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ABSTRACT 

Many statistical models for environmental studies can be run at different scales, e.g., for daily, weekly or monthly 

data. It is important to know how these models differ in terms of prediction. We provide some theoretical results to 

compare these models. We show that when there is no high order terms of explanatory variables, the small scale 

model yields more efficient estimators for model parameters and also produces better prediction. However, when 

there are high order terms of explanatory variables, a larger scale model can be run in two different ways: product-

of-sum or sum-of-product. Current practice made it hard to compare directly the larger scale model with the small 

scale model and no explicit conclusions are drawn in general. We provide a case study on gross primary production 

of terrestrial ecosystems in the conterminous United States to demonstrate our results.  

 

Key-words: Gauss-Markov theorem, gross primary production, multiple linear regression, prediction, best linear 

unbiased estimator. 

 
1.  INTRODUCTION   

Many statistical models for environmental studies can be run at different scales, e.g., for daily, weekly or monthly 

data [1-3]. It is important to know when and how these models of different scales differ. Although there are some 

empirical studies on models of different scales [4-6], there is a lack of theoretical discussion and explicit conclusions 

on the scaling problem. 

In many environmental studies, choosing a suitable temporal scale (e.g, hourly, daily, weekly or monthly) is one of 

the most important steps. With the improvement of remote sensing technology, it is feasible to acquire data at 

various spatial and temporal resolutions. We can therefore run a model at a larger scale or run it at a finer scale and 

then upscale the results. How would the results differ? This work is an attempt to answer the question. 

We provide some theoretical results to show that when there is no high order terms of explanatory variables in a 

regression model, the small scale model yields more efficient estimators for model parameters and also produces 

better prediction. However, when there are high order terms of explanatory variables, a larger scale model can be 

run in two different ways. Current practice made it hard to compare directly the larger scale model with the small 

scale model and no explicit conclusions are drawn in general. We demonstrate our results through a case study on 

the gross primary production. 

This paper is organized as follows. In Section 2, we theoretically compared the different temporal scale models in 

terms of prediction accuracy and efficiency. In Section 3, we present a case study on the gross primary production 

(GPP) [1,7] where we run and compare the models at three scales. 

 

2.  MODELS FOR DIFFERENT SCALES 

2.1  The Scaling Issues 

Suppose Y  is the response variable to be regressed on 1p  explanatory variables 11 ,, pxx  . Each of the 

variables is observed at time points nt ,1,=  , say daily. The linear regression model becomes  
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 where the error terms t  are assumed to be i.i.d. )(0, 2N . 

However, there are situations when the model is applied at a larger scale, say, weekly. The aggregated variables 
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t   are used in the regression, where s  denotes the time 

units the variables are aggregated upon (e.g., 7=s  for the weekly scale). The model becomes  
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 The two models share the same linear parameters ],...,,[= 110


p , but the error terms in (2) has a larger 

variance than (1). In addition, there are fewer observations for the larger scale model (2). Hereafter, we assume that 

msn = . 

The two central questions this work is concerned of are the following. First, how do the two scales affect the 

estimation of the parameters i  and the variance 
2 ? Second, how do the scales affect the prediction? More 

specifically, suppose we like to predict 
)(

1

w

my  . We can obtain this prediction from both models. How different would 

these two predictions be? 

 

2.2  Theoretical Results 

In this section, we provide some theoretical results that allow us to draw some explicit conclusions. Denote by ̂  

and 
2̂  the least squares estimators of   and 

2 , respectively, which are obtained by fitting model (1), and by 

)(ˆ w  and 
)2(ˆ w  the least squares estimators according to model (2). If we denote by X  the design matrix in 

model (1) and by Y  the vector of response variable, then  

 )./(||ˆ=||ˆ ,')'(=ˆ 221)( pnXYYXXX    

The design matrix 
)(wX  and the vector aggregated response variable 

)(wY  are related to X  and Y  in the 

following way  

 ,= ,= )()( YJYXJX ww
 

where smIJ 1=   is an nm  matrix where mI  is an mm  identity matrix and s1  is an s -dimension vector 

of all 1s. The estimates from model (2) can be written  

 )/(||ˆ||=ˆ ,)(=ˆ 2)()()()2()()(1)()()()( pmXYsYXXX wwwwwwwww 


  

where s  is the period of time units the large scale is aggregated upon. 

