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Abstract
Accurate quantification of evapotranspiration (ET) is important to understanding its role in the
global hydrological cycle of terrestrial ecosystems and feedbacks to the climate system. This
study improves ET quantification in North America using a data assimilation technique and a
process-based Terrestrial Ecosystem Model as well as in situ and satellite data. ET is modeled
using the Penman-Monteith equation with an improved leaf area index (LAI) algorithm in a
biogeochemistry model, the Terrestrial Ecosystem Model (TEM). The evaluated TEM was
used to estimate ET at site and regional scales in North America from 2000 to 2010. The
estimated annual ET varies from 420 to 450 mm year−1 with the improved model, close to
Moderate Resolution Imaging Spectroradiometer monthly data with a root-mean-square error
less than 10 mm month−1 for the study period. Alaska, Canada, and the conterminous US
account for 33%, 6%, and 61% of the regional ET, respectively. Water availability, the
difference between precipitation and ET, is 181 mm month−1, averaged from 2000 to 2010.
Under IPCC Representative Concentration Pathway (RCP) 2.6 and RCP 8.5 scenarios, the
regional ET increases by 11% and 24%, respectively. Consequently, the water availability
decreases in the region by 2.4% and 23.7%, respectively. For the period of 2020–2100, due to
uncertain parameters, TEM versions integrated with three different ET algorithms estimated
that the regional ET in the USA are 430.5 ± 10.5 mm year−1, 482.1 ± 11.2 mm year−1, and
489.7 ± 13.4 mm year−1, and the available water is − 105.3 ± 8.7 mm year−1, − 20.3 ±
11.9 mm year−1, and − 126.2 ± 15.4 mm year−1, respectively, by the end of the twenty-first
century. Our analysis suggests natural terrestrial ecosystem soils in North America will get
drier under future climate conditions, which will impact the regional water resource and the
climate system. Based on our ET simulation under three climate change scenarios, our study
suggests that the RCP 2.6 is the optimum trajectory for preserving freshwater resources in
North America and other regions in the globe.
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1 Introduction

Evapotranspiration (ET) is an important water flux in the terrestrial ecosystem hydrological
cycle (Dolman and De Jeu 2010) and is also a key energy flux of the land surface. ET links the
atmosphere and ecosphere through the energy exchange and biogeochemical cycles (Betts
et al. 1996; Mu et al. 2007; Sun et al. 2011; Katul et al. 2012). Different models showed that
60–67% of annual precipitation returns as ET to the atmosphere (Vörösmarty et al. 1998;
Miralles et al. 2011; Zhang et al. 2016). The response of ET to increasing temperature and
greenhouse gas concentrations will impact the climate system and water availability to the
human system. Accurate quantification of ET is important to estimating regional water balance
and water availability, an important ecosystem service (Mooney et al. 2005), and to conducting
economic analysis (Vörösmarty et al. 2010).

Recent studies have been continuously developing process-based ecosystem and hydrolog-
ical models that simulate the essential physical interactions between ecosystem ET and
changing climate. For instance, hydrological models (Vörösmarty et al. 1998), dynamic
vegetation models (Sitch et al. 2003), land surface models (Liang et al. 1994), and other
simple models designed to use satellite Earth observations as input (Mueller et al. 2013) have
been used for ET quantification. These numerical models have the ability to project ET at
global scales under different climate conditions at various spatial and temporal resolutions.

