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A B S T R A C T

Estimation of carbon and nitrogen stocks is important for quantifying carbon and nitrogen sequestration as well
as greenhouse gas emissions and inventorying national carbon and nitrogen balances. For Liaoning province of
China, we estimated the vertical distribution of soil organic carbon (SOC), soil total nitrogen (STN), bulk density
(BD), and mapped their spatial distribution at five standard soil depth intervals (0–5, 5–15, 15–30, 30–60 and
60–100 cm) using nine environmental variables as predictors including precipitation, temperature, land use,
elevation, system for automated geoscientific analyses (SAGA) wetness index, and Normalized Difference
Vegetation Index (NDVI). The highest average contents of SOC and STN were 15.2 g kg−1 and 1.6 g kg−1 in the
0–5 cm soil layer, and 1.5 g kg−1 SOC and 0.4 g kg−1 STN in the 60–100 cm soil layer, respectively. The pre-
diction precision for SOC, STN and BD all decreased with soil depth. Average SOC and STN stocks for 0–30 cm
were 3.1 kg m−2 and 0.5 kg m−2, respectively. For the top 1 m, SOC and STN were 4.5 kg m−2 and 0.9 kg m−2,
respectively. In total, the soils stored approximately 588 Tg SOC and 128 Tg STN within the top 1 m. The soils
under forest had the highest amount of carbon (356 Tg) and nitrogen (58 Tg) followed by agriculture and
wetland that contributed 34% and 48% of the total stock, respectively. > 91% of the total SOC and STN stocks
were in Argosols and Cambosols. We adopted a digital soil mapping method to map the spatial distribution of
SOC and STN stocks and predict their uncertainties. The estimation was validated with a 10-fold cross-validation
procedure. The data and high-resolution maps from this study can be used for future soil carbon and nitrogen
assessment and inventorying.

1. Introduction

Soil organic carbon (SOC) and soil total nitrogen (STN), the essen-
tial nutrients for plant growth are major components of the global
carbon and nitrogen cycles (Batjes, 1996; Reeves, 1997; Quilchano
et al., 2008; Liu et al., 2012; Wang et al., 2016). SOC and STN affect the
concentration of greenhouse gases in the atmosphere and global climate
change, and become one of the foci of global climate change research in
recent years (Powers and Schlesinger, 2002; Bronson et al., 2004; Lal,
2004; Stockmann et al., 2013; Lehmann and Kleber, 2015). Accurate
quantification of SOC and STN stocks are important for assessing the C
and N sink capacity of soils and the change rate of SOC and STN (L.
Yang et al., 2016). Spatially explicit information of SOC and STN thus
plays a crucial role in global carbon and nitrogen cycling studies
(Batjes, 1996; Minasny et al., 2013; Adhikari et al., 2014; Minasny
et al., 2017).

A simple approach to predict the spatial distribution of SOC and
STN stocks is to allocate the average SOC and STN stocks to each map

unit of soil type or land-use type (Batjes, 1996; Arrouays et al., 2001;
Bernoux et al., 2002). However, this approach results in constant values
within each map unit which cannot show the large spatial hetero-
geneity of SOC and STN in each map unit and the error of estimates for
the values of average SOC and STN from few SOC and STN data points
(Adhikari et al., 2014; L. Yang et al., 2016). To overcome these pro-
blems, digital soil mapping (DSM) technology is considered as an ap-
propriate and useful method to produce more detailed spatial variations
of SOC and STN stocks with assistance of auxiliary environmental
variables (Minasny et al., 2013; Martin et al., 2014; Adhikari et al.,
2014; Mulder et al., 2016). Based on DSM technology, Adhikari et al.
(2014) combined regression kriging with the equal area spline to model
continuous depth function of SOC and bulk density (BD) and calculated
the soils stored approximately 570 Tg carbon within the top 1 m in
Denmark. In mainland France, Mulder et al. (2016) estimated 1 m deep
soil of SOC by applying regression tree and spline function. Therefore,
DSM methods provide a rapid and inexpensive way to estimate the
spatial distribution of SOC and STN stocks over a large area from a
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limited number of sample sites and environmental covariates
(McBratney et al., 2003; Minasny et al., 2013; Karunaratne et al.,
2014).

Many DSM methods have been used in estimating SOC and STN
(Minasny et al., 2013; Cambule et al., 2014; Wang et al., 2016).
However, tree-based model had superior predictive performance com-
paring to other methods using average values by soil map (Carslaw and
Taylor, 2009; R. Yang et al., 2016a; Wang et al., 2016). Furthermore,
tree-based models had several advantages that are flexible to deal with
linear, polynomial, exponential, logistic, periodic, or general nonlinear
problems, and improved prediction effectively (Müller et al., 2013;
Cheong et al., 2014; Heung et al., 2016). Therefore, tree-based devel-
opment model of boosted regression trees (BRT) has an excellent pre-
dictive performance, combining many simple tree models to form an
efficient prediction model compared with the traditional single tree
model (Carslaw and Taylor, 2009; Kempen et al., 2011; L. Yang et al.,
2016).

Continuous distributions of SOC and STN in vertical dimension are
necessary to investigate stocks and controls of SOC and STN (Müller
et al., 2013), and also important for understanding the role of SOC and
STN in the global C and N cycles and quantifying the environmental
controls on SOC and STN distribution (Wang et al., 2004; Adhikari
et al., 2014). However, information of SOC and STN stocks at certain
depths are sometimes missing. Thereby, soil depth functions are needed
to interpolate continuous distributions of SOC and STN (Arrouays et al.,
2014). Many soil depth functions have been developed, such as statis-
tical depth functions (Zuo and Serfling, 2000), phytolith depth func-
tions (Hart and Humphreys, 2003), exponential depth function
(Meersmans et al., 2009), sigmoid depth function (Zhang et al., 2017),
and splines function (Bishop et al., 1999). Among them splines function
is now the most frequently used and recommended by GlobalSoilMap
specifications (Arrouays et al., 2014).