The following proposition says that the smaller scale model yields more efficient estimators than the larger scale 

model. 

 

Proposition 2.1  Observing nyy ,,1   with msn = , the estimators given through the vector of response variable 

of two models (1) and (2) have the following properties.   

    • Both 
)(ˆ w  and ̂  are unbiased estimators of   but the former is more efficient, i.e.,  

 ,=)ˆ(=)ˆ( )(  EE w
 

and )ˆ()ˆ( )(  VarVar w   is positive semi-definite. 

 

    • Both 
2̂  and 

)2(ˆ w  are unbiased estimators of 
2 . In addition,  
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Hence 
2̂  is more efficient.  

 

The Proposition readily follows the Gauss-Markov theorem [?]. We only sketch the proof here. It is obvious that 

both 
)(ˆ w  and ̂  are unbiased. Since 

)(ˆ w  is a linear unbiased estimator, the Gauss-Markov theorem implies 

that ̂  is more efficient than 
)(ˆ w . It is well-known that 

22 /||ˆ|| XY  has a 
2 -distribution with 

)( pn  degrees of freedom. It follows that  
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Indeed, the above can be found in classical textbooks on regression. Similarly, because  
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has a 
2 -distribution with )( pm  degrees of freedom with a variance )2( pm , it follows that  

 .
2

=)ˆ(
4

)2(

pm
Var w




  

Next, we consider the effects of scales on prediction. If we observe the explanatory variables at s  consecutive time 

points, snn  ,1, , and want to make a prediction of the aggregated response variable 
)(wy , we could obtain 

the prediction in two ways, using the two models (1) and (2). The explanatory variables for the larger scale model is 

i

sn

nt

w

m xx 


 1=

)(

1= , where ix  is the vector of explanatory variables at time i . We could get the prediction of y  

from the two different temporal scale models as follows:  
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The comparison of the two predictions is given in the following proposition.  

 

Proposition 2.2  Under the formulation of models (1) and (2), the two predictors (3) and (4) have the following 

properties:   

    • .=)ˆ(=)ˆ( )()( 
ww xYEYE  

    • ).ˆ()ˆ( )( YVarYVar w   

This proposition follows from the unbiasedness of ̂  and 
)(ˆ w , and the fact that ̂  is the best unbiased linear 

estimator of  . Indeed, the Gauss-Markov theorem implies that for any vector x ,  

 ).ˆ'()ˆ'( )(  xVarxVar w   

 

2.3  Scaling Issues with Polynomial Regression 
In this section, we consider the scaling issue in the polynomial regression. What complicates in this case is that there 

are two possible ways to run the model at the larger scale. Suppose the regression model at the smaller scale is  
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where   is an index set for the high order term. For example, }1,,1,=,),,{(= jipjiji    if all second 

order terms are included in the model. 

One way to formulate the larger scale model is to aggregate all variables as in model (2)  
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 where 
)(w

ty  and 
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, =   is the aggregated cross 

product jtit xx ,, . Comparison between models (5) and (6) follows the discussion in the previous section. We can say 

that model (5) at the smaller scale results in more efficient estimation and better prediction. 

In practice, however, the larger scale model is often run as follows.  
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where 
)(

,

w

itx  is same as defined previously. The high order terms are now aggregated differently. The larger scale 

model (7) and the small scale model (5) have different sets of parameters. Therefore, unlike in the previous section, 

a direct comparison between the two models is difficult if not impossible. For example, it does not make sense to 

compare the efficiency of estimators because the parameters in the two models are different. Similarly, for 

prediction, the two models assumed different expected value to start with. Therefore, the two models may yield 

different prediction results. 

