 early	 vegetative	 growth	 can	 potentially	 lead	 to	 either	

no	 impacts	 or	 a	 positive	 impact	 on	maize	 photosynthetic	 activ‐
ity	 (Crafts‐Brandner	 &	 Salvucci,	 2002;	 Parent	 &	 Tardieu,	 2012).	
However,	maize	yield	becomes	increasingly	sensitive	to	high	tem‐
perature	during	reproductive	development	(Cheikh	&	Jones,	1994;	
Siebers	et	al.,	2017).	Thus,	the	same	level	of	warming	treatment	in	
different	 stages	might	 result	 in	different	or	 even	opposite	 influ‐
ence	on	maize	yield	(Siebers	et	al.,	2017).	In	particular,	identifying	
cropping	system	vulnerabilities	and	devising	targeted	adaptation	
strategies	to	deal	with	future	warming	should	be	on	the	premise	
of	a	clear	understanding	of	how	crop	yields	respond	to	warming	
during	different	development	stages.	Due	to	limited	knowledge	of	
crop	stages	(Butler	&	Huybers,	2015),	analyses	on	the	sensitivity	
of	crop	yields	to	temperature	typically	ignore	that	the	response	to	
temperature	is	stage	dependent	(Cheikh	&	Jones,	1994;	Siebers	et	
al.,	2017).	This	might	lead	to	considerable	uncertainty	when	pro‐
jecting	crop	yield	under	future	warmer	climate.

Field	 warming	 experiments	 have	 been	 devised	 to	 explore	
the	 effects	 of	 warming	 in	 different	 growth	 stages	 on	 crop	 yield	
(Hatfield	 &	 Prueger,	 2015;	 Ruiz‐Vera	 et	 al.,	 2018;	 Siebers	 et	 al.,	
2017).	It	has	been	suggested	that	maize	grain	yield	is	significantly	
reduced	 under	 heat	 stress	 through	 pollen	 viability	 that	 in	 turn	
determines	 kernel	 number	 and	 HI,	 which	 explained	 most	 of	 the	
variation	 in	maize	 yield	 (Edreira	&	Otegui,	 2012,	 2013;	 Lizaso	 et	
al.,	2018).	 In	 terms	of	 the	 timing	of	heating	 treatment,	 it	appears	
that	kernel	number	per	plant	was	more	reduced	by	heating	during	
silking	than	before	anthesis	(Edreira	&	Otegui,	2012).	Influence	of	
heating	on	phenological	 development	 is	 also	evident.	Grain	 yield	
was	significantly	reduced	due	to	shortening	of	GFP	when	tempera‐
tures	 were	 increased	 from	 25°C	 to	 31°C,	 despite	 the	 enhanced	
grain	 filling	 rate	 (Dias	&	 Lidon,	 2009).	Heating	 during	 pre‐silking	
caused	a	larger	delay	in	silking	date	than	in	anthesis	date,	leading	to	
a	lengthened	anthesis‐silking	interval	(Cicchino,	Rattalino	Edreira,	
Uribelarrea,	&	Otegui,	2010),	which	is	a	good	indicator	of	the	final	
maize	yield	 (Bolanos	&	Edmeades,	1996).	However,	 these	experi‐
ments	are	often	limited	to	small	scales	and	could	not	represent	the	
complex	and	diverse	crop	systems,	making	the	conclusion	hard	to	
be	extrapolated	to	other	regions.

Crop	models	have	shown	the	potential	 to	simulate	and	repro‐
duce	the	large‐scale	spatiotemporal	variability	of	crop	yield	(Elliott	
et	al.,	2015;	Müller	et	al.,	2017).	Generally,	crop	models	represent	
our	understanding	of	response	of	crop	plants	to	climatic	variation,	
soil	 nutrient	 status,	 hydrological	 conditions,	 and	agronomic	man‐
agement	practices.	They	are	normally	able	to	adequately	simulate	
average	conditions	but	fail	to	handle	climate	extremes	(Eitzinger	et	
al.,	2013;	Lobell	et	al.,	2012;	Sánchez	et	al.,	2014).	Such	limitation	
is	critical	to	evaluate	crop	response	under	ongoing	climatic	change,	
which	is	expected	to	bring	more	extreme	weather	for	the	agricul‐
tural	 sector	 across	 the	world.	 In	 addition,	 some	basic	 knowledge	
might	have	not	been	updated	for	decades.	For	example,	the	default	
parameters	related	to	the	physiological	property	of	crop	varieties	
might	be	unable	to	reflect	the	recent	progress	in	cultivars	through	
breeding	techniques.	Thus,	it	might	bring	substantial	uncertainties	
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when	using	 these	models	 to	 reproduce	historic	 or	 project	 future	
crop	yield.	Recently,	an	ensemble	of	multi‐model	output	has	been	
widely	used	as	an	 improved	way	of	evaluating	and	projecting	cli‐
mate	change	and	management	effects	on	crop	production	with	re‐
duced	uncertainty	 (Asseng	et	 al.,	 2014;	Rötter,	Carter,	Olesen,	&	
Porter,	2011).

New	techniques	employing	satellite	data	have	been	increasingly	
used	 in	 the	agricultural	 sector	 to	map	crop	 types,	delineate	 irriga‐
tion/non‐irrigation	 boundary,	 derive	 crop	 phenology	 information,	
and	 project	 field	 crop	 yield	 (Azzari,	 Jain,	 &	 Lobell,	 2017;	 Deines,	
Kendall,	&	Hyndman,	2017;	Guan	et	al.,	2017;	Lobell,	Thau,	Seifert,	
Engle,	&	Little,	2015;	Zhu	et	al.,	2018).	Such	observational	informa‐
tion	could	be	important	input	data	to	drive	crop	models	or	calibrate	
model	parameters.	The	derived	crop	phenology	information	is	likely	
to	provide	observational	evidence	to	characterize	the	regional‐scale	
spatiotemporal	patterns	of	field	crop	growth	status	(Zhu	et	al.,	2018)	
and	thus	assist	 the	understanding	of	 response	of	crop	yield	 to	cli‐
matic	variation	during	different	growth	stages.

Here	 we	 integrated	 satellite‐derived	 crop	 stage	 information,	
regional	crop	model	output,	surveyed	yield	data	from	the	United	
States	 Department	 of	 Agriculture	 (USDA)	 and	 site‐level	 experi‐
ment	data	to	dissect	how	high	temperatures	influence	maize	yield	
through	 different	 physiological	 processes.	 Surveyed	 yield	 data,	
together	with	satellite‐based	crop	stage	information	and	modeled	
maize	 aboveground	 biomass	 (AGB)	 calibrated	 against	 site‐mea‐
sured	AGB,	enabled	us	 to	 retrieve	county‐level	GSL,	BGR	 (AGB/
GSL)	 and	HI	 (Yield/AGB).	 This	was	 used	 to	 decompose	 the	 tem‐
perature	 sensitivity	 of	 yield	 (SYield

T
)	 into	 the	 temperature	 sensitiv‐

ities	 of	BGR	 (SBGR
T
),	GSL	 (SGSL

T
),	 and	HI	 (SHI

T
),	which	were	 estimated	

with	a	panel	model	(Schauberger	et	al.,	2017;	Schlenker	&	Roberts,	
2009;	Tack,	Barkley,	&	Nalley,	2015).	Each	component	character‐
izes	the	temperature	response	of	net	assimilation	rate	determined	
by	 photosynthesis	 and	 respiration	 (SBGR

T
),	 plant	 development	 rate	

(SGSL
T
),	and	reproductive	growth	determined	by	grain	size	and	grain	

weight	 (SHI
T
),	 respectively.	 In	 addition,	SYield

T
, SBGR

T
, SGSL

T
, and SHI

T
	 based	

on	multiple	crop	model	outputs	were	also	analyzed	to	complement	
the	 survey	 and	 satellite	 data.	 The	 relative	 contribution	 of	 direct	
heat	stress	and	indirect	water	stress	 (WS)	to	yield	reduction	was	
further	estimated	using	statistical	model	and	crop	model	 simula‐
tion	to	 investigate	the	underlying	driver	of	maize	yield	reduction	
with	climatic	warming.	In	this	study,	we	focused	on	three	Midwest	
states	dominated	by	rainfed	maize—Indiana,	Illinois,	and	Iowa—that	
account	 for	approximately	40%	of	U.S.	maize	production	 (USDA,	
2015).	 Thus,	 the	 conclusions	 drawn	 from	 this	 study	 are	 likely	 to	
provide	insight	for	understanding	the	temperature	response	of	the	
whole	U.S.	rainfed	maize	production.