In the present study, we mapped SOC and STN stocks within the
upper 1 m depth in the northeast China (Fig. 1) using equal-area spline
profile function and boosted regression tree methods. Our specific ob-
jectives are:

(i) Constructing soil depth functions to describe vertical distribution
of SOC, STN and BD;

(ii) Deriving predictive models to map the soil depth functions across
the study area;

(iii) Evaluating the importance of environmental covariates in con-
trolling the spatial patterns of SOC and STN;

(iv) Producing the spatial distribution of SOC and STN stocks in
Liaoning Province of China.

2. Materials and methods

2.1. Study area

Our study is Liaoning Province (118°–125°E, 38°–43°N) in northeast
China (Fig. 1). It covers an area about 140,000 km2, and had a popu-
lation of 43.75 million in year of 2010 (Bureau of Statistics Liaoning
Province, 2011). Liaoning Province is an economically important pro-
vince in China. It is ranked seventh among all Chinese provinces in
terms of the gross domestic product, which was 301 billion US dollars
in 2010 (Bureau of Statistics Liaoning Province, 2011). The altitude of
the study area ranges from 0 m to 1332 m above sea level. The region is
dominated by a warm temperate continental monsoon climate, four
distinct seasons. The mean annual precipitation ranges from 600 mm in
the northeast to 1100 mm in the southwest, 60–70% of which falls
between June and August, mostly in high intensity rainstorms. The
mean annual temperature is 7–11 °C, with the coldest temperature of
−40 °C in January and the hottest temperature of 30 °C in July.

According to Chinese Soil Taxonomy (Cooperative Research Group
on Chinese Soil Taxonomy, 2001), Argosols and Cambosols are the
main soil types (32% and 51%), distributing in the Low Mountain and
hilly areas of the northeast and southwest of Liaoning Province. The
main land use in Liaoning Province can be classified as agriculture,
forest, grassland and wetland. Agriculture areas are mainly distributed
in the Liaohe plain area of central Liaoning, accounting for 43.3% of the
study area, the main economic crop are corn, rice, sweet potatoes,
apples, and cherries (Bureau of Statistics Liaoning Province, 2011).

Fig. 1. Location of the study area and 146 sam-
pling sites, which are superimposed on a 90-m
resolution DEM.
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2.2. Field sampling and laboratory analysis

Extensive field sampling is very labor intensive and costly. A proper
sampling strategy is needed for characterizing the SOC and STN with
high spatial variability (L. Yang et al., 2016; R. Yang et al., 2016a,
2016b) at such a large scale of our study area. In this study, a purposive
sampling strategy was adopted. Based on the pedogenesis of SOC and
STN of the study area, soil types, land use and terrain conditions were
the main environmental factors considered in designing samples
(Hudson, 1992). The study area was first stratified using the combi-
nation of soil type and landuse type (Yang et al., 2013). Thirty-two soil-
land-use units were obtained using fuzzy c-means classification method
based on eight soil subgroups from the Second National Soil Survey and
five land-use types including agriculture, forest, grassland, wetland,
and other types (e.g., urban area, industry, roads). Then within each
soil-land-use type unit, four or five samples were taken at different
landform positions by local soil experts. Finally, a total of 146 field
observations were made in the field (Fig. 1). A soil pit down to a depth
of 1.2 m or to bedrock was dug at each site. A local soil expert de-
termined the soil horizons based on pedogenesis and major soil char-
acteristics from a soil profile in the field, and then classified the soil
according to the Chinese Soil Taxonomy (Chinese Soil Taxonomy
Research Group, 2001). Soil surveys were conducted in 2013 and
produced 146 soil sampling profiles. Samples of each horizon were
collected in the following way. Soil samples from each location were a
composite of five soil cores taken from four corners, and the center of a
1 m× 1 m square area (Cooperative Research Group on Chinese Soil
Taxonomy, 2001). From the composite sample, 1 kg subsample was
collected for laboratory analysis. To estimate dry bulk density, 100 cm3

of undisturbed soil cores were collected from lower to upper soil layers.
In the laboratory, the samples were air dried and passed through a

2-mm sieve. SOC content was determined by wet oxidation method
using potassium dichromate in acid medium followed by redox titration
(Nelson and Sommers, 1996). Compared with dry combustion method,
wet oxidation could oxidize about 90% of organic matter, so measure
values were multiplied by a correction coefficient of 1.1 (Kalembasa
and Jenkinson, 1973; Soon and Abboud, 1991). The 100 cm3 cores were
dried for 48 h at 105 °C for bulk density measurement. STN content was
determined by dry combustion using a Vario EL III elemental analyzer
(Elementar Analysen systeme GmbH, Hanau, Germany). STN and SOC
contents were not measured together using the dry combustion method,
but we revised the measurement of organic carbon according to the
correction coefficient. The prediction and analysis of SOC and STN were
analyzed separately.

2.3. Environmental variables

A suite of 9 environmental covariates representing topographic,
climatic, Landsat thematic mapper (TM) variables and landuse were
used as predictors for this study. Environmental variables were gener-
ated and transferred to raster layers using ArcGIS 10.2 (ESRI Inc., USA).
Due to the widespread extent of the data and the low computational
efficiency, predictors at a 90 m resolution were used in our study. All
environmental covariates were scaled because distance-based learners,
such as R software (R Development Core Team, 2013), require covari-
ates to have a similar range in values. The relationships among SOC,
STN and BD with the environmental variables are presented in Table 2.

2.3.1. Topographic variables
Terrain attributes are the most extensively used environmental

predictors in digital soil mapping (Sculla et al., 2003). In our study, five
topographic variables including elevation, slope, ground roughness,
profile curvature, and topographic wetness index (TWI) were derived
from a 90 m Shuttle Radar Topography Mission (SRTM) digital eleva-
tion model (DEM). Elevation has been widely claimed as the vital factor
to the soil nutrient distribution (Dorji et al., 2014; R. Yang et al., 2016a)

and also as an important environmental variable in the prediction of
soil properties. Slope, ground roughness and, profile curvature and TWI
impact the soil erosion of region and are closely related to spatial
variation of soil nutrients (Odeh et al., 1995). The four variables except
TWI were generated using ArcGIS 10.2 (ESRI Inc., USA). TWI was
generated using SAGA GIS (Olaya, 2004). This is because SAGA topo-
graphic wetness index is based on a modified catchment area, and it
tends to predict a more realistic and higher potential soil wetness than
conventional topographic wetness index (L. Yang et al., 2016).

