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Abstract: Biofuels’ induced land-use change (ILUC) emissions have been widely studied over the
past 15 years. Many studies have addressed uncertainties associated with these estimates. These
studies have broadly examined uncertainties associated with the choice of economic models, their
assumptions and parameters, and a few bio-physical variables. However, uncertainties in land-use
emission factors that represent the soil and vegetation carbon contents of various land types across
the world and are used to estimate carbon fluxes due to land conversions are mostly overlooked. This
paper calls attention to this important omission. It highlights some important sources of uncertainty
in land-use emissions factors, explores the range in these factors from established data sources, and
compares the influence of their variability on ILUC emissions for several sustainable aviation fuel
(SAF) pathways. The estimated land-use changes for each pathway are taken from a well-known
computable general equilibrium model, GTAP-BIO. Two well-known carbon calculator models
(CCLUB and AEZ-EF) that represent two different sets of emissions factors are used to convert the
GTAP-BIO estimated land-use changes to ILUC emissions. The results show that the calculated
ILUC emissions obtained from these carbon calculators for each examined SAF pathway are largely
different, even for the same amortization time horizon. For example, the ILUC emissions values
obtained from the AEZ-EF and CCLUB models for producing jet fuel from corn ethanol for a 25-year
amortization period are 24.9 gCO2e/MJ and 15.96 gCO2e/MJ, respectively. This represents a 60%
difference between the results of these two carbon calculators for the same set of land-use changes.
The results show larger differences for other pathways as well.

Keywords: biofuels; ILUC; emission factors; uncertainties

1. Introduction

Since the late 2000s, many papers have estimated greenhouse gas (GHG) emissions
of biofuels’ induced land-use change (ILUC). To accomplish this task, as described by the
Committee on Current Methods for Life Cycle Analyses of Low-Carbon Transportation
Fuels in the United States [1], the examined studies for the calculation of ILUC emissions fol-
lowed a similar approach consisting of two sequential phases: (i) using an economic model
to project regional land-use changes for the biofuel under study, and (ii) implementing a
set of land-use emission factors (LUEFs) combined with some supporting assumptions to
convert the projected land-use changes to GHG emissions. In general, the LUEFs estimate
the soil and vegetation carbon content of land and are used to quantify emissions from
different types of land conversions.
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The existing literature has frequently noted that the estimated ILUC emissions val-
ues are uncertain [1–8]. The variations in modeling approach and structure, modeling
assumptions and data, and implemented economic parameters are identified as the main
sources of uncertainties in ILUC emissions values. However, only a few papers have stud-
ied uncertainties in LUEFs and their associated assumptions. Plevin et al. [6] conducted
a sensitivity assessment combining the GTAP-BIO model with an agro-ecological zone
emission factor (AEZ-EF) model [9,10] and concluded that the estimated ILUC emissions
values are more sensitive to the changes in economic parameters than the changes in LUEFs.
However, by using only one source for LUEFs, the authors’ sensitivity assessment did not
account for variability in background data or modeling assumptions behind the LUEFs.
Leland et al. [7] performed a similar sensitivity assessment focusing on the impacts of four
selected AEZ-EF input parameters on ILUC emission. In a related perspective, Taheripour
and Tyner [4] examined the influence of different sets of LUEFs in combination with the
estimated land-use changes for various biofuel pathways obtained from the GTAP-BIO
model and concluded that the estimated ILUC emissions value of each pathway vary
significantly with changes in the implemented LUEFs obtained from alternative sources.

In another study, Chen et al. [8] compared the estimated land-use changes for several
biodiesel pathways obtained from the GTAP-BIO model using two different set of emission
factors, including the Carbon Calculator for Land-Use and Land Management Change from
Biofuels Production (CCLUB) [11] and AEZ-EF models. The authors showed that the ILUC
emissions value of each pathway vary significantly with the implemented LUEFs used in
these emission accounting models. In particular, they showed that the selected LUEFs for
marginal cropland could largely alter the estimated ILUC emissions values. The findings
of these studies demonstrate that the role of LUEFs in assessing ILUC emissions values is
an important gap in land-use change research that has not been adequately evaluated.

This paper aims to fill this knowledge gap with two different but related research
activities. The first evaluates the available sources of information on vegetation and soil
carbon datasets that have been used in developing LUEFs to understand their similarities
and differences across various land types and ecological conditions. The second applies
the two emission accounting models mentioned above (AEZ-EF and CCLUB) to estimated
land-use changes obtained from an advanced version of the GTAP-BIO model for eight
Sustainable Aviation Fuel (SAF) pathways to examine the sensitivity of the ILUC emissions
values to the changes in the LUEFs embedded in these accounting models. The eight
selected SAF pathways represent those pathways that could be deployed in the US. These
research activities significantly contribute to the debates on uncertainties in ILUC emissions
values by highlighting how differences in the data source and LUEF modeling approach
affect ILUC emissions values.

