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• Rapid urbanization led to drastic land-
use change, decreasing SOC stocks in
northeast coastal agricultural areas of
China

• Inclusion of socioeconomic factors sig-
nificantly improved the prediction accu-
racy of topsoil SOC stocks.
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variables shall be used to predict the
spatial-temporal distribution of SOC
stocks in the study region.
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Dynamic changes in soil organic carbon pools have significant impacts on regional and global carbon balance. Due
to rapid development in urbanized areas, the land use changes dramatically, impacting soil organic carbon (SOC)
stocks in topsoil. This study aimed to document the impacts of urbanization on SOC stocks in a rapidly urbanized
area from northeastern China. A total of 12 auxiliary variables were as SOC predictors including elevation, slope
aspect, slope gradient, topographic wetness index, Landsat TM band3, Landsat TM band4, Landsat TM5, and nor-
malized difference vegetation index. Urban-specific variables including population (POP), gross domestic prod-
uct (GDP), distance to the socio-economic center, and distance to the roads are also considered. A set of 523
(in 1990) and 847 (in 2015) top soil samples with SOC measurement were collected. Two random forest (RF)
models, one with all auxiliary variables except urban-specific variable (MA) and the other with all auxiliary var-
iables (MB) were used to map the spatial distribution of SOC stocks in the two periods. Ten-fold cross-validation
was conducted to evaluate the performance of RF models. We find that the full auxiliary variables model had a
better performance for the both periods. POP and GDP were key auxiliary variables affecting spatial variability
of SOC stocks in 2015. Over a 25-year period, SOC stocks decreased from 2.77 ± 1.09 kg m−2 to 2.16 ±
0.93 kg m−2, resulting in 3.78 Tg SOC loss in this region. Rapid urbanization led to drastic land- use change,
which was the main reason for the decrease of SOC stocks. Additionally, urban-specific variables should be
nment, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, Liaoning Province 110866, China.
xin0218@163.com (X. Jin).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2020.137814&domain=pdf
https://doi.org/10.1016/j.scitotenv.2020.137814
mailto:allenguhan@126.com
mailto:jinxinxin0218@163.com
Journal logo
https://doi.org/10.1016/j.scitotenv.2020.137814
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/scitotenv


2 S. Wang et al. / Science of the Total Environment 721 (2020) 137814
used as the main auxiliary variables when predicting SOC stocks in the areas that experience rapid urbanization.
Webelieve that accurate prediction andmapping of SOC stockswill helpmanage land use and facilitate soil qual-
ity assessment so as to increase soil carbon sequestration in the region.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Soils store large amounts of organic carbon (SOC) in global terres-
trial ecosystems (Batjes, 1996). Increasing population and economic de-
velopment have led to an exponential increase in land use changes (Liu
et al., 2016; Stumpf et al., 2018), resulting in large changes in soil carbon
stocks, impacting the global climate (Lal, 2004; Wang et al., 2018a).
Over the past 40 years, changes in land use and land management had
a profound impact on organic carbon storage in agricultural soils. SOC
temporal and spatial dynamics in topsoil are a major concern (Xia
et al., 2017).

With a rapid development of urbanization and increase of human
population, the urban land use pattern has changed dramatically, signif-
icantly affecting the soil environment around the city and its surround-
ings (Liu et al., 2016; Vasenev et al., 2018). The urban population is
highly concentrated, creating an imbalance of nitrogen and phosphorus
in the urban and surrounding soils, resulting in soil eutrophication
(Muñoz-Rojas et al., 2015; Adhikari et al., 2019). Intense urban industri-
alization and agricultural production and other human activities pollute
urban soils. The construction of factories, houses and roads in cities al-
tered soil pore distribution, profile structure and conditions of soil
water, heat, gas and nutrients (Wiesmeier et al., 2011). Urbanization
has direct and indirect effects on SOC (Zhao et al., 2015; Stumpf et al.,
2018).

Agricultural SOC has both natural and human attributes, and has a
large spatial variability (Kaushal et al., 2006; Adhikari et al., 2014;
Chaminade, 2005; Were et al., 2015). On medium and large spatial
scales, SOC distribution is consistent with the horizontal pattern of soil
types, deflecting with topography and vegetation, showing a strong cli-
matic and geographic zonality (Don et al., 2007; Bartholomeus et al.,
2011). However, on small scales as in agriculture lands, the pattern
shows a strong spatial heterogeneity due to the influence of local topog-
raphy, soil types, land use patterns and management measures (Dalal
et al., 2011; Wiesmeier et al., 2011). Previous studies have shown that
natural soils exhibit complex changes under the interactive effects of
changes in climate, altitude, and land cover and are greatly influenced
by soil types and land use patterns (Vågen and Winowiecki, 2013).
Warming temperature stimulates soil biological activities, promoting
SOC decomposition (Phachomphon et al., 2010; Mishra and Riley,
2012). Changes in land use and land cover and tillage practices not
only affect the SOC input in soils but also regulate the decomposition
of SOC through changingmicroclimate and soil conditions, thus altering
regional carbon storage (Muñoz-Rojas et al., 2015). In addition, the spa-
tial and temporal variations of soil properties, and changes in landscape
properties are important driving factors to regional soil ecological pro-
cesses, enhancing the spatial heterogeneity of SOC in farmland (Muñoz-
Rojas et al., 2015; Liu et al., 2016).