2.3.2. Climatic variables
Temperature affects the accumulation rate of carbon and nitrogen in

soil, and temperature variables are widely used in prediction of SOC
and STN (Jobbágy and Jackson, 2000; Follett et al., 2012; R. Yang et al.,
2016a; Wang et al., 2016). Mean annual temperature (MAT) and mean
annual precipitation (MAP) over thirty years (1982–2010) of the study
area was obtained from the Chinese Academy of Agricultural Sciences,
Beijing. The data were interpolated from meteorological stations in
China and were adjusted with the elevation data. The climate data
originally had a cell size of 1000 m and were resampled to 90 m using a
nearest neighbor strategy.

2.3.3. Landsat TM
Landsat 5 TM imagery was produced using 163 images downloaded

from the United States Geological Survey (USGS), which was acquired
from July to September (growing season) in 2013 with cloud cover<
10%. The polynomial geometric precision correction method was used
to relief-correct the images, then the images were mosaicked and
trimmed to cover the study area (Toutin, 2002). The visible-red band 3
(B3, 0.63–0.69 μm), near-infrared band 4 (B4, 0.78–0.90 μm) and short-
wave infrared band 5 (B5, 1.55–1.75 μm) were collected to construct
models. Malone et al. (2009) reported that the three bands represent
vegetation growth, coverage and biomass, respectively. Normalized
Difference Vegetation Index (NDVI) was determined by using bands B3
and B4, which was calculated as:

= − +NDVI (B4 B3) (B4 B3) (1)

2.3.4. Landuse data
Landuse map was a raster map created from Landsat images from

2013. Landuse types were grouped into agriculture, forest, grassland,
wetland, and other types (e.g., urban area, Industry, Roads). In our
model, landuse types of agriculture area, forest area, grassland area,
wetland area were converted to numerical values 1, 2, 3, and 4, re-
spectively. The correlation between target variables and land-use types
was tested.

2.4. Model development

2.4.1. Boosted regression tree and uncertainty
In order to predict the spatial distribution of 1 m depth for SOC and

TN stocks in Liaoning Province, we applied BRT model, a machine
learning algorithm developed by Friedman et al. (2000). BRT combines
two powerful statistical techniques: boosting and regression trees. The
boosting algorithm uses an iterative method for developing a final
model and progressively added trees to the model (Müller et al., 2013).
Regression trees analyze the response variable with a set of predictor
variables and apply a binary split to fit a simple model to each resulting
section (Cheong et al., 2014; L. Yang et al., 2016). The data were fur-
ther split so that the split-point achieves the best model fit (R. Yang
et al., 2016a). BRT relies on stochastic gradient boosting, which allows
for more accurate and faster computations through numerical optimi-
zation and regularization (Friedman, 2001). Compared with other data
mining methods, BRT model emerges a high predictive accuracy and
good interpretability of resulting input-output relationships (Friedman,
2001; Müller et al., 2013).
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BRT model was operated in R version 3.2.2 (R Development Core
Team, 2013) by using the package “dismo” version 0.8-17 (Hijmans
et al., 2013) and package “gbm” version 2.1 (Ridgeway, 2007; Elith
et al., 2008). The fitting of a BRT model is controlled by specification of
four parameters: the learning rate (LR), tree complexity (TC), bag
fraction (BF) and number of trees (NT). LR determines the contribution
of each tree to the growing model (Müller et al., 2013). TC controls the
size of trees and whether interactions between variables should be
considered (L. Yang et al., 2016). BF sets the proportion of observations
used in selecting variables (Zhang et al., 2016). NT is set based on the
combination of LR and TC (Wang et al., 2016). We tested for several
combinations of the LR (0.025, 0.05 and 0.1), TC (3, 4, 6, 8, 9 and 10),
BF (0.55–0.75) and NT (500, 1000 and 1250) parameters. The final
optimal values of LR, TC, NT and BF were set as 0.025, 9, 0.75 and 100
(Hastie et al., 2009; Wang et al., 2016).

The uncertainty associated with the BRT prediction was evaluated
with standard deviation (SD) derived from running the model 100 times
and the maps were generated as an indicator of SOC, SNT and BD
prediction uncertainties. To obtain the relative importance (RI) of each
predictor, the BRT model was repeated for 100 iterations. The RI of
variables were measured based on the number of times a variable was
selected for modeling and weighted by the square improvement to each
split and averaged across all trees (Minasny et al., 2006). The RI of each
variable was then scaled so that the sum added to 100 as percentages. A
higher percentage of a variable indicated a stronger relative importance
of this variable on the response (Pouteau et al., 2011; Wang et al.,
2016).

2.4.2. Equal-area spline profile function
The existing studies on SOC and STN stocks are mostly concentrated

on aspects in terms of two tendencies, one is to map SOC stock ac-
cording to standard depths corresponding more or less to
Intergovernmental Panel on Climate Change (IPCC) guidelines (often
30 cm or 1 m) (Meersmans et al., 2011; Ballabio et al., 2016; Minasny
et al., 2017), the other aspect is to use the standard depths of Glo-
balSoilMap specifications (Arrouays et al., 2014; Minasny et al., 2013)
that are 0–5, 5–15, 15–30, 30–60, 60–100, 100–200 cm. However, the
standard depths of GlobalSoilMap specifications are more and more
used at various levels from small regions to countries, continents and
even the world (Poggio and Gimona, 2014; Vaysse and Lagacherie,
2015; Mulder et al., 2016).