The article is organized as follows. The Materials and Methods section explains how
ILUC emissions have been calculated and introduces the data sources that are often used
to estimate LUEFs and their components. This section also outlines the main features of the
GTAP-BIO model, which is frequently applied to estimate ILUC emissions. The section
ends with a presentation of methods used in the present study to calculate ILUC emissions
for a set of eight biofuel aviation pathways with two different set of LUEFs to highlight
the importance of uncertainties in these factors. The results section includes a presentation
of the wide ranges of LUEFs obtained from different datasets, a review of the causes of
differences between LUEF datasets, and highlights the influence of these differences on a
case study of ILUC emissions for the eight aviation biofuel pathways. We conclude the
article with a short discussion emphasizing the importance of uncertainties in LUEFs and
the ways that this line of uncertainty should be addressed by future research.

2. Materials and Methods
2.1. Common Approach in Calcualting ILUC Emissions

As noted in the Introduction, two sets of data are required to calculate ILUC emissions
from a biofuel pathway: (i) estimated land-use changes due to an increase in consump-
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tion/production of the selected biofuel, and (ii) a set of LUEFs for the relevant land-use
transitions. In general, regardless of differences across modeling practices, the following
stylized formula has been implemented to calculate an ILUC emissions value for a given
pathway (Zhao et al. [12]):

ILUC =
∑i,k,r ∆Li,k,r × LUEFi,k,r

T × E
(1)

In this formula, the index i represents the list of all types of land transitions (e.g., forest
to cropland, forest to pasture, etc.), the index k shows spatial resolution (which could
represent the national level, agro-ecological level, grid cell, or any other geographical
resolution) within each country, and the index r indicates countries. The variables ∆L,
LUEF, T, and E are land conversions in hectares, land-use emission factors measured in
gCO2e per hectare, amortization time horizon in years, and annual energy produced by
the pathway under study measured in megajoules (MJ), respectively. Therefore, an ILUC
emissions value estimates emissions in gCO2e/MJ.

Hence, one needs to determine ∆L, LUEF, T, and E in calculating ILUC emissions
values. The last two variables of this list are usually predetermined by the accounting
system and fuel type, respectively. However, the first two variables are unknown and must
be estimated, simulated, or measured. A sizeable expansion in production or consumption
of a biofuel pathway that uses agricultural feedstocks (e.g., corn, soybeans, or perennial
grasses) could induce land-use changes directly or indirectly at the local, national, and
international levels (Hertel et al. [13]. The size, location, and type of land-use changes
(i.e., ∆Li,k,r) could vary based on the characteristics of the pathway under consideration
and on many economic and biophysical variables. Unfortunately, land-use changes are not
directly observable or measurable. Economic models have been used to estimate land-use
changes. In this paper, we use the results of a well-known computable general equilibrium
(CGE) model, GTAP-BIO, which has been widely used in this field of research to assess
land-use changes for various biofuel pathways.

2.2. Components and Sources of LUEFs

In calculating ILUC emissions values, one needs to determine the variable LUEFi,k,r
for the i, k, and r indices, which is not a trivial task. In principle, this variable should
capture all types of carbon fluxes associated with each type of land conversion. These
fluxes are driven by changes in biological and mineral carbon pools, including soil organic
carbon, carbon stock in above- and belowground live biomass, and dead organic matter
and litter. Additionally, some carbon accounting frameworks include forgone carbon
sequestration, emissions due to biomass burning through land clearing, and non-CO2
emissions associated with the land use, land-use change, and forestry (LULUCF). Because
of differences in background data and the included categories of emissions, alternative
data sources provide widely varying estimates of LUEFi,k,r for the same land-use transition
and location.

Several foundational data sources in this field include the Harmonized World Soil
Database (HWSD) [14], IPCC [15,16], Winrock [17], and Woods Hole [18] datasets of
carbon in soil and vegetation. Terrestrial-biogeochemical models such as Century [19,20],
Daycent [21], TEM [22], and ISAM [23] have also been widely used to estimate the core
components of LUEFs. Additional sources for critical background data on terrestrial carbon
pools and associated GHG emissions during land-use transitions include individual studies
such as Gibbs et al. [24], Saatchi et al. [25], and Batjes [26].