2  | MATERIAL S AND METHODS

2.1 | Satellite data derived crop stage information

In	 this	 study,	8‐day	 time	series	of	250	m	daily	 surface	 reflectance	
MODIS	datasets	on	board	Earth	Observing	System	(EOS)	Terra	and	

Aqua	 satellite	 platforms:	MOD09Q1	 (2000–2015)	 and	MYD09Q1	
(2002–2015)	Collection	6,	were	used.	Here	a	scaled	wide	dynamic	
range	vegetation	 index	 (WDRVI)	was	used	to	monitor	the	growing	
status	of	maize	plants	(Gitelson,	2004),	because	WDRVI	has	a	higher	
sensitivity	to	changes	at	moderate	to	high	biomass	than	the	normal‐
ized	difference	vegetation	index	(NDVI).	The	scaled	WDRVI	is	calcu‐
lated	with	the	following	equation:

where	ρred and ρNIR	are	the	MODIS	surface	reflectance	in	the	red	
and	NIR	bands,	respectively.	The	scaling	factor	α	is	introduced	to	
degrade	the	 fraction	of	 the	NIR	reflectance	at	moderate‐to‐high	
green	vegetation	(Guindin‐Garcia,	Gitelson,	Arkebauer,	Shanahan,	
&	Weiss,	 2012).	 Here	α	 was	 set	 as	 0.1	 as	 a	 comparison	 of	mul‐
tiple	vegetation	 indexes	 indicates	WDRVI	with	α	=	0.1	showed	a	
strong	 linear	 correlation	with	 corn	 green	 LAI	 (Guindin‐Garcia	 et	
al.,	 2012).	 Before	WDRVI	 calculation,	 the	 reflectance	data	were	
quality‐filtered	using	the	quality	control	flags.	Only	the	data	pass‐
ing	the	highest	quality	control	test	are	retained.	A	hybrid	method	
combining	shape	model	fitting	(SMF)	and	threshold‐based	analysis	
was	implemented	to	derive	maize	phenology	using	MODIS	WDRVI	
data	 at	 250	×	250	m	 spatial	 resolution	 from	 2000	 to	 2015	 (Zhu	
et	 al.,	 2018).	 Shape	 model	 was	 obtained	 by	 averaging	 multiple	
years	WDRVI	observations	to	characterize	the	climatology	of	corn	
growth	cycle	 (Zhu	et	al.,	2018).	The	shape	model	was	 then	geo‐
metrically	scaled	to	fit	each	WDRVI	time	series,	so	the	predefined	
phenological	dates	on	the	shape	model	can	be	scaled	likewise	to	
estimate	phenological	dates	for	each	pixel.	We	have	derived	four	
key	maize	growth	stages	of	emergence	(late	May),	silking	(Middle	
July),	dent	(late	August),	and	maturity	(late	September)	across	the	
four	 states:	 Indiana,	 Illinois,	 Iowa,	 and	Nebraska.	 Verification	 at	
the	 state	 level	 showed	 a	 good	 agreement	 between	MODIS‐de‐
rived	 maize	 phenology	 and	 the	 National	 Agricultural	 Statistics	
Service	 (NASS)–reported	 state	mean	 phenological	 dates	 (Zhu	 et	
al.,	 2018).	 In	 this	 study,	we	 focused	on	 the	 three	 rainfed	 states:	
Iowa,	Illinois,	and	Indiana.

2.2 | Derivation of county‐level maize yield, AGB, 
GSL, and HI

The	observed	variation	in	maize	yield	is	the	end	result	of	integra‐
tion	of	many	processes	with	different	sensitivities	to	high	temper‐
ature	stress.	To	this	end,	we	decompose	the	total	yield	variation	
into	three	components:	BGR,	GSL,	and	HI.	County‐level	corn	grain	
yield	dataset	from	2000	to	2015	covering	the	three	states	(Illinois,	
Indiana,	 Iowa)	was	 retrieved	 from	 the	Quick	 Stats	 2.0	 database.	
The	 unit	 system	 for	maize	 yield	 is	 bushel	 per	 acre	 (bu/ac).	 This	
dataset	was	used	together	with	remote	sensing	modeled	county‐
level	AGB	to	estimate	HI	 (Yield/AGB).	HI	generally	characterizes	
dry	matter	partitioning	between	source	organ	and	sink	organ	and	

(1)NDVI=
(
�NIR−�red

)/(
�NIR+�red

)

(2)WDRVI=100×

[(
�−1

)
+

(
�+1

)
×NDVI

]
[(
�+1

)
+

(
�−1

)
×NDVI

]
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is	 mainly	 related	 to	 processes	 determining	 grain	 size	 and	 grain	
weight.

Thirty‐two	 site‐year	 maize	 AGB	 data	 measured	 at	 the	 end	 of	
growing	 season	 across	 the	U.S.	Midwest	were	 collected	 (details	 on	
geolocation	and	year	information	can	be	found	in	Table	S1).	This	field	
experiment	measurement	was	used	to	construct	a	 regression	model	
between	WDRVI	 and	AGB.	 To	 this	 end,	WDRVI	 in	 3	×	3	 pixel	win‐
dows	centered	on	the	site	measured	AGB	was	obtained	and	a	quality	
control	procedure	was	applied	to	the	WDRVI	time	series	to	remove	
low‐quality,	 cloud/aerosol‐contaminated	 observations.	 Pearson	 cor‐
relation	was	then	estimated	between	the	WDRVI	time	series	centered	
on	the	site	and	the	surrounding	eight	pixels.	Three	WDRVI	time	se‐
ries	scoring	the	highest	correlation	and	the	center	one	were	averaged	
for	constructing	the	regression	model.	Previous	studies	have	showed	
the	integrated	enhanced	vegetation	index	(EVI)	over	the	growing	sea‐
son	is	a	good	proxy	of	vegetation	AGB	(Ponce‐Campos	et	al.,	2013).	
Similarly,	we	 integrated	WDRVI	 (IWDRVI)	by	 summing	WDRVI	over	
the	growing	season,	which	was	based	on	the	previous	study‐retrieved	
phenology	dates	(Zhu	et	al.,	2018).	A	linear	regression	model	was	con‐
structed	between	in	situ	measured	AGB	and	processed	IWDRVI	with	
the	above	method.	The	model	shows	IWDRVI	has	a	good	explaining	
power	(R2	=	0.75,	p	<	0.0001)	with	the	equation:	AGB	=	(16.4 ± 2.5)∗

IWDRVI(0.8	±	0.08)	(±SE)	(Figure	1).	We	also	applied	the	same	procedure	
to	NDVI	and	enhanced	vegetation	index	2	(EVI2),	which	are	also	com‐
monly	used	vegetation	indexes	for	temporal	monitoring	of	vegetation	
greenness	and	productivity,	but	the	R2	of	NDVI	(R2	=	0.68)	and	EVI2	
(R2	=	0.64)	is	lower	than	the	one	using	WDRVI	as	the	predictor.	With	
this	 regression	model,	AGB	was	spatially	estimated	with	satellite‐re‐
trieved	IWDRVI.	Finally,	the	16	years	of	satellite	data	derived	GSL	and	
AGB	were	integrated	to	county	level	to	estimate	HI	(Yield/AGB)	and	
daily	BGR	(AGB/GSL)	for	each	county.

2.3 | Statistical analysis of temperature sensitivity 
across different growth stages

Temperature	sensitivity	of	maize	yield	(SYield
T

)	was	estimated	using	a	
panel	 data	model	 (Equation	3)	with	 growing	 season	mean	 surface	
air	 temperature	 (Tsa)	 and	 precipitation	 (Prcp)	 as	 the	 explanatory	
variables:

�1t	captures	the	yield	increasing	trend	in	recent	years.	Countyi cor‐
responds	to	fixed	effects	of	county	i	and	accounts	for	time‐invariant	
county	differences,	 like	 the	 soil	quality.	 t	 stands	 for	each	year.	εi,t 
stands	for	the	error	term	for	county	i	at	year	t.	�2 or � ln (Yield)

�Tsa
	defines	

the	temperature	sensitivity	of	yield.	The	temperature	sensitivity	of	
BGR	(SBGR

T
),	HI	(SHI

T
),	and	GSL	(SGSL

T
)	can	be	estimated	with	Equation	(3)	

in	a	similar	way.	Here,	the	dependent	variable	Yield	(BGR,	GSL	and	
HI)	was	logged,	so	the	estimated	temperature	sensitivity	represents	
the	percentage	change	in	Yield	(BGR,	GSL	and	HI)	with	1°C	tempera‐
ture	increase.