We employed the equal-area spline algorithm a generalization of the
algorithm developed by Bishop et al. (1999). The CSIRO SplineTool V2
(ASRIS, 2011) was used to convert the horizon-based values to the
standard depths of GlobalSoilMap specifications (i.e. 0–5, 5–15, 15–30,
30–60 and 60–100 cm) (Arrouays et al., 2014). For a given soil profile,
and a given soil property, the boundaries of the n layers are given by
x0 < x1, … < xn. The soil property values, yi (i= 1, … n) therefore
mathematically modeled as:

= +y f ei i i (2)

where ∫= −
−

f f x dx x x( ) ( )i x
x

i i 1i
i

1
is the mean value of f(x) over the in-

terval (xi − 1, xi) and the measurement errors ei are assumed in-
dependent, with mean 0 and common variance σ2. Eventually, f(x) re-
presents a spline function, which can be determined by minimizing D:

∫∑= − +
=

D
n

y f λ f x d1 ( ) [ ( ) ]
i

n

i i x

x m
x

1

2 2
o

n

(3)

The first term on the right side of Eq. (2) depicts the fit of the spline
to the data; the second term measures the roughness of function f′(x),
expressed by its first derivative f′(x). The λ parameter controls the
trade-off between the fit and the roughness of the spline.

In our study, the raw carbon and nitrogen data displayed a log-
normal distribution and subsequently was log-transformed prior to fit-
ting the splines. The data for BD did not require any transformation. As

the fitting quality of splines to profile attribute data depends on a
smoothing parameter λ, we tested five values (0.0001, 0.001, 0.01, 0.1
and 1) for SOC, STN and BD data from all the profiles and selected 0.1
values that showed the best fit for all the profiles using the root mean
square. Furthermore, once the depth function of SOC, STN and BD was
modeled, a weighted-average value of these properties was derived for
five soil depths (0–5, 5–15, 15–30, 30–60, and 60–100 cm) based on the
GlobalSoilMap specifications (Arrouays et al., 2014).

2.4.3. Statistical analyses
We used SPSS 22.0 software for statistical analysis (Marr-Lyon et al.,

2012). The descriptive statistics among SOC, STN and BD data with
environmental variables were presented. Pearson correlation was also
used to relate the dependent variable of SOC and STN contents to in-
dependent quantitative variables. P-value was applied to test for the
significance and normal distribution between the variables.

2.4.4. SOC and STN stocks
This study analyzed the spatial distribution of SOC and STN stocks.

For an individual profile with k layers (within first meter), the equation
of Batjes (1996) was used to calculate the density of soil organic carbon
(SOC) and soil total nitrogen (STN) in the whole soil profile:

∑ ∑= = × × × −
= =

SOC SOC SOC BD D (1 S )
i

k

i

k

i i idensity
1

content
1

concentration

(5)

∑ ∑= = × × × −
= =

STN STN STN BD D (1 S )
i

k

i

k

i i idensity
1

content
1

concentration

(6)

where SOCdensity and STNdensity are SOC and STN density of whole soil
profile (kg m−2), SOCcontent and STNcontent are SOC and STN contents
(kg m−2), BDi is the bulk density (g cm−3), SOCconcentration and
STNconcentration are the SOC and STN concentration (g kg−1), Di is the
thickness (m), Si is the volume fraction of fragments > 2 mm, and i
represents a specific soil horizon.

2.4.5. Model validation
Accuracy assessment was evaluated using the absolute prediction

error (MAE), root mean square error (RMSE), coefficient of determi-
nation (R2) and Lin's concordance correlation coefficient (LCCC) (Lin,
1989). They were calculated using 10-fold cross-validation procedure
as described in the R version 3.2.2 (R Development Core Team, 2013).
Cross-validation is a useful approach for model identification and as-
sessment of model performance (Müller et al., 2013; Wang et al., 2016).
These indices were calculated as follows:

∑= −
=

n
P OMAE 1 | |

i

n

i i
1 (7)

∑= −
=

n
O PRMSE 1 ( )

i

n

i i
1

2

(8)

=

∑ −

∑ −

=

=

P O

P O
R
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i

n

i i

i

n

i i

2 1

2

1

2

(9)

=
∂ ∂

∂ + ∂ + +

r
O P

LCCC 2
( )

O P

O P
2 2 2 (10)

where Oi and Pi are the observed and predicted SOC, STN and BD values
at site i, respectively; n is the number of samples; ∂O and ∂P are the
variances of observed and predicted values; and r is the Pearson cor-
relation coefficient between the observed and predicted values.

S. Wang et al. Geoderma 305 (2017) 250–263

253



3. Results and discussion

3.1. Descriptive statistics

The statistical results of SOC, STN and BD contents are showed in
Table 1. Due to the shortage of funds in our research, SOC content
measured using wet oxidation method was underestimated compared
with the dry combustion method. We revised the measurement results
of organic carbon using a correction coefficient (Soon and Abboud,
1991). The corrected data hardly affected our results and conclusion.
SOC content was highly variable and ranged from 0 to 235 g kg−1 for
the topsoil (0–20 cm) and from 0 to 242 g kg−1 in the subsoil (Table 1).
Mean SOC decreased with soil depth and SOC at 60–100 cm was about
seven times lower than the SOC in the 0–5 cm layer, moreover STN at
60–100 cm three times lower than the STN in the 0–5 cm layer. With
depth, the standard deviation (SD) of the SOC and STN contents in-
creased. The SD at 0–5 cm was 24 g kg−1 and that for the 60–100 cm
was approximation 28 g kg−1 for SOC. The SOC and STN data were
positively skewed at all soil depths with a maximum skewness coeffi-
cient at 60–100 cm. The equal-area splines modeled the depth-wise
distribution and generated a continuous SOC, STN and BD profile to
1 m depth. The best λ value to fit all soil profiles for SOC, STN and BD
data was 0.1. Also mean BD content was found to be increased with soil
depth. Up to 30 cm depth of the BD was on average 1.27 g cm−3,
whereas it increased to 1.52 g cm−3 below 60 cm depth. Bulk density

Table 1
Descriptive statistics of soil organic carbon content (g kg−1), soil total nitrogen content (g kg−1) and bulk density (BD) (g cm−3) data used in this study.