In addition to the required data on soil and vegetation carbon stocks, depending on
the case under study, one may need additional information or use certain assumptions to
mix and match ∆Li,k,r and LUEFi,k,r variables. One may follow different approaches and
assumptions to facilitate this process, which can cause significant variations in the resulting
ILUC emissions values. The following three examples represent different approaches that
the AEZ-EF and CCLUB models use to match the GTAP-BIO estimated land-use changes
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with their emission factors. Example 1: The GTAP-BIO model projects conversion of
“cropland pasture” (a category of marginal land) to crop production due to biofuel shocks.
In an ad hoc manner, the AEZ-EF model assumes that the soil carbon content for this
type of land in each AEZ region is half of that of pasture land. On the other hand, the
CCLUB model relies on a terrestrial-biogeochemical model (Century) to evaluate carbon
content for this type of land by AEZ. Example 2: The AEZ-EF uses some assumptions and
extends the original GTAP-BIO land conversions beyond the land conversions that this
CGE model provides to match the land conversions with its emissions factors. For instance,
the AEZ-EF model includes emission factors for converting forest or pasture to sugarcane.
The GTAP-BIO model does not determine these land conversions. However, the AEZ-EF
model uses some assumptions and determines these land conversions. The CCLUB model
only uses the original GTAP-BIO land conversions. Example 3: The AEZ-EF uses some
assumptions and assigns a portion of converted forest to cropland as forest on peat land,
while the CCLUB uses more recent data with a different assumed portion of converted
forest to cropland as forest on peat land.

Because the results of the GTAP-BIO model are used in this paper, we use two emis-
sions accounting models that have been developed and used to convert the results of this
model to ILUC emissions values. These two models are the AEZ-EF and CCLUB. The
AEZ-EF model relies on IPCC, FAO, HWSD, and several other data sources to convert the
GTAP-BIO results to ILUC emissions. This model follows the IPCC approach of using the
differences in the biomass and soil organic carbon (SOC) pools between land-cover types
as the emissions (or sequestration) values from land conversion.

In contrast, CCLUB provides users with Century simulated GHG emissions changes
in US domestic land conversions to cropland and the option of using either the Winrock or
Woods Hole data sources for international land conversions to simulate biomass and SOC
changes between land-use categories over a period of time. As mentioned earlier, using
the Century model, the CCLUB model also provides some assessments for the emission
factors associated with the land category of “cropland pasture”. In conclusion, the AEZ-EF
and CCLUB models use different sources of data on carbon pools and follow different
assumptions to convert the results of the GTAP-BIO model to ILUC emissions, especially
for US domestic land conversions.

To highlight uncertainties and variations in the data on LUEFi,k,r, we first review four
existing sets of emission factors for converting forest to cropland and pasture to cropland:
AEZ-EF, TEM, Winrock, and Woods Hole. These datasets have been used in calculating
ILUC values for various US biofuel pathways over the past 15 years, but are limited by
their reliance on outdated data in assessing emission factors. For example, the AEZ-EF
model uses the 2006 IPCC guidelines for national greenhouse gas inventories instead of the
new guidelines published in 2019. To highlight the potential impacts of using outdated
data, we compare changes in the reference values for SOC stocks obtained from the IPCC
2006 and 2019 guidelines.

Finally, we calculate ILUC emissions values for eight aviation biofuel pathways that
can be produced in the US by using the estimated land-use changes provided by the
GTAP-BIO model and CCLUB carbon accounting model and compare the results with the
corresponding values that have been calculated by the Carbon Offsetting and Reduction
Scheme for International Aviation (CORSIA) of the International Civil Aviation Organiza-
tion (ICAO) [12] using the AEZ-EF model. The eight selected SAF pathways are introduced
in the next section. In this paper, we calculate ILUC emissions values for the selected
pathways using the AEZ-EF and CCLUB models to highlight their differences.

2.3. A Short Review of GTAP-BIO Model and Implemented ∆L for the Examined SAF Pathways

As mentioned above, the AEZ-EF and CCLUB emission calculators were designed to
use the estimated land conversions (∆L) obtained from the GTAP-BIO model. Hence, in
this paper, we use the estimated land-use changes obtained from this CGE model which has
been widely used in assessing ILUC emissions values due to biofuel production and policy.
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This global CGE model is an advanced version of the standard GTAP model originally
developed by Hertel [27]. This global macro model represents consumers and producers
and simulates their behaviors in consuming and producing goods and services to determine
their demands and supplies, respectively. It also includes government consumption,
international trade, and investment. The standard GTAP model traces the production,
consumption, and trade of all goods and services produced across the world by country.
However, the standard model and its database do not represent biofuels and their by-
products explicitly. The GTAP-BIO model and its database remedy this deficiency and
explicitly represent supplies and uses of alternative types of biofuels that are commercially
produced around the world [13,28–32]. These biofuels include ethanol produced from
grains (e.g., corn and wheat) and sugar crops (e.g., sugarcane and sugar beet) and biodiesel
produced from soy oil, rapeseed oil, palm oil, and other types of vegetable oils. Note that
using oilseeds for biodiesel production generates oilseed meal and converting grains to
ethanol generates distiller’s dried grains with solubles (DDGS). These by-products play an
important role when assessing the system-wide land-use effects of a biofuel pathway.