To date, the existing regional SOC studies are mostly concentrated
on natural soils or in agricultural areas. There are only few studies to
characterize SOC stocks and their changes in rapidly urbanized areas
(Vasenev et al., 2014). Most studies focused on the effects of changes
in physical geographical environment, land use and land cover and
farm management on SOC changes at field scales (Adhikari and
Hartemink, 2015; Edmondson et al., 2014; Phachomphon et al., 2010).
There are less studies focusing on the role of population growth, social
and economic development in SOC changes in rapidly urbanized areas.
Therefore, identifying key factors affecting spatial-temporal SOC
changes in such areas is needed.
Traditional methods to predict the spatial distribution of SOC stocks
are to estimate the average SOC stocks for each soil type or land use
type, and then assign them to each mapping unit (Wang et al.,
2018a). However, to adequately quantify SOC for a region, a large num-
ber of samples covering the entire study area needs to be collected,
which is time-consuming, laborious and prone to errors and omissions
(McBratney et al., 2003; Hengl et al., 2015; Were et al., 2015; Wang
et al., 2018b; Ramcharan et al., 2018). To overcome these problems, dig-
ital soil mapping (DSM) techniques (McBratney et al., 2003) to study
the spatial variability of SOC stocks is efficient and robust in providing
more accurate prediction based on sparse data and environmental var-
iables (McBratney et al., 2003; Minasny et al., 2013; Brus et al., 2016).
Most DSM studies used the ‘scorpan’ approach (McBratney et al.,
2003) by considering environmental variables (i.e., soil, climate, organ-
isms, topography, parent material, age and space) to model SOC spatial
variability (McBratney et al., 2003; Adhikari et al., 2014; Hengl et al.,
2015; Xia et al., 2017;Wang et al., 2018a, 2018b). Numerous DSM tech-
niques have been developed to predict and map SOC distribution, in-
cluding linear mixed models (Stewart et al., 2007), multiple linear
regression (Meersmans et al., 2008), rule-based regression (Adhikari
et al., 2014), support vector machines (Morellos et al., 2016), artificial
neural networks (Were et al., 2015), random forest (RF) model (Were
et al., 2015), and boosted regression tree (BRT) model (Wang et al.,
2018b). Among different DSM techniques, tree-based algorithms such
as random forest (RF) have been popular in SOC mapping (Wiesmeier
et al., 2012; Hengl et al., 2015; Reyes Rojas et al., 2018; Ramcharan
et al., 2018).

This study used two RFmodels considering two different datasets of
auxiliary variables to predict and map the spatial variability of SOC
stocks in rapidly urbanized areas along the northeastern coast of
China during 1990–2015. Our specific objects were:

(i) to predict and map SOC stocks for two specific time periods
(1990 and 2015) with associated uncertainty;

(ii) to investigate the potential urbanization processes as indicators
for changes in SOC stocks;

(iii) to quantify the changes in SOC stocks during 1990–2015.

2. Materials and methods

2.1. Site description

This study was conducted in Dalian (39.02°–39.07° N, 21.73°–
121.82° E), which is located in the eastern coast of Eurasia and the
southernmost tip of Liaodong Peninsula in northeastern China. It covers
an area of about 13,000 km2, 68.3% of which falls under agricultural
land, 18.2% as forest land and the remaining area mainly comprised of
urban land expanded during the reform and opening-up period due to
rapid urbanization (Wang et al., 2018b). The altitude in the study area
ranging from 0 m to 1127 m above sea level and it gradually increases
from northwest to southeast. The region has four distinct seasons
(Spring, Summer, Autumn and Winter) with a humid warm temperate
continental monsoon climate. The annual average rainfall is between
550 mm and 800 mm, and is mainly concentrated in summer as
heavy rains. The average annual temperature is about 10.5 °C. According
to the World Reference Base for Soil Resources (WRB) (IUSS Working
Group, 2014), the dominant soil types are Cambisols (51% of the area)
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and Luvisols (32% of the area). According to the classification of land use
status in the third national land survey of China (Ministry of Natural
Resources of China, 2017), themain land types in the study area are cul-
tivation land, forest land, grassland, urban land, they collectively ac-
count for 91% of the total area of the study area. The main crops are
corn, rice, soybean, apple, and cherry. The natural vegetation is domi-
nated by deciduous broad-leaved forest, and the main tree species are
quercus spp., Robinia pseudoacacia, willow, pine, Chinese fir, cypress
and ginkgo.

Dalian is rich in hydrothermal resources and has a long history of ag-
ricultural reclamation, showing different land use patterns. As one of
the pioneers of China's reform and opening up, its population continues
to grow, urbanization, and industrialization processes are also rapid.
Consequently, farmland is segmented, and landscape has a high degree
of spatial heterogeneity. This region has become an ideal case study area
to test the hypothesis that “urbanization works as a dominant factor
influencing SOC change”.

2.1.1. Soil survey data from 1990
With the implementation of China's economic reform policy in the

1980s, Dalian has achieved unprecedented growth in urbanization and
economic construction developments. With the acceleration of urbani-
zation and continuous population growth, a large area of forests, grass-
lands and wetlands were converted to urban land and farmlands.
Therefore, this study selected 1990 as the base year to investigate ur-
banization impacts on SOC distribution.