Depth (cm) Parameters Min. Max. Range Mean SD Ske. Kur.

0–5 SOC 0.50 164.02 163.53 17.65 24.15 0.19 1.09
STN 0.29 8.85 8.56 1.32 1.33 0.47 0.99
BD 0.28 1.68 1.40 1.27 0.28 −1.20 1.42

5–15 SOC 0.68 172.43 171.75 16.1 23.45 0.26 1.32
STN 0.29 9.78 9.48 1.68 1.38 0.74 2.06
BD 0.40 1.68 1.28 1.28 0.25 −1.29 1.77

15–30 SOC 0.02 235.10 235.07 9.50 26.67 0.39 4.79
STN 0.18 15.18 15.00 1.36 1.75 1.23 4.35
BD 0.51 1.65 1.14 1.36 0.30 −1.33 1.41

30–60 SOC 0.02 242.26 242.24 9.20 31.56 0.46 3.04
STN 0.12 16.61 16.49 1.22 2.08 1.15 4.40
BD 0.56 1.72 1.16 1.46 0.32 −0.79 0.38

60–100 SOC 0.02 230.44 230.43 7.42 27.60 0.74 1.67
STN 0.01 11.02 11.01 0.82 1.25 1.20 2.74
BD 0.83 1.61 0.78 1.52 0.34 −1.26 0.95

Note: Min., minimum; Max., maximum; SD, standard deviation; Ske., skewness; Kur., kurtosis.

Table 2
Descriptive statistics of soil organic carbon content (g kg−1), soil total nitrogen content (g kg−1) and bulk density (BD) (g cm−3) data used in this study.

Parameters Depths GR Elevation NDVI Landuse Slope MAT MAP Prof_cur TWI

SOC 0–5 0.61⁎⁎ 0.60⁎⁎ 0.26⁎⁎ −0.47⁎⁎ 0.68⁎⁎ −0.37⁎⁎ 0.50⁎⁎ −0.20⁎ −0.65⁎⁎

5–15 0.59⁎⁎ 0.61⁎⁎ 0.27⁎⁎ −0.46⁎⁎ 0.65⁎⁎ −0.40⁎⁎ 0.47⁎⁎ −0.16⁎ −0.61⁎⁎

15–30 0.44⁎⁎ 0.54⁎⁎ 0.33⁎⁎ −0.34⁎⁎ 0.45⁎⁎ −0.51⁎⁎ 0.31⁎⁎ 0.07 −0.36⁎⁎

30–60 0.43⁎⁎ 0.42⁎⁎ 0.42⁎⁎ −0.26⁎⁎ 0.46⁎⁎ −0.52⁎⁎ 0.22⁎⁎ −0.06 −0.28⁎⁎

60–100 0.39⁎⁎ 0.45⁎⁎ 0.40⁎⁎ −0.22⁎⁎ 0.39⁎⁎ −0.49⁎⁎ 0.28⁎⁎ −0.12 −0.25⁎⁎

STN 0–5 0.54⁎⁎ 0.55⁎⁎ 0.18⁎ −0.42⁎⁎ 0.59⁎⁎ −0.37⁎⁎ 0.48⁎⁎ −0.11 −0.58⁎⁎

5–15 0.56⁎⁎ 0.57⁎⁎ 0.21⁎ −0.40⁎⁎ 0.58⁎⁎ −0.37⁎⁎ 0.47⁎⁎ −0.11 −0.53⁎⁎

15–30 0.50⁎⁎ 0.53⁎⁎ 0.23⁎⁎ −0.34⁎⁎ 0.47⁎⁎ −0.36⁎⁎ 0.39⁎⁎ −0.13 −0.36⁎⁎

30–60 0.50⁎⁎ 0.51⁎⁎ 0.17⁎ −0.32⁎⁎ 0.49⁎⁎ −0.31⁎⁎ 0.32⁎⁎ −0.18⁎ −0.37⁎⁎

60–100 0.16⁎ 0.22⁎⁎ 0.12 −0.04 0.1 −0.12 0.30⁎⁎ −0.28⁎⁎ −0.06
BD 0–5 −0.68⁎⁎ −0.62⁎⁎ −0.31⁎⁎ 0.38⁎⁎ −0.68⁎⁎ 0.37⁎⁎ −0.47⁎⁎ 0.21⁎⁎ 0.54⁎⁎

5–15 −0.65⁎⁎ −0.62⁎⁎ −0.28⁎⁎ 0.34⁎⁎ −0.63⁎⁎ 0.31⁎⁎ −0.39⁎⁎ 0.21⁎ 0.48⁎⁎

15–30 −0.50⁎⁎ −0.56⁎⁎ −0.08 0.25⁎⁎ −0.49⁎⁎ 0.12 −0.26⁎⁎ 0.09 0.39⁎⁎

30–60 −0.39⁎⁎ −0.51⁎⁎ −0.11 0.20⁎ −0.38⁎⁎ 0.24⁎⁎ −0.29⁎⁎ 0.04 0.32⁎⁎

60–100 −0.59⁎⁎ −0.37⁎⁎ −0.15 0.21⁎⁎ −0.58⁎⁎ 0.27⁎⁎ −0.42⁎⁎ 0.03 0.41⁎⁎

Note: GR, ground roughness; NDVI, Normalized Difference Vegetation Index; Landuse, land use; MAT, mean annual temperature; MAP, mean annual precipitation; Prof_cur, profile
curvature; TWI, SAGA wetness index.

⁎ P < 0.05.
⁎⁎ P < 0.01.

Table 3
Average model performance to predict soil organic carbon content [log (SOC), g kg−1],
soil total nitrogen [log (STN), g kg−1], and bulk density (g cm−3) based on 100 opera-
tions of BRT model.