In addition, the GTAP-BIO model represents land uses by the agricultural and forestry
sectors and traces their changes due to changes in demands for foods and biofuels. The agri-
cultural sectors in this model include crop producers (rice, wheat, coarse grains, soybeans,
rapeseed, palm oil, other oilseeds, sugar crops, and other crops) and livestock producers
(dairy farms, ruminants, and non-ruminants). The GTAP-BIO model divides the accessible
land across three land-cover categories: forest, pasture/grassland, and cropland. It then
allocates pasture land across livestock activities and cropland across crop producers. The
model takes into account multiple cropping (producing more than one crop per year on the
same cropland), allows the return of unused cropland to crop production if needed, and
takes into account yield improvement due to higher crop profitability.

An advanced version of GTAP-BIO has been developed to assess potential land-use
changes for pioneering biofuels that are not yet produced at the commercial level. In
addition to traditional crops, this model also has the capability to simulate the production
of dedicated energy crops such as miscanthus, switchgrass, and poplar. Zhao et al. [12]
have used this advanced version of the GTAP-BIO model to estimate land-use changes
for a wide range of SAF pathways that can be produced across the world. This study
applies the estimated land-use changes provided by Zhao et al. [12] for eight SAF pathways
that can be produced in the US. These pathways are: (i) jet fuel produced from soy oil
using the hydro-processed ester and fatty acid technology (soy oil HEFA); (ii) jet fuel
produced from corn using the iso-butanol alcohol technology (corn ATJ); (iii) jet fuel
produced from corn ethanol (corn ETJ); (iv) jet fuel produced from miscanthus using
the Fischer–Tropsch technology (miscanthus FTJ); (v) jet fuel produced from switchgrass
using the Fischer–Tropsch technology (switchgrass FTJ); (vi) jet fuel produced from poplar
using the Fischer–Tropsch technology (poplar FTJ); (vii) jet fuel produced from miscanthus
using the iso-butanol alcohol technology (miscanthus ATJ); and (viii) jet fuel produced
from switchgrass using the iso-butanol alcohol technology (miscanthus ATJ). The technical
details regarding these pathways are provided in the CORSIA Supporting Document [33].
More details about the estimated land-use changes for these pathways are provided in
Zhao et al. [12]. The estimated land-use changes for the selected SAF pathways were
obtained for the given expansions in their fuel supplies as reported in Table 1.

As shown in Table 1, in addition to jet fuel, some SAF pathways produce a conventional
biofuel co-product as well. The co-product biofuels could be ethanol or biodiesel that can
be used in road transportation. The biofuel co-products of the HEFA and ETJ technologies
are biodiesel and diesel/gasoline, respectively. The ATJ technology produces no co-product
biofuel. The total energy output for each pathway (including jet fuel and conventional
biofuel) is shown in petajoules and also in billion gallons of gasoline equivalent (BGGE) in
Table 1. The variable E presented in the denominator of Equation (1) represents the total
energy output of each pathway after conversion to megajoules.
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Table 1. Assumed expansions in supplies of the selected SAF pathways.

Pathways

Increases in Fuel Supplies
in Petajoules

Increases in Fuel Supplies in Bllion
Gallons of Gasolin Equivalent

Jet Fuel Biofuel
Co-product Total Jet Fuel Biofuel

Co-product Total

Soy oil HEFA 57.1 171.3 228.4 0.47 1.4 1.86

Corn ATJ 103.8 0 103.8 0.85 0 0.85

Corn ETJ 103.8 32.2 136 0.85 0.26 1.11

Miscanthus FTJ 69.2 207.7 276.9 0.57 1.7 2.26

Switchgrass FTJ 69.2 207.7 276.9 0.57 1.7 2.26

Poplar FTJ 69.2 207.7 276.9 0.57 1.7 2.26

Miscanthus ATJ 69.2 0 69.2 0.57 0 0.57

Switchgrass ATJ 69.2 0 69.2 0.57 0 0.57
Source: Table 64 of CORSIA Supporting Document [33]. HEFA, ATJ, ETJ, and FTJ stand for producing jet
fuel using hydro-processed ester and fatty acid; iso-butanol alcohol; ethanol to jet fuel; and Fischer–Tropsch
technologies, respectively.