The	climate	data	used	here	were	obtained	from	the	University	of	
Idaho	Gridded	Surface	Meteorological	Data	(http://metdata.north‐
westknowledge.net/)	with	a	spatial	resolution	of	4	km	(Abatzoglou,	
2013).	 It	 is	 a	 gridded	 product	 covering	 continental	 United	 States	
from	1979	to	2016.	This	dataset	is	created	by	combining	the	attri‐
butes	of	two	datasets:	temporally	rich	data	from	the	North	American	
Land	Data	Assimilation	System	Phase	2	(Mitchell,	2004)	and	spatially	
rich	data	from	the	Parameter‐elevation	Regressions	on	Independent	
Slopes	Model	(PRISM)	(Daly	et	al.,	2008).	After	validation	using	an	
extensive	network	of	weather	stations	across	the	United	States,	this	
dataset	 proved	 to	 be	 suitable	 for	 application	 in	 a	 landscape‐scale	
ecological	model.	Then	growing	season	mean	Tsa	and	Prcp	were	es‐
timated	by	 integrating	daily	 climate	variable	 according	 to	MODIS‐
derived	growing	season	starting	and	ending	date.

As	Yield=HI ⋅BGR ⋅GSL,	SYield
T
	can	be	written	as	follows:

These	equations	indicate	that	the	percentage	change	in	yield	with	
1°C	warming	can	be	dissected	into	percentage	changes	in	BGR,	GSL,	
and	HI,	which	corresponds	to	physiological	processes	of	carbon	assim‐
ilation	rate	through	photosynthesis,	crop	development	rate,	and	maize	
reproductive	 growth	 determining	 biomass	 partitioning,	 respectively.	
We	 further	divided	 the	dataset	of	yield,	BGR,	GSL,	and	HI	 into	 five	
groups	according	to	the	quintile	of	mean	growing	season	temperature.	
This	separation	helps	us	to	understand	how	maize	physiological	pro‐
cesses	respond	to	warming	as	temperature	increases.

Although	the	coefficient	in	a	linear	model	is	easy	to	interpret,	the	
actual	response	of	crop	yield	and	associated	physiological	processes	

(3)log
(
Yieldi,t

)
= �1t+�2Tsai,t+�3Prcpi,t+Countyi+�i,t

(4)� ln (Yield)

�Tsa
=
� ln (HI)

�Tsa
+
� ln (BGR)

�Tsa
+
� ln (GSL)

�Tsa

(5)
�Yield

Yield ⋅�Tsa
=

�HI

HI ⋅�Tsa
+

�BGR

BGR ⋅�Tsa
+

�GSL

GSL ⋅�Tsa

F I G U R E  1   	The	regression	model	used	to	relate	the	integrated	
wide	dynamic	range	vegetation	index	(IWDRVI)	with	aboveground	
biomass	(AGB).	Each	point	corresponds	to	a	site‐measured	AGB	
and	MODIS‐derived	IWDRVI.	The	shaded	area	indicates	the	95%	
confidence	interval
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to	climate	variables	is	more	likely	to	be	nonlinear	(Rezaei	et	al.,	2015;	
Schlenker	&	Roberts,	2009).	Therefore,	an	alternative	model	(6)	was	
used	by	adding	a	quadratic	function	of	Tsa	and	Prcp	to	capture	the	
nonlinear	climatic	response	of	yield	formation:

The	sensitivity	of	HI,	GSL,	and	BGR	can	be	modeled	similarly	by	
replacing	Yield	with	the	corresponding	variables.

The	 total	 temperature	sensitivity	of	yield	estimated	above	can	
be	 regarded	 as	 the	 integrated	 effects	 of	 high	 temperature	 stress	
and	thermal	time	accumulation	during	different	phenological	stages.	
Following	previous	studies	(Schlenker	&	Roberts,	2009;	Tack	et	al.,	
2015),	yield	sensitivity	was	expressed	as:

Here	high	 temperature	 stress	 is	quantified	with	high	 tempera‐
ture	degree	days	 (HDD),	which	characterizes	the	higher‐than‐opti‐
mal	thermal	time	accumulation.	Growing	degree	days	(GDD)	drives	
crop	development	and	characterizes	the	thermal	time	accumulation	
in	the	absence	of	extreme	conditions.	s	stands	for	the	three	growth	
stages	VP,	An,	and	GFP.	Based	on	Equation	(7),	warming	effects	on	
yield	through	HDD	in	GFP	can	be	estimated	as	 �Yield

�HDDGFP

�HDDGFP

�Tsa
.

When	 daily	 maximum	 temperatures	 exceed	 30	 degree,	 maize	
kernel	set	was	shown	to	be	reduced	by	1.7%	per	degree	day	under	
rainfed	conditions	in	Africa	(Lobell,	Bänziger,	Magorokosho,	&	Vivek,	
2011).	Here	we	 also	used	30	degree	 as	 the	 threshold	 to	 estimate	
HDD	to	characterize	high	temperature	stress.	GDD	and	HDD	were	
estimated	 with	 the	 following	 equations	 using	 hourly	 temperature	
values,	which	were	obtained	by	fitting	a	sine	function	to	interpolate	
daily	maximum	Tsa	and	minimum	Tsa.

where	 t	 represents	 the	hourly	 time	step,	N	 is	 the	 total	number	of	
hours	 in	each	growing	period,	and	DD	 is	degree	days.	 It	has	been	
proved	that	interpolating	daily	temperature	to	hourly	value	is	better	
in	capturing	sub‐daily	heat	stress	(Tack	et	al.,	2015).

The	selected	three	periods	are	generally	distinguished	by	their	
main	roles	in	determining	the	final	yield:	vegetative	period	is	related	
to	leaf	development	and	expansion,	anthesis	is	related	to	pollination	
and	determines	grain	number,	and	GFP	is	related	to	photosynthate	
translocation	to	kernels	and	determines	grain	weight.	Maize	growth	

stage	information	is	retrieved	from	the	previous	study	(Zhu	et	al.,	
2018).	 VP	 is	 defined	 as	 the	 duration	 from	 emergence	 to	 10	days	
ahead	of	silking.	GFP	is	defined	as	the	duration	from	10	days	after	
silking	 to	maturity.	 Although	we	 did	 not	 exactly	 extract	 anthesis	
timing	from	the	remote	sensing	data,	a	previous	study	suggests	that	
the	anthesis	is	around	1	week	before	silking	(Bolanos	&	Edmeades,	
1996).	Hence,	in	this	study,	we	use	10	days	before	and	after	silking	
date	as	a	conservative	estimation	of	anthesis.

To	obtain	the	sensitivity	of	maize	yield	to	GDD	and	HDD	in	dif‐
ferent	growth	stages,	the	following	panel	model	was	used	follow‐
ing	previous	studies	(Schlenker	&	Roberts,	2009;	Tack	et	al.,	2015):

where	�0t	captures	the	yield	increasing	trend,	Countyi	corresponds	
to	the	county	fixed	effects,	and	�1−�6	defines	the	sensitivity	of	yield	
to	GDD	and	HDD	in	the	three	growth	stages.	Thus,	yield	sensitivity	
to	HDD	can	be	estimated	with	the	first‐order	difference:

In	terms	of	the	sensitivity	of	HDD	to	warming	in	VP	
(

�HDDVP

�Tsa

)
,	an‐

thesis	
(

�HDDAn

�Tsa

)
,	and	GFP	

(
�HDDGFP

�Tsa

)
,	daily	temperature	was	uniformly	in‐

creased	by	1°C	or	2°C	for	each	stage	and	then	the	difference	between	
HDD	under	warming	scenario	and	the	original	HDD	was	used	as	the	
sensitivity	 of	 HDD	 to	 warming.	 Finally,	 warming	 effects	 on	 yield	
through	 high	 temperature	 stress	 (HDD)	 in	 different	 growth	 stages	
can	be	estimated	with	the	corresponding	terms	in	Equation	(7).

2.4 | Relative contribution of heat and water stress 
to yield decline

Warming	 trends	not	 only	 increase	 the	 frequency	of	 extreme	heat	
events	but	also	WS	by	regulating	both	water	demand	and	water	sup‐
ply	(Lobell	et	al.,	2013).	Thus	the	warming	influence	on	yield	can	be	
interpreted	as	the	joint	effect	of	high	temperature	stress	(HDD)	and	
WS	with	the	following	equation:

HDD,	 GDD,	 and	WS	were	 integrated	 over	 the	whole	 growing	
season.