Parameters Depth SD MAE RMSE R2 LUCC

SOC 0–5 0.55 0.40 0.55 0.65 0.80
5–15 0.56 0.42 0.56 0.59 0.75
15–30 0.77 0.52 0.77 0.54 0.69
30–60 1.09 0.80 1.09 0.50 0.65
60–100 1.21 0.85 1.21 0.39 0.56

STN 0–5 0.38 0.27 0.38 0.55 0.72
5–15 0.37 0.28 0.37 0.52 0.70
15–30 0.42 0.30 0.42 0.49 0.70
30–60 0.51 0.38 0.51 0.45 0.65
60–100 0.97 0.65 0.97 0.33 0.48

BD 0–5 0.14 0.11 0.14 0.60 0.85
5–15 0.12 0.10 0.12 0.57 0.85
15–30 0.17 0.13 0.17 0.54 0.79
30–60 0.18 0.14 0.18 0.50 0.79
60–100 0.22 0.16 0.22 0.45 0.72

Note: SD, standard deviation; MAE, the mean error; RMSE, the root mean squared error;
R2, the coefficient of determination; LUCC, the Lin's concordance correlation coefficient.
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appeared to be less variable with depth (Table 1).
Linear correlations among SOC, STN and BD with quantitative

predictors are showed in Table 2. SOC was positively correlated with
ground roughness (GR), elevation, NDVI, landuse, slope, MAT and MAP
at all levels. Nevertheless, STN was only positively correlated with GR,
elevation and MAP for all five levels. At the same time, the rule of BD
was different from STN and SOC on the correlation, which was nega-
tively correlated with GR, elevation slope and MAP. Of more interest for
our study, correlations with GR and elevation were all significant. The
relation with elevation in this natural area was expected; the slightly
higher correlation with the GR was somewhat surprising. Predictors
within each group (topography, climate, imagery) and between groups
had some collinearity.

3.2. Sampling strategy evaluation, model performance, and uncertainty

Because our study area and high spatial variability of SOC and STN
are large, collecting a large number of observations following a sound
sampling design is prohibitively impractical (Zhu et al., 2008; Yang
et al., 2013). It is very likely that many designed sampling points are
not accessible in field. Thus, probability sampling or condition Latin
hypercube sampling (cLHS) may be not appropriate. Table 3 showed
that BRT model had a steady ability to predict the SOC, STN and BD
contents at different layers. BRT model could explain the spatial var-
iation ranging from 39% to 65% for SOC, 33% to 55% for STN, and 45%
to 60% for BD at different depths. Those results indicated that sampling
strategy can capture the local variation of SOC and STN spatial dis-
tribution. Furthermore, this also suggested that the sampling strategy in
this study do capture the major pattern of soil-landscape relationships
over the area.

For predicting the SOC, STN and BD, 9 environmental variables
were used in our BRT model. The model performance was summarized
on the basis of R2, MAE, RMSE and LUCC with 100 model iterations and
using 10-fold cross-validation (Table 3). The result showed that the BRT
model had excellent predictive capability, with systematically higher R2

and LUCC, lower MAE and RMSE values in prediction of SOC, STN and
BD. In Denmark, Adhikari et al. (2014) used Regression kinging (RK)
and Equal-area spline profile function to predict SOC and BD only could
explain the change of 23–41% at five layers. Meanwhile, the R2 values
suggested that the BRT model could explain approximately 65%, 56%
and 60% (Table 3) within 0–5 cm depth of the total SOC, STN and BD
variability in our study. However, the BRT model showed relatively low
prediction performance at 60–100 cm depth (R2, 39%, 33% and 45%),
which may be due to the reduction of the explanatory power of the
auxiliary environment variables along with the increase of the depth of
the soil layer (Adhikari et al., 2014). Although environmental condi-
tions, sampling strategies and validation methods of our study differ
from previous studies, the performance of BRT model in these studies is
comparable. Martin et al. (2011) developed a BRT model to explain
50%–58% of the variance of SOC in France. A study in the central
highlands of Madagascar, Razakamanarivo et al. (2011) explained
61–68% of the total SOC variability using a BRT model. Wang et al.
(2013) used a geographically weighted regression (GWR) method to
predict mapping of soil total nitrogen (STN) and explain 57% of the
total TN variability in Fujian province, China.

To evaluate the modeling uncertainty, we calculated the SDs of
validation measurements from 100 runs and found that the BRT model
produced low SDs of MAE, RMSE, R2 and LCCC (Table 3). Although
there were different elements of variability and uncertainty in C and N
research including the system error, random error and unpremeditated

Fig. 2. Standard deviation (SD) of SOC, STN and BD predicted from 100 runs of the boosted regression trees (BRT) models: (a) SD of SOC predicted; (b) SD of STN predicted; and (c) SD of
BD predicted.
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error (Krishnan et al., 2007; L. Yang et al., 2016), the lower SD values of
MAE, RMSE and R2 indicated the BRT model was stable in predicting
the SOC, STN and BD contents. Figs. 2, 5, 6 and 7 showed the mean and
SD values for these 100 maps. The mean and SD values of the predicted
0–5 cm layer of the 100 runs were 15.2 and 16.0 g kg−1 for SOC, 1.0
and 0.5 g kg−1 for STN, and 1.2 and 0.2 g cm−3 for BD, respectively.
Notably, the SOC, STN and BD predicted yielded lower SD values than
did the collected samples (Table 1); thus, the predicted SOC, STN and
BD variability was smaller than was actually observed. Furthermore,
this result indicated that the BRT model could overcome the model
uncertainty and had a stable performance. Descriptive statistics of
Table 3 also reveals that the BRT model had excellent performance in
the spatial prediction of SOC, STN and BD.