Typical soil profile description datasets were obtained from the Sec-
ond National Soil Census Office of China (Office of Soil Survey in
Liaoning Province (OSSLP), 1990) including soil physical and chemical
Fig. 1. Soil sampling point in two periods (1990 vs. 2015) overlaid on a digital e
properties, climate, parentmaterial, and topographic information. How-
ever, our study only focused on the SOC stocks in topsoil (0–30 cm soil
depth). A total of 523 soil observations (231 from cultivated land, 187
from grassland, and 105 from forest land) with SOC and bulk density
(BD) measurements were obtained, covering different elevation gradi-
ents, parent material types, soil types and land use types in the whole
study area (Fig. 1c). For samples without soil bulk density measure-
ments, it was calculated using the following pedotransfer function spe-
cific to the study area (Wang et al., 2018a):

BD ¼ 1:46−0:09 �
ffiffiffiffiffiffiffiffiffi
SOC

p
R2 ¼ 0:78;pb0:001

� �
ð1Þ

2.1.2. Soil sampling in 2015
Due to the rapid urbanization and economic development in thepast

decades, land use patterns in the study area have changed drastically. It
was unrealistic to carry out in-situ sampling following the 1990. There-
fore, we designed a purposive sampling method and obtained 847 new
topsoil samples (359 from cultivated land, 247 grassland, and 241 from
forest land) in 2015, representing variations of slope gradient, slope as-
pect, elevation, land use type, soil type and parent material in the study
area (Fig. 1c). A fuzzy C-means clustering algorithm was employed to
group the study area into 54 different categories based on soil, topogra-
phy, land use and parent material, and from each category, 10–20 sam-
pling points were selected. Details of the sampling design can be found
in Wang et al. (2018a). To record the geographic coordinates at each
sampling site, a hand-held global positioning system (GPS) was used.
Soil samples were collected and properly mixed in plastic cloth or
levation model of the study area (c) in Liaoning Province (b) of China (a).
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wooden tray before removing unnecessary litter, grass roots, insect
shells, gravel and other impurities. Subsequently, 1 kg subsample from
each site was retained and packed in cloth bags for subsequent labora-
tory analysis. A wet oxidation method was used to determine SOC con-
tent (% mass) in the Analysis and Testing Center of Shenyang
Agricultural University, Shenyang, Liaoning Provence, China. From the
selected (847) sites, a 100 cm3 undisturbed soil cores were collected
to determine soil BD by oven drying method (105 °C for 48 h).

2.2. Auxiliary variables as SOC predictors

2.2.1. Traditional variables
We selected some traditional and commonly used topographic var-

iables such as elevation, slope gradient, slope aspect, and topographic
wetness index (TWI); and remote sensing data such as Normalized Dif-
ference Vegetation Index (NDVI), and other band ratios to predict of
SOC stocks in the study area. Elevation iswidely considered as an impor-
tant topographic variable affecting the distribution of soil properties in
landscapes. Slope gradient, slope aspect, and TWI have important effects
on regional soil erosion and are closely related to spatial variability of
soil properties including SOC distribution. These topographic variables
were acquired from a 90-m gridded Shuttle Radar Topography Mission
(SRTM) digital elevation model (DEM) downloaded from the United
States Geological Survey (USGS, Reston, VA, USA).

Remote sensing data of 1990 and 2015 were retrieved from Landsat
5 and Landsat 8 satellites imageries at 30-m resolution. The imageries
were downloaded from the USGS (https://www.usgs.gov/) for the
growing season (July–September) in 1990, and 2015 with cloud cover
b10%. ENVI 4.7 software was used to process satellite imageries follow-
ing radiation and geometric correction, image finishing, projection
transformation,mosaicked and trimming of the images. From the imag-
eries, three selected bands-visible red band (B3, 0.63–0.69 m), near in-
frared band (B4, 0.78–0.90 m) and short-wave infrared band (B5,
1.55–1.75 m) representing vegetation growth, coverage and biomass
were derived; NDVI were calculated as.

NDVI ¼ B4−B3ð Þ= B4þ B3ð Þ ð2Þ

2.2.2. Urban-specific variables
We selected four socio-economic factors or urban-specific variables

that reflect the process of urbanization in Dalian, and theywere popula-
tion (POP), gross domestic product (GDP), distance to the socio-
economic center (DSE) or hot-spots, and distance to roads (DR). The
spatial datasets of POP and GDP were based on the statistical data in
all townships of the city. Firstly, the distribution weights of GDP, and
POP at different land use type, night light brightness and residential
density were calculated. Then the total weight of each county adminis-
trative unit was derived on the basis of standardization of the above
three aspects. Finally, on the basis of calculating the proportion of unit
weight GDP and POP of each town-level administrative unit, the grid
space calculation is used to combine the population on unit weight
with the total weight distribution map to make the population
spatialized. The specific methods can be found in the study of Liu et al.
(2005). The socio-economic center, roads, land use type, night light
Table 1
Summary statistics of SOC stocks (kg m−2) under different land use patterns during two perio

Year Land use Pattern Number of samples Min. Median

1990 Cultivated 231 0.44 2.10
Grassland 187 0.33 2.26
Forest 105 0.51 2.36

2015 Cultivated 359 0.14 1.43
Grassland 247 0.50 2.21
Forest 241 0.38 2.29

Note: Min., minimum; Max., maximum; SOC, soil organic carbon; SD, standard deviation; CV, c
brightness and residential density datawere downloaded from Institute
of Geographic Sciences and Resources, Chinese Academy of Sciences,
Resource and Environment Cloud Data Platform (http://www.resdc.
cn/). The 1-km grid space calculation was conducted in ArcGIS 10.2 to
combine the POP number on the unit weight with the GDP and total
weight distribution map:

POPij ¼ POP � Zij=Z
� � ð3Þ

GDPij ¼ GDP � Zij=Z
� � ð4Þ

where POPij and GDPij are grid unit values; POP and GDP are statistical
values of the township administrative unit where the grid unit is lo-
cated; Zij is the total weight of land use type, night light brightness
and residential density of the grid unit; Z is the total weight of land
use type, night light brightness and residential density of the county ad-
ministrative unit where the grid unit is located.