Sensitivity	of	HDD,	GDD,	and	WS	to	temperature	
(

�HDD

�Tsa
,
�GDD

�Tsa
,
�WS

�Tsa

)
 

was	estimated	with	simple	linear	model	through	regressing	county‐
level	HDD	(GDD,	WS)	over	temperature.

To	estimate	the	yield	sensitivity	to	HDD,	GDD,	and	WS,	we	con‐
struct	a	panel	model	to	regress	yield	over	HDD,	GDD	and	WS:

where	�0t	captures	 the	 linear	 increasing	trend	of	yield	and	Countyi 
corresponds	to	the	county	fixed	effects.	Then,	

(6)
log

(
Yieldi,t

)
= �1t+�2Tsai,t+�3Tsa

2
i,t
+�4Prcpi,t

+�5Prcp
2
i,t
+Countyi+�i,t

(7)
�Yield

�Tsa
=

�Yield

�HDD

�HDD

�Tsa
+

�Yield

�GDD

�GDD

�Tsa

=

3∑
s=1

�Yield

�HDDs

�HDDs

�Tsa
+

�Yield

�GDDs

�GDDs

�Tsa

(8)GDD30
8

=

N�
t=1

DDt,DDt=

⎧
⎪⎪⎨⎪⎪⎩

0,when Tsa<8

Tsa−8,when 8≤Tsa<30

22,when Tsa≥30

⎫
⎪⎪⎬⎪⎪⎭

(9)HDD∞

30
=

N�
t=1

DDt,DDt=

⎧
⎪⎨⎪⎩

0,when Tsa<30

Tsa−30,when Tsa≥30

⎫
⎪⎬⎪⎭

(10)
Yieldi,t= �0t+�1GDD

VP
i,t

+�2HDD
VP
i,t

+�3GDD
An
i,t
+�4HDD

An
i,t

+ �5GDD
GFP
i,t

+�6HDD
GFP
i,t

+�7Prcpi,t+Countyi+�i,t

(11)�2=
�Yield

�HDDVP
; �4=

�Yield

�HDDAn
; �6=

�Yield

�HDDGFP

(12)
�Yield

�Tsa
=
�Yield

�HDD

�HDD

�Tsa
+
�Yield

�GDD

�GDD

�Tsa
+
�Yield

�WS

�WS

�Tsa

(13)Yieldi,t=�0t+�1GDDi,t
+�2HDDi,t

+�3WS
i,t
+Countyi+�i,t
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Warming	effects	on	yield	through	high	temperature	stress	and	
WS	can	be	thus	separately	estimated	as	�2

�HDD

�Tsa
 and �3

�WS

�Tsa
.

Here,	WS	was	 characterized	 by	 the	 ratio	 of	 potential	 evapo‐
transpiration	 (PET)	 to	 evapotranspiration	 (ET).	 ET	 and	 PET	 from	
2001	 to	 2015	 based	 on	MODIS	 ET	 product	 (MOD16)	 were	 em‐
ployed.	 This	 product	 has	 a	 spatial	 resolution	 of	 1	km	with	 8‐day	
temporal	resolution.	ET	and	PET	in	MOD16	were	estimated	using	
the	improved	ET	algorithm	based	on	the	Penman–Monteith	equa‐
tion	 with	 MODIS‐derived	 land	 surface	 temperature,	 vegetation	
cover,	 and	global	meteorology	data	 (Mu,	Zhao,	&	Running,	2011).	
Although	various	metrics	have	been	proposed	to	measure	WS	(Jin	
et	al.,	2016),	there	is	no	consensus	on	which	one	is	the	best.	So	far,	
this	observational	data‐generated	ET	product	is	the	only	one	with	
fine	spatial	and	temporal	resolution.	MODIS‐based	growing	season	
PET/ET	was	calculated	for	pixels	with	70%	area	covered	by	maize	
cropland	and	then	averaged	to	county	 level	 to	be	consistent	with	
the	other	variables.

2.5 | Uncertainty quantification

Our	 sensitivity	 analysis	 depends	 on	 yield	 statistical	 data,	 satel‐
lite‐derived	phenological	date,	and	vegetation	indexes.	All	of	these	
variables	are	subject	to	uncertainties:	(1)	uncertainties	in	the	county	
yield	statistical	data	and	satellite‐derived	GSL,	 IWDRVI;	 (2)	uncer‐
tainties	of	parameters	in	the	regression	model	converting	IWDRVI	to	
AGB.	Here	we	quantified	the	uncertainties	rooted	in	these	datasets	
through	running	the	panel	model	for	thousands	times	with	the	sam‐
ples	generated	from	a	given	parameter's	confidence	interval.

We	 estimated	 each	 county's	 yield	 uncertainty	 based	 on	 field	
level	yield	data	published	 in	a	previous	study	 (Lobell	et	al.,	2014),	
where	each	county	includes	100	samples	of	yield	reports.	This	data‐
set	enables	us	to	use	1,000	times	bootstrap	to	estimate	the	stan‐
dard	error	(SE)	of	yield	in	each	county.	The	normalized	SE	(SE/mean)	
is	shown	in	Figure	S1.	As	the	field	data	end	in	2012	and	we	found	
92%	normalized	SE	during	2000–2012	were	smaller	than	10%,	we	
set	 the	 normalized	SE	 during	 2013–2015	 as	 10%,	which	will	 be	 a	
conservative	estimation	of	yield	associated	uncertainty.	As	 to	 the	
uncertainty	 related	 to	GSL,	we	 similarly	 estimated	 its	 SE	 through	
1,000	 times	bootstrap	based	on	MODIS‐derived	pixel	 level	maize	
GSL	 information	within	 each	 county	 (Figure	 S2).	 In	 terms	 of	BGR	
and	HI,	we	used	the	following	equations	to	estimate	the	associated	
uncertainty.

The	normalized	SE	(SE/mean)	for	BGR	and	HI	is	shown	in	Figures	
S9	and	S10.

With	the	estimated	SE	for	each	variable	corresponding	to	each	
county‐year,	1,000	random	samples	were	generated	within	its	95%	
confidence	interval	(mean ± 1.96∗SE).	Therefore,	we	run	the	panel	
model	(Equations	3,	10,	and	13)	1,000	times	with	each	sample	set.	
The	mean	 of	 panel	model‐reported	 temperature	 sensitivity	 confi‐
dence	interval	was	used	to	quantify	the	uncertainty	related	to	the	
data	source.

2.6 | Crop model output

Here,	nine	global	gridded	crop	model	simulations	at	0.5°	×	0.5°	reso‐
lution	were	selected	based	on	whether	maize	yield,	 total	biomass,	
and	growing	season	duration	were	submitted.	These	simulations	re‐
sulted	from	the	joint	effort	of	the	Agricultural	Model	Intercomparison	
and	 Improvement	 Project	 (AgMIP)	 (Rosenzweig	 et	 al.,	 2013)	 and	
Inter‐Sectoral	 Impact	 Model	 Intercomparison	 Project	 1	 (ISIMIP1)	
(Warszawski	et	al.,	2014)	for	assessing	the	impact	of	climate	change	
and	management	practices	on	global	staple	crop	production.	We	se‐
lected	rainfed	maize	simulation	forced	by	WFDEI.CRU,	as	this	forc‐
ing	data	covered	the	longest	simulation	until	2012.	In	terms	of	the	
management	scenario,	“harmnon”	was	selected,	meaning	the	simu‐
lation	using	harmonized	fertilizer	inputs	and	assumptions	on	grow‐
ing	seasons.	More	details	on	the	simulation	protocol	could	be	found	
in	Elliott	et	al.	 (2015)	and	 the	dataset	 is	described.	Then	 the	daily	
climate	 data	 (temperature	 and	 precipitation)	were	 integrated	 over	
the	growing	season	to	estimate	the	temperature	sensitivity	of	yield,	
BGR,	HI,	and	GSL	with	model	outputs.

The	 nine	 crop	 models	 used	 here	 can	 be	 basically	 divided	 into	
two	groups:	 (a)	designed	solely	 for	agricultural	 systems,	 like	pAPSIM,	
	pDSSAT,	pDSSAT‐pt	(pDSSAT‐pt	is	pDSSAT	model	with	the	Priestley–
Taylor	method	estimating	potential	ET),	GEPIC,	PEGASUS,	and	CGMS‐
WOFOST	(b)	evolving	from	the	terrestrial	ecosystem	model	and	covering	
both	 natural	 and	 agro	 ecosystems,	 like	 CLM‐Crop,	 LPJ‐GUESS,	 and	
LPJmL.	Models	in	the	first	group	often	have	a	more	detailed	representa‐
tion	of	crop	development	processes	and	have	a	different	parameteriza‐
tion	of	high	temperature	stress	over	crop	vegetative	and	reproductive	
stages.	More	details	on	how	temperature	stress	was	implemented	in	the	
nine	crop	models	can	be	found	in	Table	S2.