To further illustrate the uncertainty of BRT model, we used a box-
plot of R2 distributions at different depths of SOC, STN and BD contents
based on 100 iterations (Fig. 3). The uncertainty of the SOC, STN and
BD prediction increased with depth. The mean R2 at different depths
ranged from 0.39 to 0.65 for SOC, 0.33 to 0.55 for STN and 0.45 to 0.60
for BD. The high mean R2 for BRT model was expected because all of
the data available were used to train the model benefited from the
application of 10-fold cross-validation. Furthermore, adopting a scien-
tific sampling strategy could precisely predict of SOC, TN and BD
contents in the complex and heterogeneous landscape research area
(Wang et al., 2016). The variation of R2 for SOC, STN and BD con-
centrations form BRT model based on 100 iterations was high except
60–100 cm (Fig. 3), indicating instability of the model in its prediction.
With the increase of depth, SOC, STN and BD of R2 had a similar linear
decreasing trend. This could be linked to the terrain parameters used as

major predictors because most of these parameters explain soil surface
phenomena and the uncertainty increases with depth (Adhikari et al.,
2014). Due to the different soil types, land use pattern and vegetation in
this study area, the BRT model may be overestimated or under-
estimated the contents of SOC and STN, which may cause an estimation
error finally. Furthermore, estimation of the SOC and STN stocks are
limited to 100 cm depth in this study which underestimates the stock
beyond this depth, since significant amount of stock usually present
beyond 100 cm depth.

3.3. Importance of environmental variables

The relative importance (RI) of each environmental variable in BRT
model was assessed by iterating 100 times of simulations, normalizing
the environmental variables of each model to 100% (Fig. 4). The en-
vironmental variables of each variable in the model of SOC, STN and BD
showed different RI. There was a large influence of precipitation,
landuse, NDVI and some terrain parameters such as elevation, slope
gradient, and SAGA wetness index on the spatial distribution of SOC,
STN and BD contents.

There were highly significant correlations of SOC, STN and BD
contents with all topographic variables (Table 2). Topography is one of
five soil formation factors, and it can influence the moisture-tempera-
ture conditions and distribution of soil formation substance (Jenny,
1941). Therefore, there was a closely relationship between the spatial
variability of soil properties with topographic variables (Charles et al.,
2006; L. Yang et al., 2016). Our achievements revealed that the topo-
graphic variables had the most importance in predicting SOC, STN and

Fig. 3. R2 distributions from BRT in predicting SOC (a),
STN (b) and BD (c) concentrations at different depths based
on 100 iterations.
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BD contents (Fig. 3). Among all topographic variables, elevation played
the most important role in this process of predicting the distribution of
SOC, STN and BD. This could be due to the redistribution under Hy-
drothermal Condition leading effect of litter decomposition rate,
causing the periodic change of carbon and nitrogen, and thus indirectly
affecting bulk density change (Tsui et al., 2004; Martin et al., 2014;
Adhikari et al., 2014). The SAGA wetness index (TWI) was frequently
used to simulate the ideal soil moisture conditions in a watershed
quantitatively, and it was the most commonly used variables for pre-
dicting the spatial distribution of SOC, STN and BD contents (Adhikari
et al., 2014; L. Yang et al., 2016). The contents of SOC, STN and BD
showed significantly positive correlations with slope (Table 2). A si-
milar finding was analyzed in China and Spain (Tsui et al., 2004; Wang
et al., 2012a; Hontoria et al., 1999; L. Yang et al., 2016). However, a
negative effect of slope on SOC distribution was also reported in Hall's
(1983). In this study, this contrasting correlation could be explained by
the different way of landuse, steeper hills were mainly distributed to
woodland and grassland, only a gentler slope can be converted for
cultivated land, whereas gentler slopes for cultivated land was rela-
tively lower SOC and STN contents. Furthermore, the relationship be-
tween BD with SAGA Wetness Index is just the opposite.

The NDVI and landuse types were the important factors affecting
the content of SOC, STN and BD (Jobbágy and Jackson, 2000; Wang
et al., 2011; L. Yang et al., 2016; R. Yang et al., 2016a). Wang et al.
(2000) reported that NDVI is the main factor to control SOC and STN.
The spatial topsoil carbon pattern was highly related to NDVI (Jobbágy
and Jackson, 2000). Meanwhile, NDVI was highly predictive of the SOC
and STN contents based on the finding of the derived vegetation index

reflected vegetation productivity and biomass (Bronson et al., 2004; Liu
et al., 2012; Wang et al., 2013). Those findings imply that there was a
potential application of remote sensing techniques to mapping the SOC
and STN distribution in large regions. However, this finding differs
from our conclusions, which suggest that the effect of NDVI may be
mediated by using topographic and climatic variables (Wang et al.,
2016). Landuse type was another indicator of vegetation, and it ap-
peared to be an important predictor of SOC and STN stocks in the BRT
model (Martin et al., 2011; Wang et al., 2011). However, the RI of
landuse type was much lower than the RI of NDVI in our models. This
difference can be partly explained by the greater predictive ability of
quantitative variables (L. Yang et al., 2016) than categorical variables
(used by Martin et al., 2011). Furthermore, low sampling density may
cause the sample can't really reflect the actual situation in this study
area, so lead to certain environment variables in the model prediction
less important than practical efficacy (L. Yang et al., 2016).

Precipitation and temperature were the key climatic variables that
affect the spatial distribution of SOC, STN and BD in the continental
monsoon climate (Follett et al., 2012; Van Wambeke, 2000; Saiz et al.,
2012). In this study, elevation has an impact on temperature and pre-
cipitation. A highly significant and strongly negative correlation was
found between elevation and annual mean maximum temperature,
between elevation and annual mean minimum temperature, likewise
between elevation and precipitation (Table 3). The presence of highly
significant correlations of elevation with temperature, precipitation,
suggesting that elevation may be a more significant controlling factor
than temperature and precipitation and thereby may serve as a climate
proxy and a strong predictor of SOC and STN status (Wang et al.,

Fig. 4. Relative importance (RI) of each variable as determined from 100 runs of the boosted regression trees model, which are showed in a decreasing order and normalized to 100%. a)
RI of soil organic carbon; b) RI of soil total nitrogen; c) RI of bulk density; GR, ground roughness; NDVI, Normalized Difference Vegetation Index; MAT, mean annual temperature; MAP,
mean annual precipitation; Prof_cur, profile curvature; TWI, SAGA wetness index.
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2012b).

3.4. Modeling of the SOC, STN and BD depth distribution

Predicted maps of SOC (Fig. 5), STN (Fig. 6) and BD (Fig. 7) con-
tents at five soil depths were produced at a resolution of 90 × 90 m.