3. Results
3.1. Uncertainty in Emission Factors

The results show that the existing data sources provide different assessments of
emission factors for a given land type conversion (pasture to cropland or forest to cropland)
in a geographical region. Figure 1 provides comparisons across the existing data sources
on emission factors for converting forest and pasture to cropland across the world. The
data sources are the AEZ-EF, TEM, Winrock, and Woods Hole datasets. This figure shows
the following:

• Regardless of region or data source, the emission factors of converting forest land to
cropland are higher than the emission factors of converting pasture to cropland;

• Regardless of the data source for a given land type, the emission factors vary signifi-
cantly across regions. This is because the vegetation cover and soil characteristics vary
significantly across regions;

• For a given region and land type, alternative sources provide significantly different
emission factors. This item highlights uncertainties in LUEFs across data sources; and

• The observed variation among the alternative sources of LUEFs for a given country or
region is caused by many factors, including differences in model assumptions, system
boundaries, primary carbon stock data sources, and categorization of ecosystems and
land uses, among others. Major research efforts are needed to identify, prioritize, and
validate these factors to better assess the true scope and uncertainty of ILUC emissions.

To better assess this line of uncertainty, we examined the differences between these
emission factor sources by calculating the ratios of TEM/AEZ-EF, Woods Hole/AEZ-EF,
and Winrock/AEZ-EF for each type of land conversion (pasture to cropland and forest to
cropland) in each region. As shown in Figure 2, the ratios for both forest and pasture are
highly variable across regions. This figure shows the following:

• There is a large disparity among emission factors for the pasture land to cropland
transition, which often vary by a factor of three or more between the smallest and
largest estimates;

• The TEM emissions factors for pasture land to cropland in Brazil, East Asia, Malaysia,
and Indonesia, and the rest of South Asia are much larger than those EFs from
other sources.

• The Woods Hole emission factors for pasture land to cropland in China, India, the
rest of South Asia, Russia, and some European regions are much larger than those
emissions factors from other sources;
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• The forest land to cropland transition emissions factors from TEM and Woods Hole
models are larger than those from other models;

• In each region, the disparity among the alternative sources of emission factors for
forest land is also considerable, but lower than the disparity for pasture land.

Figure 1. Emission factors for converting forest and pasture to cropland by region across different
data sources. The AEZ-EF emission factors represent weighted averages across AEZs of each region
using pasture and forest areas. The Winrock emission factors are taken from the CCLUB tables. Other
emission factors are obtained from Taheripour and Tyner [4]. The CEE and CIS regions represent
Central and Eastern Europe and the Commonwealth of Independent States, respectively.

These results suggest that differences across alternative sources of emission factors, in
many cases, are extremely large. This indicates that using alternative emission factors could
lead to major uncertainties in assessing ILUC emissions values. Each of these datasets
represents various data items, components, and assumptions. They represent different
assessments for soil organic carbon and carbon stock in above- and belowground live
biomass. Their assessments for dead organic matter and litter carbon pools are different.
For example, in addition to the carbon content of forest live biomass, emission factors may
include carbon stored in dead organic matter consists of litter and dead wood. Quantifica-
tion of these carbon sources is highly uncertain and varies across data sources. The existing
data sources also follow different assumptions in calculating forgone carbon sequestration.
Forgone sequestration refers to the carbon that would have been captured by soils or plants
that are lost due to land-use changes. Alternative sources that provide emission factors use
different data sources and follow different approaches and assumptions to assess forgone
sequestration. This leads to significant variations in emissions factors. The existing emis-
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sion factors may also follow different approaches in calculating biomass burning through
land clearing and non-CO2 emissions associated with LULUCF. Biomass burning may
accrue in land-clearing activities induced by expansions in demand for cropland. The
share of biomass burning in land-clearing activities varies across regions. In addition,
various approaches could be followed in assessing the CO2 and non-CO2 emissions due to
biomass burning. These factors jointly make the emissions induced by biomass burning
very uncertain.

With the observed variations in the presented emission factors, it should be very
clear that these factors are major sources of uncertainties. Understanding this line of
uncertainty could help to provide better estimates for ILUC emissions values for alternative
biofuel pathways.