We	 then	 applied	 the	 abovementioned	 statistical	 models	 to	
0.5	×	0.5	 gridded	 AgMIP	 outputs	 to	 investigate	 (a)	 how	warmer	
climates	influence	maize	yield	through	different	processes	related	
to	BGR,	GSL,	and	HI;	and	(b)	the	relative	contribution	of	high	tem‐
perature	stress	(characterized	with	HDD)	and	WS	to	maize	yield	in	
crop	models.	We	employed	model	output	ET,	yield,	and	estimated	
PET	using	the	Penman–Monteith	equation	forced	by	WFDEI.CRU	
as	well.

(14)�1=
�Yield

�GDD
, �2=

�Yield

�HDD
, �3=

�Yield

�WS

(15)BGR=
AGB
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=
�IWDRVI�

GSL

(16)HI=
Yield
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=
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�IWDRVI�
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(
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2.7 | APSIM model experiment

The	APSIM	model	is	a	process‐based	crop	model	that	explicitly	ac‐
counts	for	the	high	temperature	stress	and	WS	during	different	crop	
growth	stages,	which	is	also	included	in	ISIMIP1	(pAPSIM,	the	par‐
allel	version	APSIM).	 It	simulates	a	number	of	crops	under	various	
climatic	and	management	conditions,	and	hence	is	used	worldwide	
to	 address	 various	 research	 questions	 related	 to	 agricultural	 sys‐
tems	(Holzworth	et	al.,	2014).	The	APSIM‐Maize	module	is	inherited	
from	the	CERESMaize,	with	modifications	on	stress	representation,	
biomass	 growth	 rate,	 and	 phenological	 development.	 This	 flexible	
process‐based	model	allows	us	to	investigate	the	different	roles	of	
high	 temperature	 stress	 across	 stages	 in	 determining	 maize	 yield	
variation.

Water	stress	in	APSIM	is	calculated	as	the	ratio	of	water	supply	
to	water	demand.	Water	demand	is	driven	by	the	potential	biomass	
growth	rate	and	transpiration	efficiency	 that	 is	adjusted	 for	vapor	
pressure	deficit	(VPD).	Water	supply	is	calculated	as	the	amount	of	
water	above	the	crop's	wilting	point	in	soil	 layers	containing	roots.	
This	amount	is	multiplied	by	a	KL	factor	that	accounts	for	the	ability	
of	roots	to	extract	water	from	a	soil	 layer.	As	temperature	rises,	 it	
will	increase	water	demand	through	VPD	and	will	reduce	the	supply	
of	soil	water	through	elevated	ET.

Here,	we	designed	two	grid‐based	simulation	experiments	 to	
further	investigate	how	WS	and	high	temperature	stress	influence	
maize	yield	with	increasing	temperature:	sim1	is	a	control	simula‐
tion	using	default	temperature	stress	and	WS;	sim2	is	a	simulation	
with	 temperature	 stress	 blocked.	 More	 details	 on	 model	 setup	
can	 be	 found	 in	 the	 Supplementary	 Information.	 Here	 we	 only	
block	 high	 temperature	 stress,	 because	WS	 is	more	 complex	 to	
manipulate.	Sim1	 includes	both	high	 temperature	 stress	and	WS	
during	 photosynthesis,	 anthesis,	 and	 grain	 filling,	 whereas	 sim2	
only	includes	WS.	Thus,	high	temperature	stress	can	be	separately	
estimated	by	comparing	the	two	simulation	outputs.	The	simula‐
tion	 is	run	for	the	three	states	over	2000−2015	and	forced	with	
University	of	Idaho	Gridded	Surface	Meteorological	Data	as	well.	
Soil	parameters,	such	as	soil	hydraulic	properties	and	soil	organic	
matter	 fractions,	were	extracted	 from	the	State	Soil	Geographic	
(STATSGO)	 database,	 as	 collected	 by	 the	 National	 Cooperative	
Soil	Survey	over	the	course	of	a	century.	For	each	simulation	grid,	
the	 soil	 information	 was	 obtained	 through	 the	 R	 package	 “soil	
DB”	 (http://ncss‐tech.github.io/AQP/).	 Management	 information	
like	planting	density	and	 fertilizer	 application	amount	was	 taken	
from	the	USDA	NASS	survey	report	at	the	state	level.	Crop	sowing	
date	was	derived	from	the	Crop	Calendar	Dataset	(Sacks,	Deryng,	
Foley,	&	Ramankutty,	 2010).	 The	 generic	maize	hybrid	 (“B_110”)	
included	 in	APSIM	version	7.7	was	used	and	 it	refers	to	a	hybrid	
with	a	110‐day	relative	maturity.	The	phenology‐related	parame‐
ters	 characterizing	GFP	 thermal	 time	 requirement	were	 spatially	
parameterized	 based	 on	MODIS‐derived	 crop	 stage	 information	
(Zhu	et	al.,	2018).	Spatially	explicit	parameters	are	expected	to	im‐
prove	model	simulation	with	a	better	match	with	the	actual	maize	
phenological	development.

3  | RESULTS

According	to	the	regression	model	(Figure	1),	spatially	explicit	AGB	
was	 estimated	 with	 MODIS‐derived	 IWDRVI.	 BGR,	 GSL,	 and	 HI	
at	 county	 level	were	also	 retrieved.	Their	multi‐year	mean	 reveals	
there	is	a	clear	variation	in	the	spatial	pattern	of	BGR,	HI,	and	yield,	
and	 lower	 values	 are	 often	 identified	 in	 those	 southern	 counties	
(Figure	2).	However,	GSL	is	relatively	homogeneous	across	the	coun‐
ties,	implying	varieties	with	different	maturity	groups	were	selected	
to	adapt	 to	 the	 local	 thermal	 time	environment.	Thus	 the	correla‐
tion	between	GSL	and	yield	is	quite	low	(R2	=	0.004),	but	this	does	
not	contradict	 the	 fact	 that	 longer	GSL	 leads	 to	higher	yield	 for	a	
given	site.	The	spatial	variation	of	yield	 is	more	correlated	with	HI	
(R2	=	0.88)	and	BGR	(R2	=	0.74),	implying	the	dominant	role	of	daily	
biomass	accumulation	and	partitioning	to	grain	 in	driving	the	yield	
variation	spatially.

SYield
T
	 was	 estimated	 and	 then	 decomposed	 into	 three	 compo‐

nents:	 SBGR
T

, SHI
T
, and SGSL

T
	 with	 Equation	 (5).	 Each	 component	 rep‐

resents	 different	 physiological	 controls	 of	 temperature	 on	 maize	
yield	 through	 reproductive	 growth	 during	 anthesis	 and	 GFP	 (SHI

T
),	

photosynthesis	dominated	carbon	assimilation	(SBGR
T
),	and	plant	de‐

velopment	rate	(SGSL
T
).	Although	SYield

T
	varies	considerably	among	indi‐

vidual	crop	models,	a	similar	estimation	of	SYield
T
	is	identified	between	

the	model	ensemble	mean	(MEM,	−7.1	±3.1%	per	°C)	and	observa‐
tions	(−7.2	±	0.9%	per	°C)	(Figure	3).	When	we	looked	into	each	com‐
ponent,	MEM	overestimated	SGSL

T
	while	underestimated	SHI

T
	compared	

with	the	corresponding	estimation	based	on	observational	evidence.	
As	model	parameters	are	normally	based	on	the	knowledge	of	crop	
development	and	growth	processes	late	20th	century,	this	discrep‐
ancy	probably	suggests	that	the	development	rate	of	newly	adopted	
maize	cultivar	might	have	better	adapted	 to	warmer	climate	while	
little	progress	has	been	achieved	for	dealing	with	warming	effects	
during	maize	 reproductive	growth.	 Instead,	management	practices	
intended	to	improve	yield,	such	as	higher	application	of	nitrogen	fer‐
tilizer,	might	lead	to	higher	sensitivity	of	heat	stress	during	grain	for‐
mation	processes	 (Ordóñez,	Savin,	Cossani,	&	Slafer,	2015;	Wahid,	
Gelani,	Ashraf,	&	Foolad,	2007).	In	terms	of	the	sensitivity	of	BGR,	
both	MEM	and	data	show	a	weak	response,	consistent	with	the	fact	
that	maize	photosynthesis	has	a	relatively	high	optimal	temperature	
(Dekov,	Tsonev,	&	Yordanov,	2000).	Some	models,	like	LPJ‐GUESS,	
overestimated	 the	warming	 influence	on	BGR	but	underestimated	
the	influence	on	HI,	which	suggests	that	in	these	models,	excessive	
temperature	stress	is	imposed	on	processes	related	to	photosynthe‐
sis	while	the	stress	during	grain	formation	is	overlooked.