To adequately quantify regional ET across space and time, terrestrial ecosystem models
with well-constrained parameters using observed data are needed. Currently, ET quantification
is still of large uncertainties due to uncertain forcing data and inadequate representation of the
physical processes in the models (Liu et al. 2015). The uncertainties come from different
environmental factors including plant phenology, soil moisture, solar radiation, temperature,
and wind speed. The uncertainty of previous quantification of ET at regional scales may also
come from using a limited amount of in situ data of ET for model parameterization and
verification (e.g., Liu et al. 2014). However, in recent decades, satellite and remote sensing
have provided continuous ET data at both high spatial and temporal resolutions at the global
scale (Allen et al. 2005), which shall help improve regional quantification. For instance,
Moderate Resolution Imaging Spectroradiometer (MODIS) ET (Mu et al. 2007) is available
from 2000 to 2010 at a spatial resolution of 1 km and 8-day time resolution. This product was
estimated using the improved ET algorithm (Mu et al. 2011) based on the Penman-Monteith
equation (Monteith 1965). Global Potential Evapo-Transpiration (Global-PET) dataset (Zomer
et al. 2008) is another high-resolution (30 arc s, about 1 km at the equator) global dataset,
which was developed by combining four different algorithms including FAO application,
Thornthwaite (1948), Thornthwaite modified by Holland (1978), and Hargreaves et al. (1985).
Different methods of calculating ET have been tested for different regions (Liu et al. 2014; Lu
and Zhuang 2010).

Plant transpiration (T), an important component of ET, is highly dependent on plant
phenology, an indicator of seasonal variations of ecosystems (Edwards and Richardson
2004). Plant phenology as a periodical feature of global vegetation dynamics can be studied
using vegetation indices (Zhang et al. 2003). The timing of start and end of vegetation growing
is an important depiction of phenology. Therefore, satellite-based vegetation indices (VIs) have
been used to characterize phenology (Asrar et al. 1989; Baret and Guyot 1991). Leaf area
index (LAI) as a VI is important to modeling ET and photosynthesis (Duchemin et al. 2006;
Wiegand et al. 1979). For instance, the Penman-Monteith ET is modeled as a function of LAI
(Allen 2000).
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Some studies have used simple approaches to estimate ET, such as by linking ET and
remote sensing indices directly (Sobrino et al. 2005; Wang et al. 2007) and by using empirical
functions to upscale site measurements to a region (Hargreaves and Allen 2003). The
uncertainties from these existing studies are still large.

North America is a critical region for Earth’s climate (Rasmusson 1968; Biederman et al.
2016). The region is sensitive to climate change and feedbacks significantly to the global
climate system (Intergovernmental Panel on Climate Change 2014). It extends within 10° of
latitude of both the equator and the North Pole and embraces every climatic zone from tropical
rain forest and savanna on the lowlands of the Central America to areas of permanent ice cap in
central Greenland. Subarctic and tundra climates prevail in north Canada and Alaska, and
desert and semiarid conditions are found in interior regions cut off by high mountains from
rain-bearing westerly winds. A large proportion of the continent has temperate climates, which
are very favorable to settlement and agriculture. Accurate simulation of ET in North America
under different climate change scenarios can improve our estimates of water balance responses
to climate changes, which will help stakeholders to develop adaptation strategies in the twenty-
first century and to mitigate the negative impacts of decreasing freshwater availability.

Previous studies focusing on evapotranspiration in North America have indicated that ET is
sensitive to surface (e.g., plant canopy) conductance (Wilson and Baldocchi 2000). Therefore, it is
possible to integrate the LAImodel (Qu and Zhuang, 2018; Qu et al., 2018) into existing ecosystem
models, such as the Terrestrial EcosystemModel (TEM; Zhuang et al. 2003, 2010), to quantify ET.
This study takes advantage of the existing ET data to verify an ecosystem model simulation of ET
before applying the model to the region. The ET algorithms were revised to estimate monthly ET
and water availability, defined as the difference between precipitation and ET. The revised ET
improves the water balance model (WBM; Vörösmarty et al. 1998) to estimate soil moisture. To
test this, high-resolution soil moisture satellite data of National Aeronatics and Space Administra-
tion Soil Moisture Active Passive (SMAP) are used to evaluate the model. In addition, three
different algorithms of ET estimates were also adopted into an ecosystem model and were
evaluated. The revised model is finally used to investigate the ET response to climate change from
2000 to 2010 and in the twenty-first century for the North America. Water availability and ET for
the historical period and the twenty-first century is further evaluated in the context of water
availability to the region and climatic impacts.