Figure 2. Ratios of emission factors of TEM/AEZ-EF, Winrock/AEZ-EF, Woods Hole/AEZ-EF, and
AEZ-EF/AEZ-EF for converting pasture and forest to cropland by region. The AEZ-EF emission
factors represent weighted averages across AEZs of each region using pasture and forest areas. The
Winrock emission factors are taken from the CCLUB tables. Other emission factors are obtained from
Taheripour and Tyner [4]. The CEE and CIS regions represent Central and Eastern Europe and the
Commonwealth of Independent States, respectively.

3.2. Emission Factors Containing Outdated Data

As mentioned before, emission factors represent various data items, components, and
assumptions. Many of these data items have not been updated over time, while the existing
literature has provided their new updates. As an example, the AEZ-EF model following
Edwards et al. [34] assumes that 33% of an increase in palm plantation is converted from
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forest on peatland in Malaysia and Indonesia. However, as noted by Zhao et al. [12], more
recent data provided by Austin et al. [35] suggest lower rates of palm on peatland.

The AEZ-EF model relies on an outdated version of HWSD data and follows the IPCC
2006 guidelines to estimate SOC for each region-AEZ. The HWSD dataset has been revised
over time. However, the AEZ-EF emission factors have not been updated accordingly.
The first version of this dataset (V1.1) was released in 2009. The AEZ-EF model was built
using this version. The latest version of this dataset was released in 2023. Updating the
AEZ-EF data sources to represent the new version of HWSD data could affect the estimates
of ILUC emissions.

As another example and as explained above, the AEZ-EF model relies on the IPCC
2006 guidelines to determine its emission factors. However, the IPCC revises its datasets
and guidelines over time. These revisions suggest that soil and vegetation carbon content
data sources are uncertain and subject to reassessments over time. To highlight this fact,
consider Figure 3, which shows percent differences in the IPCC default reference values
for soil organic carbon stocks (SOCREF) for mineral soil presented in the 2019 and 2006
guidelines for various soil types and climate regions. This figure indicates that in most
cases, the default SOCREF values declined in the new IPCC guideline. This suggests that
the AEZ-EF model that uses the 2006 IPCC guidelines in determining SOC values needs
to adopt the newer 2019 IPCC guidelines to provide ILUC emissions based on the most
recent available information. Note that the SOC values are not the only data items of
the AEZ-EF model that should change due to revisions in the IPCC guidelines. Other
important data items and assumptions that need revisions according to the newer IPCC
guidelines are global warming potentials, litter data, soil stock change factors, and forest
combustion factors.

Figure 3. Percent differences in reference values for soil organic carbon stocks (SOCREF) between the
2019 and 2006 IPCC national accounting guidance for various soil types and climate regions. Here,
HAC, LAC, SAN, VOL, and WET stand for high activity clay soils, low activity clay soils, sandy soils,
volcanic soils, and wetland soils, respectively. Percent differences are [(SOCREF of 2019_SOCREF of
2006)/SOCREF of 2006] × 100.

3.3. ILUC Emissions for Selected SAF Pathways

The calculated ILUC emission values for the selected eight US SAF pathways differ
substantially when assessed using the AEZ-EF versus CCLUB carbon accounting models
(Table 2). For the soy oil HEFA, corn ATJ, and corn ETJ pathways, the CCLUB model pro-
vides lower ILUC emission values than AEZ-EF. In these cases, the difference is primarily
driven by a more detailed parameterization of the “cropland pasture” land category in
CCLUB compared to AEZ-EF. Based on extensive research characterizing cropland pasture,
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CCLUB accounts for accumulation of SOC upon conversion to cropland through Century
simulations. In contrast, the AEZ-EF model assumes on an ad hoc basis that the conversion
of cropland pasture to crop production releases carbon with a soil carbon content of half of
that for pasture land.

Table 2. Estimated ILUC emissions values for US SAF pathways using different emissions accounting
models for a 25-year amortization time horizon (gCO2e/MJ).

Pathways
ILUC Obtained from the AEZ-EF Model ILUC Obtained

from CCLUB
Model

Difference:
AEZ-EF–CCLUBSoil Organic

Carbon
Biomass
Carbon Others ** AEZ-EF Total

Soy oil HEFA 5 1.6 13.4 20 15.0 5.0

Corn ATJ 8.4 −0.3 14.4 22.5 14.4 8.1

Corn ETJ 9.4 −0.3 15.8 24.9 15.6 9.3

Miscanthus FTJ −33.6 −17.8 14.1 −37.3 −12.8 −24.5

Switchgrass FTJ −17.3 −11.8 20.9 −8.2 1.0 −9.2

Poplar FTJ −7.8 −19.5 17.7 −9.6 7.0 −16.6

Miscanthus ATJ −51 −25.3 17.8 −58.5 −26.1 −32.3

Switchgrass ATJ −28.7 −18.5 28.3 −18.9 −14.1 −4.7

Source: Zhao et al. [12]. HEFA, ATJ, ETJ, and FTJ stand for producing jet fuel using hydro-processed ester and
fatty acid; iso-butanol alcohol; ethanol to jet fuel; and Fischer–Tropsch technologies, respectively. ** Others include
natural vegetation, foregone sequestration, and peat land oxidation.