The	temperature	sensitivity	analysis	was	further	divided	into	five	
groups	based	on	 the	quintile	of	growing	season	mean	 temperature,	
which	 provides	 an	 insight	 into	 how	 temperature	 sensitivity	 evolves	
as	 the	 mean	 temperature	 increases	 in	 the	 future.	 Generally,	 SYield

T
 

estimated	 with	 observational	 evidence	 is	 significantly	 enhanced	 in	
warmer	divisions,	which	changes	from	0.3	±1.1%	per	degree	Celsius	
to	−16.6	±4.3%	per	degree	Celsius	 from	the	 lowest	 to	highest	 tem‐
perature	 quintile	 (Figure	4a).	 It	 is	 noted	 that	 the	 increase	 in	SYield

T
	 is	

mainly driven by SHI
T
,	which	varies	from	1.5	±1.4%	per	degree	Celsisu	

http://ncss-tech.github.io/AQP/
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to −12.6 ±3.8%	per	degree	Celsius,	correspondingly.	This	result	con‐
firms	the	conclusion	based	on	field	experiments	that	warming	during	
grain	 formation	 is	more	 influential	 (Edreira	&	Otegui,	 2012;	 Siebers	

et	al.,	2017).	Despite	increasing	background	temperature,	SGSL
T
	keeps	

a	 relatively	 stable	 value	of	 approximately	−2.6%	per	degree	Celsius	
and SBGR

T
	 shows	 a	 small	 enhancement.	 Therefore,	 it	 can	 be	 inferred	

F I G U R E  2   	Spatial	pattern	of	multi‐year	mean	biomass	growth	rate	(BGR),	growing	season	length	(GSL),	harvest	index	(HI),	and	Yield	at	
county	level	over	2000–2015	across	the	three	Midwest	states	(a–d).	Correlation	between	yield	and	multi‐year	mean	BGR,	GSL,	and	HI	with	
each	point	representing	a	county	(e–g).	The	correlation	analysis	suggests	that	yield	variation	is	spatially	correlated	with	HI	and	BGR	but	not	GSL
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that	 warming‐induced	 yield	 decline	 is	 mainly	 driven	 by	 GSL	 in	 the	
three	lower	temperature	divisions,	whereas	the	effects	of	warming	on	
HI	become	more	dominant	 in	 the	 two	higher	 temperature	divisions	
(Figure	4a).

When	model	output	was	similarly	divided	based	on	the	quintile	
of	growing	season	mean	temperature,	MEM	of	SYield

T
, SBGR

T
, SGSL

T
, and SHI

T
 

was	used	to	gain	insight	into	how	warming	effects	were	represented	
in	 crop	 models.	 The	 individual	 model	 performance	 is	 shown	 in	
Figure	S6.	Compared	with	the	estimations	with	observational	data,	

MEM	 reproduces	 the	 patterns	 of	SYield
T

, SBGR
T

, SGSL
T

, and SHI
T
	 across	 the	

temperature	 gradient	 (Figure	 4b).	 Changes	 in	 MEM	 SHI
T
	 drive	 the	

increasing	 SYield
T
	 (Figure	 4b),	 but	 SHI

T
	 is	 underestimated	 relative	 to	

observational	data.	 In	 terms	of	SGSL
T
,	 it	 is	overestimated	 for	all	 five	

temperature	quintiles	(approximately	−5.4%	per	degree	Celsius	rel‐
ative to −2.6%	per	degree	Celsius	in	observational	data	estimation).	
The	stable	SGSL

T
	estimated	with	both	crop	models	and	observational	

data	suggests	that	maize	plant	development	is	quasi‐linearly	driven	
by	temperature	(Edreira	&	Otegui,	2012;	Hatfield	&	Prueger,	2015)	

F I G U R E  3   	Temperature	sensitivity	of	yield,	harvest	index	(HI),	biomass	growth	rate	(BGR),	and	growing	season	length	(GSL)	based	on	
satellite	data	and	National	Agricultural	Statistics	Service	‐reported	yield	(grey	vertical	line)	and	crop	models,	where	the	horizontal	color	lines	
within	the	shaded	area	indicate	sensitivity	estimation	in	each	model	and	vertical	purple	lines	indicate	model	ensemble	estimation.	The	error	
bars	represent	the	95%	confidence	interval	of	estimated	sensitivity.	The	observational	data‐based	temperature	sensitivity	uncertainties	
were	estimated	through	resampling.	The	mean	sensitivity	and	confidence	interval	for	MEM	and	observational	data	are	also	reported	in	 
Table	S3.	This	figure	suggests	that	yield	sensitivity	is	mainly	driven	by	HI,	but	model	ensemble	overestimated	effects	through	GSL
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F I G U R E  4   	Temperature	sensitivity	of	yield,	harvest	index	(HI),	biomass	growth	rate	(BGR),	and	growing	season	length	(GSL)	when	
yield,	HI,	BGR,	and	GSL	were	divided	by	the	quintile	of	growing	season	mean	temperature	based	on	satellite	data	and	National	Agricultural	
Statistics	Service	yield	(a)	and	based	on	crop	models	(b).	The	error	bars	in	(a)	represent	the	95%	confidence	interval	of	estimated	sensitivity.	
Boxplots	in	(b)	indicate	the	median	(horizontal	line),	25th–75th	percentile	(gray	box),	and	5th–95th	percentile	(whiskers)	of	crop	model‐
estimated	temperature	sensitivity.	This	figure	suggests	that	the	nonlinear	response	of	yield	sensitivity	is	mainly	driven	by	HI.	Although	the	
model	ensemble	shows	a	similar	pattern,	it	overestimated	effects	through	GSL
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and	 is	 relatively	more	 heat	 tolerant	 compared	with	wheat	 plants,	
which	show	an	accelerated	senescence	when	exposed	to	heat	stress	
(Lobell	et	al.,	2012).	The	small	enhancement	in	SBGR

T
	estimated	with	

both	crop	model	and	observational	data	suggests	that	photosynthe‐
sis‐dominated	BGR	 is	 likely	 to	 be	 slightly	 influenced	 under	 future	
warmer	 climate,	 which	might	 result	 from	 the	 higher	 optimal	 tem‐
perature	of	C4	photosynthesis.

We	also	used	an	alternative	panel	model	(Equation	6)	by	adding	
quadratic	function	of	Tsa	and	Prcp	to	capture	the	nonlinear	response	
of	yield,	HI,	BGR,	and	GSL	to	climate	variation.	The	temperature	re‐
sponse	of	yield,	HI,	BGR,	and	GSL	was	expressed	as	the	normalized	
quadratic	function	of	temperature.	This	alternative	analysis	demon‐
strated	that	as	temperature	rises,	the	nonlinear	response	of	yield	is	
mainly	driven	by	HI	while	yield	decline	through	GSL	is	linear,	which	
is	in	line	with	the	statistical	analysis	using	grouped	temperature	gra‐
dient	(Figure	5).	The	temperature	response	curves	also	confirm	that	
the	optimal	temperature	of	BGR	is	higher	than	that	of	HI	and	yield	
(Edreira	&	Otegui,	2012).