2 Method

2.1 Data

To quantify ET in North America, National Centers for Environmental Prediction (NCEP)
global monthly climate data for the period 1985–2010 at a spatial resolution of 0.5° × 0.5°
including precipitation, air temperature, and cloudiness are used. In addition, data of soil
texture, elevation, and plant function types (PFTs) at the same spatial resolution are also used
(Zhuang et al. 2003). MODIS monthly ET product from 2000 to 2010 at a spatial resolution of
0.5° × 0.5° is used to verify an ET model (Mu et al. 2007). To evaluate the revised TEM
performance in estimating soil moisture, high-resolution soil moisture satellite data of NASA
SMAP provided by Alaska Satellite Facility (ASF) and National Snow and Ice Data Center
(NSIDC) is used. Specifically, the level 4 soil moisture data at soil surface and root zone at a 9-
km resolution and every 7-day time step are used.
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Future climate scenarios from 2016 to 2100 were generated under representative concen-
tration pathways (RCPs), within Coupled Model Intercomparison Project Phase 5 (CMIP5).
Here, we use the RCP 2.6 (Van Vuuren et al. 2007) and RCP 8.5 (Riahi et al. 2007) as two
extreme case scenarios to examine changes in ET and water availability during the twenty-first
century.

2.2 Model modification

Previous simulation of ET with TEM is based on the following formulae of potential
evapotranspiration (PET) (Jensen and Haise 1963):

PET ¼ 0:014� 1:8� Tð Þ þ 32ð Þ−0:37½ � � RS � 0:016742�MD ð1Þ
where T is the monthly average air temperature (°C), and RS is the mean monthly shortwave
radiation on top of the canopy (Cal cm−2 day−1) calculated in TEM based on latitude, date, and
cloudiness (Pan et al. 1996). MD is the number of days per month. This PET algorithm lacks
the consideration of net outgoing longwave radiation and the aerodynamic aspects of ETon the
atmospheric demand for water vapor. Therefore, PET estimated from the equation tends to
underestimate ET in spring and overestimate ET in summer.

In this study, we revised the actual ET algorithm by integrating the effects of LAI into the
Penman-Monteith (P-M) equation (Monteith 1965; Allen et al. 1998) in addition to consider-
ing the effects of radiation and temperature effects

λET ¼
Δ⋅ Rn−Gð Þ þ ρa⋅cp⋅

es−eað Þ
ra

Δþ γ⋅ 1þ rs
ra

� � ð2Þ

where rs represents the surface resistance (s m−1), which is closely related to LAI and is
modeled in Qu and Zhuang (2018); ra is the aerodynamic resistance (s m−1); Δ is the
derivative of the saturation water vapor to temperature; Rn −G is the available energy; es −
ea is the water vapor pressure deficit (VPD); and rs is calculated as follows:

rs ¼ ri
LAIactive

ð3Þ

where ri is the bulk stomatal resistance of the well-illuminated leaf, and LAIactive is the active
leaf area index (here, we use half of the improved LAI to represent), which reflects the ratio of
sunlit leaf area to the soil surface. For other parameters, we use Eqs. (4)–(7)

ra ¼ 208

u2
ð4Þ

where u2 is the wind speed at height of 2 m.
The atmospheric pressure is computed as follows:

P ¼ 101:3� 293−0:0065z
293

� �5:26

ð5Þ

where z is the elevation (m).
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The saturated water vapor pressure is computed as follows:

es ¼ 0:6108e
17:27T
Tþ237:3ð Þ ð6Þ

where T is the temperature in degree Celsius.
The slope of vapor pressure is computed as follows:

Δ ¼
4098 0:6108e

17:27T
Tþ237:3

h i
T þ 237:3ð Þ2 ð7Þ

To compute the net radiation in each grid cell, Eqs. (8)–(11) are used

Rn ¼ Rns−Rnl ð8Þ
where Rns is the net shortwave radiation (W m−2), and Rnl is the net longwave radiation
(W m−2).