The highest mean SOC and STN contents were in the 0–5 cm layer
(mean 15.2 and 1.6 g kg−1). Predicted SOC and STN contents de-
creased with soil depth and at 60–100 cm, those were on average 1.5
and 0.4 g kg−1, respectively. The soils of northeast and southwest of
Liaoning province had relatively higher SOC and STN contents than the
rest of the study area. Along the central plains and the coastline,

Fig. 5. Spatial distribution of predicted soil organic carbon contents at different depths.

Fig. 6. Spatial distribution of predicted soil total nitrogen contents at different depths.
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especially in the south, soils with lower SOC and STN contents were
mapped (Figs. 5 and 6). The prediction errors were higher towards the
west. The prediction error increased with soil depth. For the 0–5 cm
layer, the mean error of SOC was 0.4 g kg−1 and it increased to
0.7 g kg−1 at 60–100 cm soil depth while the mean error of STN were
0.2 g kg−1 (0–5 cm) and 0.6 g kg−1 (60–100 cm) (Fig. 2a and b).

The distribution maps of SOC and STN also showed similar spatial
distribution patterns (Fig. 8). However, the spatial distribution of BD
was contrary to that of SOC and STN contents, and there was a higher
BD content than any other areas. High SOC and STN contents are in the
northeastern area of Liaoning Province. The spatial distribution pattern
of SOC and STN had a strong relationship with the topographic vari-
ables, especially the elevation (Fig. 8). The vertical distribution of SOC
and STN at the top 1 m depth along latitude 41.6°E was displayed. As
expected, SOC and STN contents dominantly concentrated in the top-
soil, and decreased with depth. In mountain areas, SOC and STN dis-
tributions showed a sharp discontinuity. The effect of elevation on SOC
and STN has been demonstrated by recent researches (Powers and
Schlesinger, 2002; Tsui et al., 2004; Tian et al., 2007; Podwojewski
et al., 2011; Wang et al., 2011). Tsui et al. (2013) reported that the SOC
content increased significantly with the increase of elevation. Different
elevation gradients affected the input and loss of soil carbon and ni-
trogen mainly through indirect controls such as precipitation and
temperature (Garten and Hanson, 2006; Wang et al., 2011).

3.5. Spatial prediction of SOC and STN stocks

SOC and STN stocks maps were made for two soil depths (0–30 cm
and 0–100 cm) (Figs. 9 and 10). For 0–30 cm, average SOC and STN
stocks were about 3.1 kg m−2 and 0.6 kg m−2, those were about
4.5 kg m−2 and 0.9 kg m−2 for the top 1 m depth. Most of the northern
and southwestern parts of Liaoning Province had> 8.0 kg m−2 in the
top 30 cm whereas the average stock in the central part of the study
area was< 8.0 kg m−2. The stocks of SOC and STN in different soil
groups are presented in Table 4. Argosols and Cambosols contained
about 91% of the total SOC and STN stocks (Table 4). Other soil groups

that contained significant amounts of SOC and STN stocks were An-
throsols (3% vs 3%) and Primosols (5% vs 4%). Although Histosols had
SOC and STN stocks of 4.9 and 1.0 kg m−2, its total content was less
0.2 Tg. For all soil groups,> 69% and 49% of the total SOC and STN
stocks were in the top 30 cm. This conclusion had been confirmed by
Liu et al. (2012), whereby they believed that 43% and 39% of the stocks
of SOC and STN in the upper 30 cm. Furthermore, Adhikari et al. (2014)
predicted the storage of SOC in Denmark and considered about 59% of
SOC stock was in the upper 30 cm.

Of the total storage of SOC and STN were 406 Tg and 63 Tg whereby
approximately 69% and 49% distributed in upper 30 cm. Soils under
forest had an average SOC stock of 4.1 kg m−2 and contained about
245 Tg which was almost 60% of the total estimated SOC stock
(Table 5). Another large fraction of SOC and STN stocks were found in
the soils of the agriculture, and it had a stock of 120 and 24 Tg in the
top 30 cm and about 172 and 52 Tg up to 1 m soil depth. Wetland areas
contained large amounts of SOC and STN, and average SOC and STN
within 1 m soil depth were about 2.8 kg m−2 and 0.9 kg m−2 which
were nearly 5% and 7% of the total stock. Almost 90% of the total SOC
and STN stocks within the top 1 m soil depth were found in the soils
under forest, agriculture and wetland.

4. Conclusions

We applied a BRT model to indirectly and digitally map the SOC and
STN stocks at different depths for Liaoning Province of China. The re-
sults demonstrated that the BRT combination with equal-area spline
profile function was robust and easy to produce soil property maps by
using less data points of the target variable and several environmental
variables. The most important variables affecting the spatial distribu-
tion of SOC and STN were elevation, precipitation, temperature, NDVI,
landuse, and saga wetness index in our model. Meanwhile, model
performance was better for upper soil layers than lower layers and al-
most all prediction models suffered from lager uncertainties.

In our study area, almost 91% of the total SOC and STN stocks were
found in Argosols and Cambosols. About 90% of SOC and STN stocks

Fig. 7. Spatial distribution of predicted soil bulk density values at different depths.
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were held in soils under forest, agriculture and wetlands. This had
implications for land-use policy making, for instance, the policy on how
the current land-use types should be managed to enhance C and N se-
questration to mitigate global warming. For soils cultivated with agri-
cultural crops, 70% and 45% of the SOC and STN stocks were found in

the top 30 cm, respectively. We conclude that long-term use of fertilizer
had a strong enrichment on farmland carbon and nitrogen accumula-
tion.

In addition, this study provides an example for efficiently mapping
regional SOC and STN stocks based on GlobalSoilMap procedures.

Fig. 8. Vertical distribution of soil organic
carbon content and soil total nitrogen at
the top 1 m depth along latitude 41.6°E.

Fig. 9. Spatial distribution of soil organic
carbon stocks (SOC) at 0–30 and 0–100 cm.
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These methods can be tested and used in other parts of the world.
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