In addition, since the socio-economic variables based on the primary
census (e.g., POP and GDP) are only at the township level, the accuracy
of the data may not be high for mapping. We chose two additional var-
iables to better reflect the process of urbanization, including DSE and
DR. The city's socio-economic centers and roads are the main factors
to attract migrants which bring many benefits such as transportation
and navigation, water supply, entertainment, natural protection and
landscape aesthetics. All urban-specific-related variables were calcu-
lated at a spatial resolution of 30 m using ArcGIS 10.2.

2.3. Prediction model

Random forest is a machine learning algorithm based on classifica-
tion and regression tree (CART) proposed by Leo Breiman in 2001
(Grimm et al., 2008). This method combines bootstrapping and feature
random selection (Breiman, 2001) during the prediction. The advan-
tages of RF are embodied in two aspects: (1) when training each tree,
a subset of the training samples is selected randomly for training and
the error evaluation is carried out with out-of-bag (OOB) data
(Wiesmeier et al., 2011); (2) at each node, a subset of all features is ran-
domly selected to calculate the optimal segmentation method. Because
RF is a model based on randommethod, which containsmultiple classi-
fication and regression trees, it ensures the diversity and stability of the
model, and can be used to solve the related problems of classification
and regression (Were et al., 2015). Therefore, it is widely used in DSM
research.

RFmodel requires three parameters defined by the user, namely the
number of trees (ntree), the number of random samples as candidate
variables (mtry) at each split, and the minimum size of the terminal
node (node) (Yang et al., 2016). The default value of ntree is generally
set to 500, but we tested ntree set as 500, 1000, 1500, 2000, and ob-
tained the best prediction when ntree was set to 1500. Similarly, mtry,
which is a very sensitive parameter, determines the strength of each
tree in the model and the correlation between them. As it decreases,
the intensity and correlation of each tree weakens. For the node, we
use its default value, setting it to 5. The relative importance (RI) of the
prediction variables generated in RF model was estimated according
to the average decline in the prediction accuracy when the variable
ds.

Mean Max. SD CVs (%) Skewness Kurtosis

2.04 4.50 1.16 57.13 0.34 1.09
2.17 4.98 0.94 43.53 0.46 0.96
2.28 4.41 1.00 43.97 0.38 0.92
1.34 3.09 0.71 52.90 0.46 0.89
2.06 3.66 0.74 35.77 0.51 0.92
2.24 4.10 0.68 30.54 0.37 0.98

oefficient variation.

https://www.usgs.gov/
http://www.resdc.cn/
http://www.resdc.cn/


Table 3
Summary statistics of the predictive quality of random forest (RF) in 1990 and2015 for soil
organic carbon (SOC) stocks prediction with 100 runs.

Year Model Index Min Median Mean Max SD

1990 Model A MAE 0.33 0.34 0.34 0.35 0.13
RMSE 0.47 0.48 0.49 0.51 0.26
R2 0.43 0.53 0.52 0.60 0.07
LCCC 0.64 0.69 0.69 0.71 0.05

Model B MAE 0.20 0.20 0.20 0.21 0.08
RMSE 0.26 0.26 0.26 0.27 0.11
R2 0.49 0.54 0.54 0.58 0.13
LCCC 0.65 0.69 0.68 0.70 0.03

2015 Model A MAE 0.41 0.42 0.41 0.43 0.18
RMSE 0.58 0.60 0.61 0.64 0.31
R2 0.42 0.53 0.52 0.60 0.09
LCCC 0.64 0.69 0.69 0.71 0.06

Model B MAE 0.24 0.25 0.24 0.25 0.11
RMSE 0.30 0.30 0.32 0.31 0.09
R2 0.54 0.61 0.61 0.65 0.04
LCCC 0.73 0.77 0.76 0.78 0.02

Note: SOC, soil organic carbon; Model A included only traditional variables; Model B in-
cluded all variables (traditional variables and urban-specific variables); MAE, the mean
absolute error; RMSE, the root mean squared error; R2, the coefficient of determination;
LCCC, Lin's concordance correlation coefficient.

Table 2
Pearson's correlation coefficients between ln-transformed soil organic carbon (SOC) stocks with all predictors in 1990 and 2015 surveys based on collected samples.

Property lnSOC ELE SA SG TWI B3 B4 B5 NDVI POP GDP DSE

1990
ELE 0.47**
SA −0.07 −0.21**
SG −0.28** −0.57** 0.46**
TWI 0.08* 0.18** −0.14** −0.36**
B3 −0.32** −0.17** 0.06 0.09 0.04
B4 0.46** 0.07 −0.08 −0.08 0.07 0.34**
B5 −0.35** −0.06 −0.06 −0.06 0.15** 0.68** 0.17**
NDVI 0.61** 0.25** −0.07** −0.19** 0.06 −0.59** 0.39** −0.35**
POP −0.22** −0.24** −0.16* −0.23** −0.27** −0.21** −0.26** −0.19** −0.43**
GDP −0.09* −0.13** −0.09 −0.13* 0.09 −0.17 −0.11 −0.15 −0.13 0.57**
DSE −0.13* −0.12** −0.14* −0.12** 0.18 0.07 0.05 0.08 0.09 −0.45** −0.34**
DR 0.05 −0.17** −0.21** 0.07 −0.15* −0.13 −0.09 −0.14* −0.11* −0.36** −0.41** 0.43**