The solar radiation is computed as follows:

Rs ¼ as þ bs
n
N

� �
Ra ð9Þ

where Ra is extraterrestrial radiation (W m−2); as and bs are the constant parameters that
represent the amount of radiation reaching the earth, respectively; and n

N is the relative

sunshine duration

Rns ¼ 0:77Rs ð10Þ
where Rs is solar or shortwave radiation (W m−2).

Rnl ¼ σT4 0:34−0:14
ffiffiffiffi
ea

pð Þ 1:35
Rs

Rso
−0:35

� �
ð11Þ

where Rs
Rso

is the relative shortwave radiation, and σ is the Stefan-Boltzmann constant (5.67 ×

10−8Wm−2 K−4).

2.3 Alternative ET algorithms

In order to compare our improved ET algorithm (hereafter referred to as AL-1) to others, we
adopt the other two algorithms to quantify ET. One algorithm (hereafter referred to as AL-2) is
based on the revised Penman-Monteith equation (Liu et al. 2013). By separating transpiration
from vegetation canopy, AL-2 calculated ET in two parts from canopy and soil surface,
separately

ET ¼ T c þ Esoil ð12Þ
where Tc is

Tc ¼ ΔAc þ ρcp VPDð Þ=ra
λ sþ γ 1þ rs

ra

� �� � � sec2day�MD ð13Þ
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where Esoil is

Esoil ¼ ΔAsoil þ ρcp VPDð Þ=ras
λ sþ γ 1þ rtot

ras

� �� � � sec2day�MD� RH
VPD
β ð14Þ

where Ac (W m−2) is the available energy in the vegetation canopy, Asoil (W m−2) is the
available energy in the soil, s is the slope of the saturation vapor pressure curve (Pa K−1) and is
the function of air temperature (kg m−3), ρ is the air density, Cp (J kg−1 K−1) is the specific heat
capacity of air, VPD (Pa) is the vapor pressure deficit (i.e., the saturated air vapor pressure
minus the actual air vapor pressure), ra (s m−1) is the aerodynamic resistance, rs (s m−1) is the
surface resistance to transpiration from the plant canopy, ras is the aerodynamic resistance at
the soil surface, rtot is the sum of ras and surface resistance to evaporation, λ (J kg−1) is the
latent heat of vaporization, ρ (kg m−3) is the air density, γ (Pa K−1) is the psychometric
constant, sec2day (s day−1) is the number of seconds in a day, Esoil_pot is the potential
evaporation from soils, fSM is the proxy of soil water deficit used to constrain soil evaporation,
RH is the relative humidity, and β is the relative sensitivity of RH to VPD (Fisher et al. 2008).
In this method, transpiration from canopy and evaporation from soil are both calculated in a
similar form as the P-M equation, but with different energy balance equations. ET calculated
by AL-2 is then constrained by water balance in TEM.

Another algorithm (AL-3) for calculating ET is the revised algorithm from Mu et al. (2011)
and Song et al. (2017). In this method, evaporation from soil, wet plant 12, and transpiration
from plant are computed separately

λET ¼ λEsoil þ λEwet c þ λEtrans ð15Þ
where Esoil is the evaporation from soil, Ewet _ c is the transpiration from wet plant canopy
surface, and Etrans is the transpiration from plant. In this method, evaporation from snow and
water bodies is also added for more accurate quantification.

2.4 Model parameterization, verification, and regional simulation

Site-level parameterization for ET is conducted for different PFTs at the selected sites using
observational data (Table 1). Using the Markov chain Monte Carlo (MCMC) method (Metropolis
et al. 1953; Hastings 1970), 100,000 parameter sets are generated for every PFT. For regional
simulations, an optimum set of parameters for each pixel is obtained (Chen et al. 2011). To calibrate
the model with MODIS ET data, remote sensing data are organized to monthly and 0.5° × 0.5°
resolution. Optimum parameters for each grid are used for ETsimulations for the period 1985–2010
and future simulations. To use the satellite data of ET to parameterize the model, the MCMC
technique is also used in a spatially explicit manner (Chen et al. 2011). The Metropolis-Hasting
algorithm is used to generate random walk values with a proposed probability density and decide
whether to accept or reject a value based on a specified acceptance ratio (Qu and Zhuang 2018).We
sample 10,000 parameter combinations for each grid in our regional calibrations.