As	the	nonlinear	reduction	of	yield	and	HI	by	warming	remains	
unclear,	 a	panel	data	model	was	used	 to	 investigate	 the	different	

sensitivity	 of	 yield	 to	 HDD	 during	 vegetative	 period	
(

�Yield

�HDDVP

)
,	

	anthesis	
(

�Yield

�HDDAn

)
,	 and	 GFP	

(
�Yield

�HDDGFP

)
.	 The	 analysis	 suggests	 that	

yield	is	the	most	sensitive	to	HDD	during	GFP	(−0.46 ±	0.07%	per	
degree	days)	(Figure	6a),	which	is	in	line	with	field	heating	experi‐
ments	 (Edreira,	 Mayer,	 &	 Otegui,	 2014;	 Ruiz‐Vera	 et	 al.,	 2018;	
Siebers	et	al.,	2017).	The	yield	sensitivity	to	HDD	during	anthesis	(−
0.33 ±0.11%	per	degree	days)	is	slightly	higher	than	HDD	during	VP	
(−0.30 ±	0.12%	per	degree	days)	(Figure	6a).	The	yield	sensitivity	to	
GDD	is	small	in	all	three	periods	and	even	shows	a	positive	response	
for	GDD	in	VP	and	GFP	(Figure	6a).	Meanwhile,	the	increase	in	HDD	
during	GFP	is	the	largest	of	the	three	stages,	probably	due	to	the	
high	 background	 temperature	 (Figure	 6b).	 According	 to	 Equation	
(7),	when	a	uniform	1°C	and	2°C	warming	is	applied	to	whole	grow‐
ing	 season	 temperature,	 yield	 is	 reduced	 by	 5.9%	 and	 21.7%,	 re‐
spectively.	When	1°C	(2°C)	warming	was	separately	applied	to	HDD	
during	 “VP,”	 “Anthesis,”	and	 “GFP,”	maize	yield	will	be	 reduced	by	
1.8%	(6.9%),	1.3%	(5.2%),	and	3.3%	(13.1%),	respectively	(Figure	6c).	
This	 nonuniform	 response	 suggests	 that	 the	 warming‐induced	
higher	HDD	during	GFP	exclusively	accounted	for	more	than	half	of	
yield	reduction	and	was	the	main	driver	of	yield	decline.

In	addition	to	direct	heat	stress,	it	was	previously	suggested	that	
an	extreme	heat	event	might	threaten	maize	yield	indirectly	through	

F I G U R E  5   	Response	of	Yield	(a),	biomass	growth	rate	(BGR)	(b),	growing	season	length	(GSL)	(c),	and	harvest	index	(HI)	(d)	to	growing	
season	mean	temperature.	The	vertical	dashed	lines	indicate	the	optimal	mean	temperature	of	Yield,	HI,	or	BGR	derived	from	observational	
evidence.	The	response	function	is	normalized	by	the	maximum	value	in	each	response.	The	X‐axis	range	is	determined	by	the	minimum	and	
maximum	mean	growing	season	temperature	across	the	U.S.	Midwest	during	2000–2015.	The	confidence	interval	of	temperature	response	
curve	for	each	model	results	is	also	reported	in	Figure	S8
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WS	 (Lobell	 et	 al.,	 2013).	A	better	 discernment	of	 the	effect	 of	WS	
and	heat	stress	would	help	farmers	to	make	proper	decisions	to	bet‐
ter	adapt	to	future	warming	challenges.	A	panel	model	analysis	was	
used	here	to	estimate	the	relative	contribution	of	WS	(PET/ET)	and	
high	 temperature	stress	 (HDD)	on	yield.	The	model	 result	 suggests	
that	1°C	warming	will	 increase	GDD,	HDD,	and	WS	by	50	±3.3 de‐
gree	 days,	 17	±1.2	 degree	 days,	 and	 0.011	±8 × 10

−4,	 respectively	
(Figure	7a).	However,	a	unit	 increase	 in	GDD,	HDD,	and	WS	causes	
yield	decline	of	−0.0054	±	0.001%,	−0.27 ±0.04%,	and	−1.54 ±0.48%,	
respectively	(Figure	7a).	Taken	together,	the	regression	model	shows	
that	1°C	warming	will	reduce	yield	by	0.2	7± 0.15%,	4.6	±1.0%,	and	
1.7 ±0.65%	 through	 GDD,	 HDD,	 and	WS,	 respectively	 (Figure	 7a),	
suggesting	that	the	warmer	temperature	reduces	maize	yield	mainly	
through	direct	high	temperature	stress.	The	mean	sensitivity	and	con‐
fidence	interval	is	also	reported	in	Table	S4.

When	 the	 same	panel	model	was	 applied	 to	 crop	model	 output	
from	AgMIP,	 the	model	 results	 generally	 showed	 small	warming	 ef‐
fects	through	GDD	but	varied	substantially	 in	terms	of	the	warming	
effects	through	WS	and	HDD.	Compared	with	the	observational	ev‐
idence,	MEM	underestimated	 the	direct	 high	 temperature	 influence	
through	HDD	but	overestimated	 the	 indirect	 influence	 through	WS	
(Figure	 7b).	 As	 suggested	 in	 a	 field	 CO2	 enrichment	 experiment	 on	
maize,	water	 conservation	 effects	 of	 increasing	CO2	might	 result	 in	
more	yield	benefit	under	WS	conditions	(Hussain	et	al.,	2013;	Jin	et	al.,	
2017)	but	 its	yield	benefit	under	heat	stress	may	be	 limited	(Siebers	
et	al.,	2015).	This	 implies	that	 in	current	crop	models	the	direct	high	
temperature	stress	on	yield	is	underestimated,	whereas	the	yield	ben‐
efit	of	elevated	atmospheric	CO2 is	overestimated.	This	discrepancy	
could	bias	the	projection	of	maize	yield	variation	given	future	higher	
atmospheric	CO2 and	more	frequent	heat	waves.

F I G U R E  6   	Sensitivity	of	maize	yield	based	on	National	Agricultural	Statistics	Service	report	to	growing	degree	days	(GDD)	and	high	
temperature	degree	days	(HDD)	in	different	growing	stages:	vegetative	period	(VP),	anthesis,	and	grain	filling	period	(GFP)	(a).	Boxplot	
of	HDD	increase	in	response	to	1°C	and	2°C	warming	(b).	Boxplots	indicate	the	median,	25–75th	percentile,	and	5th–95th	percentile	of	
HDD	increase	across	all	counties	during	2000–2015.	Estimation	of	yield	reduction	is	based	on	to	the	regression	model	(Equation	7).	Yield	
reduction	of	“All	season”	indicates	the	temperature	was	increased	uniformly	across	the	whole	growing	season,	whereas	“VP,”	“Anthesis,”	and	
“GFP”	means	temperature	was	increased	exclusively	for	HDD	during	“VP,”	“Anthesis,”	and	“GFP.”	The	yield	reduction	here	characterizes	the	
relative	contribution	of	high	temperature	stress	during	a	specific	maize	stage.	Error	bars	in	(a)	and	(c)	represent	the	95%	confidence	interval	
of	estimated	sensitivity	through	resampling,	which	are	also	reported	in	Tables	S4	and	S5

VP Flowering GFP
−0.6

−0.4

−0.2

0

0.2

Y
ie

ld
 s

en
si

tiv
ity

 (
%

/d
eg

re
e 

da
ys

)

 

 GDD
HDD

0

20

40

60

80

100

H
D

D
 in

cr
ea

se
 (

de
gr

ee
 d

ay
s)

VP
Anthesis
GFP

1°C warmer 2°C warmer

(a) (b) (c)

1°C warmer 2 °C warmer
−25

−20

−15

−10

−5

0

Y
ie

ld
 r

ed
uc

tio
n 

th
ro

ug
h 

H
D

D
 (

%
)

 

 

Total
VP
Anthesis
GFP

F I G U R E  7   	The	effect	of	warming‐induced	direct	heat	(HDD)	and	indirect	water	stress	(WS)	on	maize	yield	based	on	National	
Agricultural	Statistics	Service	yield	report,	MODIS‐derived	crop	stages	information,	and	MODIS	PET/ET	product	(MOD16)	(a).	The	numbers	
marked	on	the	arrows	indicate	the	effects	of	1°C	warming	on	yield	through	growing	degree	days	(GDD),	high	temperature	degree	days	
(HDD),	and	water	stress	(WS),	corresponding	to	the	coefficients	in	Equation	(12).	Comparison	of	warming	effects	on	maize	yield	through	
GDD,	HDD,	and	WS	(potential	evapotranspiration	[PET]/evapotranspiration	[ET])	estimated	from	observational	evidence	and	crop	models	
(b).	Error	bars	for	observational	data	represent	the	95%	confidence	interval	through	sampling	(details	in	Table	S6)	and	error	bars	in	model	
ensemble	represent	the	stand	deviation	of	multi‐model	estimated	yield	responses	(b)
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Although	the	MEM	suggests	a	 lower	 influence	of	 temperature	
through	HDD,	there	are	individual	models	with	close	estimation	to	
observational	data.	For	example,	 the	APSIM	crop	model	 suggests	
a	higher	 influence	of	temperature	through	HDD	than	through	WS	
(Figure	7b).	We	also	applied	the	APSIM	model	default	WS	metric,	
the	ratio	of	water	supply	to	water	demand,	as	the	WS	term	to	con‐
struct	an	alternative	panel	model	to	test	whether	the	results	are	ro‐
bust	to	the	selection	of	WS	metric.	This	alternative	metric	produced	
a	similar	estimation	of	warming	effects	on	yield	through	GDD,	HDD,	
and	WS	as	the	one	using	PET/ET	as	the	WS	metric	(Figure	S4).