2015
ELE −0.71**
SA −0.21** 0.15**
SG −0.64** 0.58** 0.18**
TWI 0.55** −0.46** −0.34** −0.71**
B3 0.23** −0.24** −0.05 −0.18** 0.18**
B4 0.03 −0.04 −0.08 −0.07 0.06 0.35**
B5 0.08* −0.11** −0.06 −0.11* 0.09* 0.72** 0.14**
NDVI 0.26** 0.25** −0.03 0.23** −0.21** −0.63** 0.23** −0.57**
POP −0.76** −0.21** −0.22** −0.19* −0.23** −0.19** −0.28** −0.18** −0.34**
GDP −0.55** −0.08 −0.08 −0.13** 0.14* 0.06 −0.07 −0.13* −0.16 0.48**
DSE −0.57** −0.16** −0.13* −0.14* 0.12 0.14 0.23* 0.08 0.11 −0.53** −0.37**
DR 0.37** −0.23** −0.15* 0.07 −0.17* −0.16 −0.11 0.11 −0.17* −0.44** −0.33** 0.39**

Note: Significant relationship between two variables with p b 0.05 shown as “*”; p b 0.01 shown as “**”. ELE, elevation (m); SA, slope aspect (degree); SG, slope gradient (degree); TWI,
topographicwetness index; B3, Landsat TM band 3 (digital number); B4, Landsat TM band 4 (digital number); B5, Landsat TM band 5 (digital number); NDVI, Normalized Difference Veg-
etation Index; POP, population (Person/km2); GDP, gross domestic product (10,000 yuan / km2); DSE, distance to the socio-economic center (km); DR, distance to the roads (km).
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was removed from the pool (Yang et al., 2016). RFmodelwas generated
in R statistics software version 3.2.2 (R Development Core Team, 2013)
using “randomForest” package. One-hundred model iterations were
conducted and their average was reported as the final prediction and,
their standard deviation as prediction uncertainty.

2.4. Calculation of SOC stocks

This study focused on the spatial-temporal change of SOC stocks in
topsoil, andwas calculated following Eq. (5). The stockswere calculated
for two different periods, i.e., for 1990 and for 2015:

SOCD ¼
Xk
i¼1

SOCc � BDi � LTi � 1−Við Þ ð5Þ

where SOCD (kg m−2), SOCc (g kg−1), BDi (g cm−3), LTi (m) and Vi rep-
resent SOC density, SOC content, soil bulk density, layer thickness, and
the volume fraction of fragments N2 mm diameter in soil layer i,
respectively.

2.5. Model validation

A10 fold cross-validation techniquewasused to evaluate thepredic-
tive performance of RF models. Four classical quality evaluation indices,
namely absolute prediction error (MAE), root mean square error
(RMSE), determination coefficient (R2), and Lin's concordance correla-
tion coefficient (LCCC) (Lin, 1989) were calculated to evaluate the accu-
racy (Eqs. (6)–(9)).

MAE ¼ 1
n

X
i¼1

n

j ai−bi j ð6Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

X
i¼1

n

ai−bið Þ2
s

ð7Þ
R2 ¼

X
i¼1

n
bi−aið Þ2
P

i¼1

n

ai−aið Þ2 ð8Þ

LCCC ¼ 2r∂a∂b

∂2a þ ∂2b þ aþ b
� �2 ð9Þ

where ai and bi were the predicted and observed SOC density values at
site i; ∂a and ∂bwere the variances of the predicted and observed values;
r is the Pearson's correlation coefficient between the predicted and ob-
served values; n is the number of samples.
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3. Results

3.1. Exploratory statistics

As a result of rapid urbanization during the past few decades, the
land use pattern in the study area has changed dramatically. Therefore,
we provided the summary statistics of the SOC stocks of the two periods
according to different land use type (Table 1). In 1990, the SOC stock of
cultivated land ranged from 0.44 kg m−2 to 4.50 kg m−2, with an aver-
age of 2.04 kg m−2. Correspondingly, its average SOC stocks in 2015 de-
clined to 1.34 kg m−2. By comparing the land use distribution patterns
of the two periods, it was found that the SOC stocks of the cultivated
land in particular, were decreasing in 2015. In 1990, the standard devi-
ation (SD) and coefficient of variation (CVs) of SOC stocks were
1.16 kg m−2, and 57.1%, respectively. In 2015, the corresponding SD
and CVs were 0.71 kgm−2 and 52.9%. However, the SOC stocks of grass-
lands and forests did not change significantly in 1990 and 2015.We also
observed an approximate lognormal (ln) distribution of SOC stocks in
each land use type in the both periods (Table 1).

The Pearson's correlation between ln-transformed SOC stocks and
the auxiliary variables for both periods is shown in Table 2. SOC stocks
were significantly correlatedwith POP for both periods, and the correla-
tion coefficient in 2015 (−0.76) was greater than that in 1990 (−0.22).
In addition, the correlation coefficients of urban specific variables such
as GDP, DSE and DR with SOC stocks in 2015 (−0.55, −0.57 and 0.37)
were higher than those in 1990. Similarly, there was a significant and
higher correlation between remote sensing image variables (B3, B4,
and B4) and SOC stocks in 1990 compared to that in 2015.

In order to alleviate multi-collinearity, we adopted the stepwise lin-
ear regressionmethod to reduce the closely related predictive variables.
The coefficients of variance expansion of all environmental variables in
1990was no N5, while in 2015 it was no N4. The results showed that the
coefficients of variance expansion of all covariates was b10 (Wang et al.,
2018a), suggesting no multi-collinearity in SOC stocks prediction and
modeling in the both periods.