The parameterized model is applied to estimate regional ET at a spatial resolution of 0.5° ×
0.5° from 2000 to 2010. We also conduct regional simulations with the previous version of
TEM with the default parameterization in Zhuang et al. (2003). Both simulations are compared
with the MODIS ET product (Mu et al. 2007). Site-level parameterization for ET under
different RCP scenarios from 2016 to 2100 is also conducted.
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3 Results

3.1 Comparison between simulated and observed evapotranspiration

The simulated annual ET is in a good agreement with remote sensing data (Fig. 1). The
comparison between MODIS and simulated annual ET with the revised TEM indicates
that they have similar spatial distributions. The difference mainly exists in low-latitude
areas (Fig. 2a). The root-mean-square error (RMSE) between simulated ET with previous
TEM and MODIS ET tends to be larger than that between the revised TEM and MODIS
data (Fig. 2b). The RMSE for the revised TEM is 10.2 mm month−1 and larger than
50 mm month−1 for the previous version. The spatial distribution of ET error between
two versions of the model is similar, both showing large differences in the southwest part
of North America and small differences in the northern and western areas of the region.

Regional ET in North America is computed by adding each area-weighted value for
all grids. Overall, the annual average ET from 2000 to 2010 computed from the revised
TEM agrees well with MODIS ET (RMSE less than 100 mm year−1). The largest ET is
found in the southeast part of North America with annual ET over 1000 mm, while most
area in the east and north has ET around 200 mm per year. The spatial distribution of ET
for land ecosystem types agrees well between simulations and MODIS data. Estimated
ET ranges from 200 mm year−1 for scrublands to 700 mm year−1 for evergreen broadleaf
forests.

ET in North America is generally low in winter due to low available energy, low
temperature, and low surface conductance. ET across North America generally increases
from north to south, and the revised TEM captures the magnitude of seasonal ET variation
and spatial patterns of increasing from north to south in the region. The ET in the
southwestern North America has a decreasing trend, which is comparable with previous
projections (Seager et al. 2007). The ET in deciduous forest is 50% higher than ET in
coniferous forest, which is consistent with findings for the western North America (Chapin
et al. 2000).

The revised TEM estimated that average ET in North America is 460 mm year−1 during
2000–2010, lower than the MODIS ET of 483 mm year−1. The spatial distribution of modeled
ET matches well with satellite data (R2 = 0.78), and the RMSE of monthly ET is small as
8.7 mm month−1.

Table 1 Key parameter values for representative ecosystem types

Alpine
tundra

Wet
tundra

Boreal
forest

Temperate
coniferous forest

Temperate
deciduous forest

Grassland Xeric
shrubland

Tropical
forest

β (hPa) 2.0 2.0 1.5 1.6 1.3 2.1 2.2 2.5
SLA

(m2

g−1 C)

0.01 0.008 0.009 0.009 0.008 0.01 0.008 0.008

CL (m/s) 0.005 0.004 0.003 0.002 0.004 0.005 0.005 0.002

β represents the relative sensitivity of soil moisture to vapor pressure deficit. CL represents the mean potential
stomata conductance

SLA specific leaf area
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ET simulation (AL-1) is compared with other algorithms including original TEM ET
algorithm (AL-2) and the modified PM algorithm (AL-3) (Song et al. 2017). We also use
site-level ET for calibration. In comparison with remote sensing product, AL-1 (R2 =
0.82) has higher R2 than the AL-2 (R2 = 0.72) and AL-3 (R2 = 0.68) for the region.
Overall, the revised TEM (A1-1) better simulated ET at both site and regional levels.