A	model	experiment	was	designed	to	better	understand	how	WS	
and	heat	stress	influence	maize	yield	through	different	physiological	
processes.	In	this	experiment,	sim1	is	the	control	run	with	both	high	
temperature	stress	and	WS,	whereas	sim2	blocked	the	high	tempera‐
ture	stress.	The	results	show	that	as	temperature	increases,	there	is	no	
significant	change	in	SBGR

T
 and SGSL

T
	between	sim1	and	sim2	but	SHI

T
	is	sig‐

nificantly	enhanced	in	sim2	(Figure	8).	As	GSL	is	mainly	driven	by	ther‐
mal	time	accumulation,	SGSL

T
	shows	a	similar	response	with	increasing	

background	temperature	in	both	sim1	and	sim2.	Thus,	the	other	two	
components	SBGR

T
 and SHI

T
	represent	the	main	effects	of	high	tempera‐

ture	stress	on	yield.	The	comparison	between	sim1	and	sim2	suggests	
that,	as	temperature	rises,	high	temperature	stress	reduces	maize	yield	
primarily	through	process	related	to	grain	formation,	whereas	the	high	
temperature‐induced	WS	 influences	yield	mainly	 through	processes	
related	to	BGR,	such	as	photosynthesis	or	respiration	(Figure	8).

4  | DISCUSSION

By	 integrating	 satellite	 observations,	 crop	model	 simulations,	 sur‐
veys,	 and	 experimental	 data,	we	 examined	 the	 response	 of	maize	
yield	and	its	constituent	processes	to	high	temperature	stress	in	an	
analytical	way.	The	 results	 suggest	 that	 the	nonlinear	 response	of	

yield 
(
SYield
T

)
	 can	 be	 decomposed	 into	 small	 effects	 on	 SBGR

T
,	 linear	

(
SGSL
T

)
,	 and	non‐linear	

(
SHI
T

)
	 processes,	 and	 that	heat	 stress	during	

GFP	poses	a	striking	threat	for	maize	yield	decline.	Photosynthesis‐
dominated	BGR	is	only	marginally	influenced	by	temperature	stress,	
which	is	 likely	to	result	from	the	higher	optimal	temperature	of	C4 
photosynthesis.	 With	 the	 advancement	 in	 computing	 power	 and	

finer	 spatial	 and	 spectral	 information	 brought	 with	 new	 satellite	
data,	the	methodology	here	can	be	readily	extrapolated	to	other	re‐
gions	 and	 further	 improve	 our	 understanding	 of	 maize	 and	 other	
crop	yield	performance	under	extreme	conditions.

Our	 analysis	 also	 pinpoints	 both	 strengths	 and	weaknesses	 of	
crop	models	in	charactering	high	temperature	stress	on	maize	yield	
and	provides	an	important	feedback	for	the	crop	modeling	commu‐
nity.	Most	models	underestimated	the	warming	effects	through	HI	
while	overstated	the	temperature	sensitivity	of	GSL.	Meanwhile,	the	
indirect	WS	effect	was	overestimated	 in	most	crop	models,	which	
might	 bring	 substantial	 uncertainties	 when	 projecting	maize	 yield	
under	future	hotter	conditions.	One	explanation	for	the	discrepancy	
between	 estimations	 based	 on	 model	 and	 observational	 datasets	
is	 possibly	 the	 issue	 of	 different	 scales,	 since	 crop	 models	 oper‐
ated at 0.5◦

× 0.5◦	grids	and	observational	datasets	were	analyzed	
at	the	county	level.	However,	 it	 is	more	likely	due	to	the	limitation	
of	models	 in	accurately	representing	heat	stress	 influence,	such	as	
slow	updates	of	key	parameters	related	to	heat	and	drought	resis‐
tance	and	lack	of	explicitly	accounting	for	heat	stress	effect	during	
the	development	stages	of	different	maize	cultivars.	Rezaei,	Siebert,	
Hüging,	and	Ewert	(2018)	also	found	that	ignoring	cultivar	changes	
in	analyses	of	historic	changes	in	phenology	leads	to	an	overestimate	
of	the	temperature	sensitivity	of	the	phenology	of	winter	wheat	in	
Germany.	A	 similar	model	 parametrization	 bias	may	 exist	 in	 other	
crops,	e.g.	maize	in	the	United	States.

In	addition,	most	evaluated	models,	except	CLM‐Crop,	 lack	a	
canopy	energy	balance	scheme	to	simulate	 leaf	temperature	and	
therefore	use	air	 temperature	 instead	of	 leaf	temperature	to	pa‐
rameterize	 effects	 of	 heat	 stress.	However,	 air	 temperature	 can	
deviate	 significantly	 from	 leaf	 temperature,	 especially	under	dry	
conditions	or	elevated	CO2	where	canopies	can	be	several	degrees	
hotter	 than	 the	air	due	 to	 reduced	 transpiration.	Thus,	 improve‐
ment	in	canopy	energy	balance	among	all	models	is	necessary	for	
better	representing	the	heat	stress	effects	on	crop	yield	(Webber	
et	al.,	2017).

The	 selected	 metric	 here	 to	 quantify	 heat	 stress	 and	WS	 is	
also	 important	for	evaluating	their	relative	contributions	to	yield	
decline.	 Threshold‐based	 thermal	 time	 accumulation	 has	 been	
widely	used	to	characterize	heat	stress	(Deryng,	Sacks,	Barford,	&	
Ramankutty,	2011;	Lobell	et	al.,	2012;	Schlenker	&	Roberts,	2009).	

F I G U R E  8   	Temperature	sensitivity	
of	yield,	harvest	index	(HI),	growing	
season	length	(GSL),	and	daily	biomass	
growth	rate	(BGR)	divided	by	quintile	of	
growing	season	mean	temperature	in	two	
APSIM	simulation	results.	sim1	(circle)	is	
the	simulation	with	both	water	and	high	
temperature	stress	and	sim2	(triangle)	is	
the	simulation	with	only	water	stress
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In	terms	of	WS,	several	metrics	have	been	proposed,	such	as	VPD,	
PET/ET,	 soil	 moisture	 content,	 and	 the	 ratio	 of	 water	 supply	 to	
water	 demand	 (Jin	 et	 al.,	 2016;	 Lobell	 et	 al.,	 2014).	Higher	VPD	
means	an	increase	in	atmospheric	water	demand	and	can	decrease	
photosynthetic	 activity	 through	 reducing	 stomatal	 conductance.	
Soil	water	content	regulates	transport	of	water	in	the	soil–plant–
atmosphere	continuum	and	determines	the	amount	of	extractable	
water	 by	 crop	 plants.	 PET/ET	 and	 the	 ratio	 of	 water	 supply	 to	
water	demand	accounts	for	both	atmospheric	water	demand	and	
soil	water	availability.	These	 two	metrics	also	give	a	similar	esti‐
mate	of	WS	effects	on	maize	yield	(Figure	S4).	Due	to	the	different	
roles	of	VPD	and	soil	water	content	in	determining	the	plant	phys‐
iological	processes,	 it	might	be	useful	 to	disentangle	 the	two	ef‐
fects.	However,	there	are	limited	controlled	experiments	designed	
to	address	the	different	responses	of	crop	plants	to	atmospheric	
water	demand	(VPD)	and	soil	water	dryness,	partly	because	VPD	
is	often	hard	to	be	controlled	 in	the	field	conditions	 (Gray	et	al.,	
2016).	 In	 this	 context,	 more	 field	 experiments	 are	 necessary	 to	
mechanistically	understand	the	 relative	contribution	of	different	
sources	of	WS	on	crop	yield.

Overall,	 our	 analysis	 through	 model‐data	 integration	 suggests	
that	 warming‐induced	 decline	 in	 maize	 yield	 is	 mainly	 driven	 by	
direct	heat	stress	 imposed	on	reproductive	processes,	whereas	in‐
direct	WS	only	contributes	a	small	fraction.	Therefore,	future	adap‐
tation	strategies	should	be	targeted	at	the	heat	stress	during	grain	
formation.	As	model	parameterization	used	here	often	represents	a	
static	management	system	from	around	the	year	2000	(Elliott	et	al.,	
2015),	 the	 discrepancy	 in	 temperature	 sensitivity	 between	 crop	
model	simulations	and	observational	data	suggests	that	changes	in	
management	 systems	 need	 to	 be	 better	 accounted	 for	 to	 achieve	
progress	in	heat	stress	estimates	(Glotter	&	Elliott,	2016).
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