The results applying the AEZ-EF emissions factors suggest substantially lower ILUC
emissions for dedicated energy crops than those calculated using the CCLUB model. For
these biofuel pathways, the AEZ-EF assigns improvements in SOC per hectare of converted
cropland to the dedicated energy crops. However, CCLUB only considers improvements in
the SOC of cropland pasture. The implications of these differences are highlighted in Table 2.
The calculated SOC values indicate that the AEF-EF model assesses large negative changes
in SOC on land conversion to dedicated bioenergy crops. A match between the approaches
followed by these models in assessing SOC gains could lead to lower differences between
their results for the pathways that use dedicated energy crops as feedstock. As presented in
Table 2, those pathways that use dedicated energy crops provide major carbon savings due
to the accumulation of biomass carbon in the production processes of these energy crops
as well.

As mentioned above, Table 2 shows ILUC emissions values for a 25-year amortization
time horizon, the assumption in the ICAO CORSIA program. However, the US biofuel
policies consider a 30-year amortization time horizon. Table 3 provides the ILUC values for
the examined pathways for 25-year and 30-year amortization time horizons.

Table 3. Estimated ILUC emissions values for various SAF pathways using different emissions
accounting models for 25- and 30-year amortization time periods (gCO2e/MJ).

Pathways

Amortization Time Horizon

25 Years 30 Years

AEZ-EF CCLUB AEZ-EF CCLUB

Soy oil HEFA 20.0 15.0 16.6 12.5

Corn ATJ 22.5 14.4 18.7 12.0

Corn ETJ 24.9 15.6 20.8 13.0

Miscanthus FTJ −37.3 −12.8 −31.1 −10.7
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Table 3. Cont.

Pathways

Amortization Time Horizon

25 Years 30 Years

AEZ-EF CCLUB AEZ-EF CCLUB

Switchgrass FTJ −8.2 1.0 −6.8 0.9

Poplar FTJ −9.6 7.0 −8.0 5.9

Miscanthus ATJ iBuOH −58.5 −26.1 −48.7 −21.8

Switchgrass ATJ iBuOH −18.9 −14.1 −15.7 −11.8

Grain ATJ 22.5 14.4 18.7 12.0

Grain ETJ 24.9 15.6 20.8 13.0
HEFA, ATJ, ETJ, and FTJ stand for producing jet fuel using hydro-processed ester and fatty acid; iso-butanol
alcohol; ethanol to jet fuel; and Fischer–Tropsch technologies, respectively.

As shown in Table 3, a 30-year amortization time horizon leads to lower ILUC emis-
sions values for all pathways and for both the AEF-EF and CCLUB models.

3.4. Land-Use Emission Factors Used in Other Economic Models

Uncertainties associated with emission factors are not limited to the emission factors
that are used to convert the GTAP-BIO estimated land-use changes to ILUC emissions.
Other economic models that have been used to assess ILUC emissions are subject to
the same uncertainties. Here, we briefly introduce the emission factors of three other
economic models.

The economic projection and policy analysis (EPPA) model [36] which has been used
to assess land-use changes and their associated emissions uses a set of emissions factors
that were obtained from the TEM model [37,38]. These emissions factors are different
from those emission factors that are reported and used by Taheripour et al. [4] using the
same terrestrial model. This model estimates land-use emission factors by calculating the
net ecosystem productivity, the carbon emissions due to the conversion of natural land
to agricultural use, and carbon emissions because of the decomposition of forestry and
agricultural products [39]. The calculations of these components are subject to various
types of uncertainties regarding the implemented data and model parameters.

The global biosphere management model (GLOBIOM) [40] is another model which
has been used to evaluate ILUC emissions for various biofuel pathways [33]. This model
uses IPCC guidelines and data, a version of the HWSD dataset, and its own equations
to calculates carbon fluxes from land-use changes. While details regarding the emission
factors of this model are not available, one could expect that the emission factors of this
model are also subject to uncertainties, as GLOBIOM also uses the same data sources and
approaches that are used by other models.