3.2. Performance evaluation and uncertainty

A 10-fold cross-validation technique was selected to evaluate the
predictive performance of two RF models with 100 iterations, and re-
sults are summarized in Table 3. During two periods, Model B including
all variables (traditional variables, and urban-specific variables) showed
a better prediction compared to Model A that only included traditional
variables as SOC predictors.

The full variable model (Model B) predictions had lower uncer-
tainties with amean SD of 0.17, and 0.08 kgm−2 for 1990, and 2015, re-
spectively, compared to Model A (Fig. 2a and b). The results showed
that the RF of the full variable model produced lower MAE and RMSE,
but higher R2 and LCCC in the both periods (Table 3). The results also
verified that the RF model had an excellent prediction performance on
SOC stocks distribution in both periods.

3.3. Changes in SOC stocks

The final predicted SOC stocks maps for 1990, and 2015 represented
a mean of 100 individual maps from 100 model iterations (Fig. 2), and
the best predicted maps for 1990, and 2015 were the ones derived
from Model B (full variable model). We also observe that there was a
substantial variability among 100 different models for both periods.
For the best predicted maps, average SOC stocks were higher in 1990
(2.77 ± 1.09 kg m−2) than that in 2015 (2.16 ± 0.93 kg m−2) (Fig. 2c
and d).
Fig. 2. Standard deviation and spatial distribution of soil organic carbon (SOC) predicted by fu
random forest model in 1990 (a, c) and 2015 (b, d), and spatial distributions of soil organic car
In order to further explore the spatial characteristics of SOC stocks,
we reported SOC stocks of different soil groups in 1990 and 2015
(Table 4). Luvisols, and Cambisols together accounted for 91% total
SOC stocks in 1990, and 92% in 2015, respectively. (3% vs. 3%) and
Fluvisols (5% vs. 4%) were the other soil types that contained a large
amount of SOC stocks in 1990, and 2015, respectively. Overall, except
for the aggregation effect of SOC stocks in the central and northwestern
forest areas of Dalian, SOC stocks in other areas showed a decreasing
trend during 25 years.

3.4. Importance of the variables

Variable importance revealed different dominating environmental
variables on the spatial distribution of SOC stocks in 1990, and in 2015
(Fig. 3). We found that urban-specific variables were the primary vari-
ables influencing SOC stocks in 2015, and RS indices in 1990. In 2015,
the urban-specific variables (RI N42%)were important indicators of spa-
tial variability of topsoil SOC stocks in rapidly urbanized areas. In order
to further explore the effect of urbanization on SOC stocks, we analyzed
the variation of SOC stocks caused by changes in land use pattern in the
process of urbanization (Table 5 and Fig. 4). With the increase of culti-
vated land reclamation years, the decrease of SOC stocks is the largest,
followed by the conversion of grassland to cultivated land, accounting
for 82% and 15% of the decrease under the change of major land use
patterns in the region. Themain way to increase is to convert cultivated
land to forest land, and the SOC stocks increased by 0.11 Tg in 25 years
(Table 5).

4. Discussion

4.1. Model performance

A full-variable model (model with traditional variables and urban-
specific variables), showed a better predictive performance, with
lowerMAE and RMSE, and higher R2 and LUCC in the both periods com-
pared to the model A that excluded urban-specific variables in the pre-
diction. Wang et al. (2018c) reported a higher performance when all
environmental variables were selected compared to a model that
excluded reclamation years in SOC prediction in Northeast China. Al-
though the sampling method, variable selection and validation method
were different from the previous SOC mapping studies, our prediction
evaluation results were comparable. For example, Yang et al. (2016)
used a RF model to predict SOC in Qilian region of Northwest China,
and could explain 68% of spatial variance of SOC in the region. Were
et al. (2015) developed an RF model to map the SOC stocks across a
montane landscape and found that the model could account for 52% of
the spatial variations of SOC stocks. However, few similar studies had
lower performance results compared to the present study. For example,
while predicting SOC stocks of the Dano catchment (Southwest Burkina
Faso) using RF model, Hounkpatin et al. (2018) could only explain 14%
of SOC stocks variability.

4.2. Estimates of SOC stocks and their changes

During the two periods, the spatial distribution SOC stocks of forest
areas in the southwest and northeast of Dalian showed an increasing
trend, while that of agricultural areas in the middle of Dalian showed
a decreasing trend. SOC stocks were often concentrated in areas with
better vegetation coverage and rich biomass, which has a great uncer-
tainty for the areas with strong human disturbance. In 1990, we found
a high correlation between regional SOC stock and vegetation variables,
especially NDVI, which had been confirmed by previous studies. In
Seoul National Forest Park of South Korea, Bae and Ryu (2015) analyzed
ll variable model (model that used traditional as well as urban-specific variables) using
bon (SOC) stocks change between the1990 and 2015 surveys (f).



Table 4
Soil organic carbon stocks in the topsoil (0−30) depth according to the World Reference
Base for Soil Resources (WRB) in 1990 and 2015.

Soil groups Area (km2) Average SOC
stock (kg m−2)

SOC stock (Tg)

1990 2015 1990 2015

Anthrosols 565 1.95 1.76 1.10 0.99
Luvisols 4272 3.63 3.45 15.51 14.74
Cambisols 6804 3.37 3.00 22.93 20.41
Gleysols 40 1.81 1.6 0.07 0.06
Solonetz 216 1.82 1.56 0.39 0.34
Histosols 4 4.19 3.56 0.02 0.01
Phaezems 15 4.16 4.05 0.06 0.06
Fluvisols 1321 1.48 1.2 1.96 1.59
Sum 13,237 – – 42.04 38.21
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the soil sampling data of 2003, and 2013 combined with NDVI of the
two periods, and found the main reasons for the change of land use, the
expansionof plant area and the growth of plants. In addition to vegetation
related variables, SOC stocks were closely related to urbanization-related
variables in 2015, especially POP variables. Recent studies have shown
that urbanization-related variables could be used as key environmental
variables to effectively predict SOC stocks (Vasenev et al., 2014, 2018).