3.2 Water availability in the historical period and during the twenty-first century

Water is an essential natural resource (Vörösmarty et al. 2000; Fekete et al. 2004) and
also affects ecosystem carbon dynamics, especially in drought areas. Carbon uptake of
ecosystems is generally thought to decrease under the water-limited environment (Hunt
et al. 1996). Here, we estimate water availability for a region as the difference between
precipitation and ET (P-ET).

During 2000–2010, monthly average P-ET value is 181 mm month−1. An increasing
trend in summer (June to August) and fall (September to November) is found (Fig. 3).

Fig. 1 Average annual ET (mm year−1) from 2000 to 2010. a The revised TEM simulation. b MODIS ET
product
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The seasonal average ET shows a generally decreasing trend. While the monthly P-ET
value from 2000 to 2010 fluctuates significantly, it has a wetting trend. The seasonal P-
ET for main subregions in North America (Alaska, Canada, the conterminous US) are
extracted (Fig. 3), from which we found that the annual average P-ET in Alaska and
Canada are positive, while the annual average P-ET in the conterminous US are negative.
The inter-annual variability of P-ET shows an increase of 11.4 mm year−1 (P < 0.1) from
2000 to 2010. Spatially, the northwestern part of North America has a greater P-ET value
(213 mm month−1) than the rest of the area. Grasslands and shrublands show an
increasing trend, while forests show a small decreasing trend of P-ET. When compared
with SMAP data (Fig. 4), the simulated monthly P-ET value from 2000 to 2015 is
positively correlated with SMAP soil moisture (R = 0.57).

During the twenty-first century, P-ET will decrease with increasing temperature
(Fig. 5). Under an extreme climate scenario of RCP 8.5, the P-ET value decreases fast
from 150 mm year−1 (in 2000, which is the starting point of simulation) to 80 mm year−1

Fig. 2 Root-mean-square error (RMSE) between the revised TEM simulation and MODIS ET (mm month−1) (a)
and between the simulated ET using previous TEM and MODIS ET (mm month−1) (b)
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at the end of the twenty-first century (Fig. 5b), indicating that the increase of temperature
will reduce water availability in the future. Simulations for RCP 2.6 and 8.5 scenarios

Fig. 3 Average seasonal P-ET (mm season−1) for the period of 2000–2015 for subregions

Fig. 4 Correlations between P-ET and SMAP soil moisture
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show different magnitudes of ET increases with an increase of less than 10% in RCP 2.6
and 40% in RCP 8.5, respectively. These simulations suggest that North America tends
to get drier with less water availability. Comparing the simulations under RCP 2.6 and

Fig. 5 a Simulated annual ET under the RCP 2.6 (black line) and the RCP 8.5 (red line) scenarios. b Simulated
annual P-ET under RCP 2.6 (black line) and RCP 8.5 (red line) scenarios
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RCP 8.5 using AL-1 indicates that climate change with increasing CO2 generally results
in the lower water availability, which, in turn, affects water balance globally (Pan et al.
2015).

4 Discussion

4.1 Processes of and controls to evapotranspiration

By integrating leaf area index to ET algorithms, we manage to calibrate ET in North America
in a spatially explicitly manner. To test the revised TEM, we compare it with other two
algorithms. Our uncertainty analysis by varying parameters within their prior ranges is
conducted with these algorithms. From 2000 to 2015, estimated regional ET in the contermi-
nous US is 430.5 ± 10.5 mm year−1 (AL-1), 482.1 ± 11.2 mm year−1 (AL-2), and 489.7 ± 13.4
(AL-3) mm year−1, respectively. The P-ET values for three algorithms are − 105.3 ±
8.7 mm year−1, − 20.3 ± 11.9 mm year−1, and − 126.2 ± 15.4 mm year−1, respectively. AL-1
estimates a decreasing trend of ET in the twenty-first century, while the other two algorithms
show an increasing trend. When comparing the three algorithms, the main difference in ET
estimates is from the ET partitioning.