The global change analysis model (GCAM) has also used to assess ILUC emissions.
According to Kyle et al. [41], this model uses a set of predetermined emission factors. These
emission factors divide the carbon pools into vegetation and soil carbon, similar to the AEZ-
EF model approach. However, the vegetation carbon pool used in GCAM disregards litter
and dead vegetation. This model relies on various publications to assess the soil and carbon
content of land by region and AEZ. These data sources are subject to uncertainties, similar
to the data sources that are used in the AEZ-EF and CCLUB models. Van de Ven et al. [42]
have reported the GCAM model emission factors by land type and AEZ.

4. Discussion

This paper highlights that many studies have addressed uncertainties in ILUC emis-
sions stemming from the choice of economic models and their assumptions and parameters,
while uncertainties in LUEFs that represent soil and vegetation carbon contents of various
land types across the world and are used to estimate carbon fluxes due to land conver-
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sions are mostly overlooked. We call attention to this major omission, demonstrating
that common sources of LUEFs vary substantially for the same land type, geographical
region, and vegetation cover. Some of this variation is due to differences in background in
model system boundaries, assumptions, and data sources. The existing LUEFs not only
use different sources of data to measure the soil and vegetation carbon of the global land
cover, they follow different approaches in determining carbon fluxes due to changes in
dead organic matter, litter carbon pools, forgone carbon sequestration, and emissions due
to biomass burning that occur in land-clearing activities. LUEFs estimates often rely on
outdated data sources, which could also lead to inaccurate ILUC emissions. By highlighting
the differences in the calculated ILUC values from a variety of aviation biofuel pathways
using two common LUEFs datasets, this study emphasizes that the choice of LUEFs dataset,
and thus the variation in model systems and data sources, substantially affects ILUC values
for biofuels. To reduce these uncertainties and provide more accurate ILUC emissions from
biofuels, more advanced research activities are required to improve estimates in the soil
and vegetation carbon of land-cover types across geographies, validate the data sources
that underpin existing LUEFs, and develop a set of standard procedures for the application
of biological carbon estimates and modeling systems to the field of ILUC.

As recommended by the Committee on Current Methods for Life Cycle Analyses of
Low-Carbon Transportation Fuels in the United States [1], with up-to-date data sources,
additional research should be conducted to improve and validate LUEFs. These improve-
ment and validation efforts are needed to better estimate the change in GHG emissions
by displacing fossil fuels with biofuels. This will help to guide policies and programs
that support expansions in biofuels to ensure savings in GHG in transportation sectors by
biofuels. Key policies and programs (e.g., the US Renewable Fuel Standard, the California
Low Carbon Fuel Standard, and the ICAO-CORSIA program) rely on life cycle analyses
and estimations of ILUC emissions to calculate the GHG emission intensities of biofuels.
With new research activities that improve and validate the LUEFs, we could enhance
effectiveness of the public policies in reducing GHG emissions. Without developing these
crucial new studies, public policy may have unintended consequences of supporting fuel
options that may have high-ILUC GHG emissions.

5. Conclusions

This study shows that while the existing literature has extensively discussed uncer-
tainties in modeling land-use changes due to biofuels, no major effort has been made to
evaluate uncertainties in land-use emission factors. Our study indicates that variations in
the available data sources that provide land-use emission factors are substantially large.
Hence, moving from one set of land-use emission factors to another significantly affects
the estimated ILUC emissions values for a given set of estimated land-use changes for a
given pathway. To highlight and confirm this important point, we explained components
of several available emissions factors, data sources, and assumptions that have been used
to develop those emissions factors and show that the AEZ-EF and CCLUB models, which
represent two sets of different land-use emission factors, provide different assessments
for ILUC emissions values. Finally, we discussed that uncertainties in emissions factors
are not limited to the emissions factors used in the AEZ-EF and CCLUB models that have
been frequently used to assess ILUC values in combination with the GTAP-BIO model
land-use change projections. The ILUC emissions calculated by other economic models
such as EPPA, CGAM, and GLOBIOM are also subject to uncertainties in land-use emission
factors as well.

The varied selection of primary data sources, system boundaries, and other modeling
assumptions make it very challenging to identify the root causes of the observed variations
across models for emission factors for a given country/region. Major research efforts are
needed to determine the sources of these variations, assess the accuracy of these models,
and validate the resulting emissions factors. To reconcile large differences in emission
quantification due to biofuel uses, we call for using advanced satellite and remote-sensing
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technology to refine emission factor quantifications and field sampling studies to verify the
model estimates for large-scale quantification of emissions due to biofuel production.
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