In the past 25 years, the decrease of SOC stocks was mainly in the
areas that have experienced transitions from grassland to cultivated
land, from forest land to cultivated land, and from cultivated land to cul-
tivated land, which decreased by 0.61Tg, 0.01Tg and 3.40Tg, respec-
tively. Those areas were mainly distributed in the central area of
Dalian, which were the traditional agricultural area. In addition, these
areas are relatively flat, and are close to the town for development
and utilization,which have been strongly disturbed by human activities.
As a result, land use transformation has been rapid, and the topsoil SOC
stocks in this area showed a downward trend. InWafangdian District of
Dalian,Wang et al. (2018c) concluded that land reclamation and related
human activities were the main reasons for the decrease of topsoil SOC
stocks. Similar conclusions have been obtained in Bae and Ryu (2015).

Throughout the whole study area, the SOC stocks showed an in-
creasing trend in the northeast and southwest forest areas, which was
due to the dense vegetation coverage in those areas and little human in-
terference. In addition, some parts in the middle of the study area were
also showing an increasing phenomenon, which was related to the cur-
rent national policy of returning farmland to forest or grass, resulting in
the increasing trend of topsoil SOC stocks. Wang et al. (2018c) selected
9 main environmental variables influencing the spatial variability of
Fig. 3. Relative importance of variable used as soil organic carbon stocks prediction in 1990 (a),
TWI, topographic wetness index; B3, Landsat TM band 3; B4, Landsat TM band 4; B5, Landsat
domestic product; DSE, distance to the socio-economic center; DR, distance to the roads.
SOC stocks, and combined with a BRT model to predict the topsoil SOC
stocks in Wafangdian of Northeast China. Based on their results, the in-
crease of forest SOC stocks in the northeast of the study areawas closely
related to the policy of returning farmland to forest and grass imple-
mented by the government for many years.

Of all soil groups, SOC stocks were mainly stored in Luvisols, and
Cambisols during the two periods. Luvisols refers to the soil with obvi-
ous clay leaching and deposition, which is fully leached by lime under
amoist soil condition (Schöning et al., 2006). However, due to the influ-
ence of regional climate, the degree of soil leaching is limited. In addi-
tion, farmers often use a large amount of fertilizer (Jacinthe et al.,
2002) in the relatively flat farming areas in the middle of Dalian. Al-
though the distribution of farming areas was not the most extensive,
its SOC stocks were the largest in all soil groups.

Cambisols has the most widely distributed area, accounting for
about 51% of the whole study area, and the SOC stocks accounts for
about 52% of the total stocks during the two periods. Therefore, in
order to accurately and reasonably manage Cambisols in the study
area, appropriate land management practices should be followed con-
sidering the large size of SOC stocks in this particular soil.

4.3. Effects of urban-specific variables on SOC stocks

For the both periods, general spatial patterns showed a higher SOC
stocks level in the northeast but lower level in the southwest of Dalian
City. There were abundant SOC stocks in areas with dense forest. The
spatial pattern of SOC stocks in 1990 was closely related to remote
sensing-related variables (Table 2) as these variables mostly represent
vegetation growth, coverage and biomass, and human impact on nature
was relatively small during this period. Similar results were also re-
ported byWang et al. (2018b). On the contrary, this patternwas closely
related to GDP and POP in 2015 as both variables were more related to
SOC in 2015 compared to the same variables in 1990 (Table 2). This con-
clusion agreedwith the findings of previous studies (Liu et al., 2016; Xia
et al., 2017; Vasenev et al., 2014, 2018) verifying that the urban-specific
information could be used to map SOC stocks distribution in a rapidly
urbanized regions with intense human activity. Vasenev et al. (2018)
pointed out that such indicators were outstanding predictors of SOC
stocks, which could indirectly affect soil microbial acquisition, thereby
affecting the level of SOC stocks.

Previous studies have revealed that rapid urbanization significantly
impacts the spatial-temporal changes in SOC stocks distribution (Liu
et al., 2016; Xia et al., 2017; Vasenev et al., 2018). We also found that
the rapid urbanization in Dalian during the past decades has led to
and 2015 (b) surveys, which are normalized to 100%. SA, slope aspect; SG, slope gradient;
TM band 5; NDVI, Normalized Difference Vegetation Index; POP, population; GDP, gross



Table 5
Change of soil organic carbon (SOC) stocks under major land use patterns during
1990–2015.