ET parameters including SLA, CL, and β are well calibrated. Comparing with AL-2 and
AL-3, the advantage of AL-1 is that previously calibrated LAI is well integrated into the
revised model with a spatially explicit set of parameters. ET simulations from AL-1 are more
stable and closer to a remote sensing product (Fig. 2). In AL-2, ET is calculated separately in
terms of evaporation from soil surface and transpiration from vegetation canopy. The advan-
tage of AL-2 is the detailed estimates of different sources of ET, but it requires more
parameters to be calibrated (Fig. 6a). For AL-3, evaporation is separated for different land
cover types, which also requires more parameter calibration. AL-3 is more capable of
simulating ET in higher-latitude areas, where evaporation from snow is better calculated
(Fig. 6b).

4.2 Implications of ET change to regional water resource and the climate system

To identify ET variations in different areas in North America, we simulate P-ET for subregions
including Alaska, Canada, and four regions in the conterminous US (Northwest, Northeast,
Southwest, Southeast) (Fig. 3). The annual average P-ET value from 2000 to 2015 in the entire
North America is negative, while Alaska and Canada have positive values and the contermi-
nous US had negative water availability, indicating these regions have been generally dry.

Under different climate scenarios, ET variation changes water availability. Comparing with
RCP 8.5, ET simulation under RCP 2.6 has lower ET, resulting in a persistent trend of P-ET in
the twenty-first century, while P-ET tends to decrease under RCP 8.5. Northeast US (−
155.7 mm year−1) and Northwest US (− 95.2 mm year−1) have lower water availability than
Southeast US (26.2 mm year−1) and Southwest US (88.3 mm year−1). Comparing with
Southern US, Northern US in the twenty-first century have lower precipitation and higher
ET, resulting in lower water availability.

Additionally, ET could influence plant productivity, affecting biomass supply and crop
yield. Here, we estimated plant water use efficiency (WUE) as a ratio of plant gross primary
production to ET. We find that modeled WUE and observation-based WUE at site level are
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well correlated (R2 = 0.48), with a value of 0.68 and 0.55 for forests and grasslands, respec-
tively. In the regions, poor correlations may result from uncertain forcing data or errors in the
MODIS ET product (data not shown). Estimated WUE of forests and shrubland is higher than
cropland and grasslands. Especially, the broadleaf forest has the highest WUE (3.5–4.5 g C g−1

H2O). For most PFTs, WUE is higher in fall than in summer. Different PFTs have distinct
WUE values. These results suggest that the ET is strongly related to plant production. Further,
ET is a main source of water vapor to the atmosphere. From 2000 to 2015, the simulated ET
variation (ΔET, the difference of ET between 2015 and 2000) in North America is less than
10 mm year−1. Under the RCP 2.6 and 8.5 scenarios, ET in the twenty-first century increases
by 110–155 mm year−1. These ET or latent heat variations will affect land surface energy
balance and feedback to the climate system.

Fig. 6 Comparisons of the estimated ET between remote sensing product and different algorithms. a R2 between
ET from AL-2 and RS product. b R2 between ET from AL-3 and RS product
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5 Conclusions

This study improves ET algorithms within a process-based Terrestrial Ecosystem Model. The
estimated ET with the improved model is close to MODIS monthly data. Under the RCP 2.6
and RCP 8.5 scenarios, there is an increasing trend in ET and a decreasing trend in water
availability in North America. The study suggests that the region will experience a deficit of
freshwater with increasing evapotranspiration in the twenty-first century. Our ET simulation
under three climate change scenarios in North America suggests that the RCP 2.6 is the
optimum trajectory to increase the global mean temperature by 2 °C in the twenty-first century,
for preserving freshwater resources. Our case study to assess the ET impacts on water
resources in North America suggests that a similar adaptation and mitigation strategy in the
regional water resource use shall also be applicable for other regions in the globe. Our
simulation biases may come from the energy budget calculation, including the computation
of available energy, sunshine radiation, and relative sunshine duration. Specifically, the
cloudiness and aerosol conditions could affect our radiation calculation, which have not been
considered. Second, the limited amount of site- and regional-level observational ET data also
limits our model calibration, introducing uncertainties in our regional simulations. Third, our
analysis has not considered the land use change effects.
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