Major land use types Area (km2) SOC stocks (Tg) Change (Tg)

1982 2015

Cultivation-cultivation (C-C) 6081.55 22.79 19.39 −3.40
Cultivation-forest (C-F) 673.77 1.78 1.89 0.11
Cultivation-grassland (C-G) 208.98 0.54 0.57 0.03
Grassland-grassland (G-G) 831.43 2.33 2.24 −0.09
Grassland-cultivation (G-C) 2107.27 7.58 6.97 −0.61
Grassland-forest (G-F) 311.19 1.27 1.41 0.14
Forest-forest (F-F) 1234.03 3.24 3.32 0.08
Forest-cultivation (F-C) 18.33 0.05 0.04 −0.01
Forest-grassland (F-G) 28.5 0.10 0.07 −0.03
Sum 11,495.05 39.68 35.9 −3.78
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dramatic changes in land use patterns substantially affecting SOC stocks
distribution. Xia et al. (2017) reported a decreasing trend in SOC stocks
in Northeast China, mainly due to the rapid development and urbaniza-
tion caused by changes in land use patterns. Our study found a slight in-
crease in SOC stocks in the central and northwestern mountainous
areas. In other areas, especially in coastal plain farming areas, there
Fig. 4. Land use classification maps in 1990 (a)
has been a decline (Fig. 3a). SOC stocks decreased (−5 to 0 kg m−2)
mainly in the eastern and coastal plains of the study area that accounted
for about 52% of the total area (Fig. 3b). The maximum increase
(N1.0 kg m−2) occurred in the northwest mountainous area. The area
with SOC stocks increased accounted for 36% of the total study area
and was mainly distributed in the central and northwestern mountain-
ous areas.

The RI of urban-specific variables (POP and GDP) was lower in 1990.
Theweaker influence of urban-specific variables in 1990 could be attrib-
uted to the slow urbanization process, and less pressure on land use
with optimal land use management. With the development of China's
reform and opening-up policy, the scale of development in Dalian has
been expanding with rapid population growth and dense road net-
works. Rapid urbanization not only changes the land use pattern, but
also changes the properties of topsoil, thus changing the characteristics
of soil carbon. As observed in the present study, a significant impact of
rapid urbanization on regional SOC stocks and balance has also been re-
ported (Wiesmeier et al., 2012; Edmondson et al., 2014; Liu et al., 2016;
Xia et al., 2017; Vasenev et al., 2018; Stumpf et al., 2018).

Changes in land use patterns will lead to changes in soil environ-
ment, such as soil properties and water balance, which indirectly affect
the rate of accumulation and decomposition of soil organic matter
, and 2015 (b) and their change map (c).
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(Muñoz-Rojas et al., 2015; Liu et al., 2016; Adhikari et al., 2019). In
Jiangsu Province of China, Zhao et al. (2015) reported the effects of
land use change on soil organic matter. When cultivated land was con-
verted to forest, and to grassland during the past 25-year, SOC stocks in-
creased by 0.11 Tg, and 0.03 Tg, respectively (Table 5). In contrast, the
amount of SOC stocks decreased by 3.40 Tg in 2015 when cultivated
land remained unchanged. Overall, from1990 to 2015 (since the reform
and opening up of China), the scale and speed of soil utilization has been
increased, and SOC stocks had decreased by 3.78 Tg in total. However,
during this period, the Chinese government announced the implemen-
tation of the policy of returning farmland to forestry and grassland,
which resulted in the accumulation of litter in soil, and the increase of
underground root biomass, resulting in the increase of SOC (Zhao
et al., 2015; Wang et al., 2018c). These results indicated that land use
changes play a crucial role in SOC stocks changes. In addition, conver-
sion of land use to forests have increased soil microorganisms and bio-
logical activity, accelerated the turnover of organic matter, deepened
the rooting system of trees, and facilitated the accumulation of soil or-
ganic carbon (Zhao et al., 2015;Wang et al., 2018c; Vasenev et al., 2018).
4.4. Uncertainties in the present study

Apart from the RFmodel uncertainty associatedwith this prediction,
we believed that there might be other sources as well. Firstly, POP and
GDP data were only collected at 1-km grid, which might have reduced
our prediction accuracy. The data for the rest of auxiliary variables are
at 90 m resolution, while POP and GDP data are at 1 km resolution.
Therefore, it is necessary to resample the 90-m grid data to 1 km in
our modeling. Secondly, soil samples in 1990 were collected from the
historical data (Second National Soil Survey in China). Limited by the
personnel and equipment at that time, sampling and experimental er-
rors might have occurred. Thirdly, due to the lack of BD data of some
soil profiles in 1990, we used the pedotransfer functions to estimate
BD. However, PTFs cannot accurately estimate the actual bulk density
due to prevailing land use complexity, and variations in soil types and
conditions in the study area, which would further increase prediction
errors. Fourthly, with urbanization development, urban built-up areas
were expanding. Due to some limitation, we only collected soil data
from the cultivated, forest, and grassland, and not from the urban
built-up areas. Therefore, the topsoil SOC stocks in urban built-up
areas might be over- or under-estimated by our model. Finally, our
study predicted SOC stock only for the topsoil depth, which might
have underestimated SOC stocks, as deeper soils also contain SOC.
5. Conclusion

Two RF models with both traditional and urban-specific variables
and traditional variables only were used to predict the spatial-
temporal distribution of SOC stocks in a rapidly urbanized city of Dalian,
Liaoning, China. Adding urban-specific variables improved the accuracy
of topsoil SOC stocks prediction. The mean SOC stocks in the study area
were 2.17 kg m−2 (±1.09), and 2.16 kg m−2 (±0.93) for 1990, and for
2015, respectively. The full variable model explained almost 54%, and
61% of the spatial variance of SOC stocks in northeastern coastal
agroecosystems in 1990 and 2015, respectively. The spatial distribution
of SOC stocks was well explained by urban-specific-related variables in
2015. These variables were important and practical indicators reflecting
topsoil SOC stocks of rapidly urbanized areas. Therefore, future SOC
mapping studies, especially in areas with rapid economic development
and intense land use change, urban-specific-related variable should be
selected as the main environmental variable. We believe that our pre-
diction and the SOC stock maps thus generated will have impacts in
urban environmental planning and government decision-making in
our study region.
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