The example in the next section reveals that the predicted value given by the larger scale model may be either 

smaller or larger than that given by the smaller scale model. 

 

3.   AN EXAMPLE 
In this section, we consider an example of real data set, which motivated this work and also helps to show the 

difference the scales can make to statistical inferences. The response variable in this example is the gross primary 

production (GPP), which is the total amount of energy primarily produced by plants through photosynthesis. The 

GPP can be calculated from the observations at the eddy flux towers. However, for over a region such as a country 

or continent, the GPP has to be estimated by employing either statistical models or ecosystem models, which may 

range in complexity from empirical models (e.g., [?, ?]) to biogeochemical models (e.g.,[?, ?, ?]). Linear regression 

models have been employed to estimate the regional GPP. For example, Zhang, et al. [?] used an empirical 

piecewise regression model to map GPP for the Northern Great Plains grasslands from flux tower measurements. 

Xiao, et al. [?] developed an upscaling model based on the regression tree method to extrapolate eddy flux GPP data 

to the continental scale and producing continuous GPP estimates across multiple biomes. Mueller, et al. [?] studied 

the variability of carbon flux measurement across different temporal scales. We will examine estimations of regional 

GPP given by models of different time scales. 

 

3.1  Data and Model 
We used the data collected at the AmeriFlux towers at 70 sites (http://ameriflux.ornl.gov/). We obtained the level 4 

data from http://cdiac.ornl.gov/ftp/ameriflux/data/Level4/. The data consist of observations collected every half hour 

ranging from 2000 to 2007 at each site. The response variable is GPP and six explanatory variables are air 

temperature, global radiation, precipitation, vapor pressure deficit, land-cover type and enhanced vegetation index 

(EVI). These six variables were chosen based on previous studies. The first five variables were observed at the 

AmeriFlux sites and EVI was calculated from the Moderate Resolution Imaging Spectroradiometer (MODIS) every 

8 days, which is the reason we choose the 8-day scale instead of the weekly scale. The land-cover type is a 

qualitative variable with 6 levels representing 6 land-cover categories. Based on these data, we fitted a polynomial 

regression of order 2 from (7) at three different scales: daily, 8-day, and monthly. We therefore have three fitted 

regression models. 

To predict GPP at a site that is not part of AmeriFlux net, we use data from the North American Regional Reanalysis 

(NARR) (http://www.emc.ncep.noaa.gov/mmb/rreanl/). This data set has a spatial resolution of 0.50.5 degrees 

over the conterminous US, and the time range is 2001-2007. In total, the whole US has 3252 pixels. We predict the 

GPP at each of the pixel using the three fitted models and calculated the total GPP over the US by adding the pixel-

level GPP. 

 

3.2  Results 
The first conclusion we can draw is that a large scale model can result in larger or smaller prediction. This can be 

seen in Table 1 which summarized the total GPP over the US for each year. We see that the 8-day model yields 

higher total GPP than the daily model in each of the seven years while the monthly model yields lower total GPP 

than the daily model. Figure 1 shows three predicted monthly total GPP over the US for each month between 2001 

and 2007 in the whole US, from which we can see that the predicted monthly GPP from the three different temporal 

scale models are different. The 8-day model consistently provides higher predicted total GPP, which is consistent to 

what we observed from Table 1. 
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Figure  1:  Predicted monthly GPP (
CTg

) across 2001-2007 given by the daily model (  ), the 8-day model ( ), 

and the monthly model ( ). 

 

 
 

 Year    2001    2002    2003    2004    2005    2006    2007 

 Daily   6328  6109   6528  6587  6697  6299  6673  

 8-Day   6338  6133   6572  6604  6753  6348  6728  

 Monthly   5770  5509   5903  5941  6128  5744  6084  

Table  1:  The predicted annual GPP(Units: 
1TgCyr ) over the US by year. 

 

In Figure (2), we plot the predicted annual GPP for the year 2007 at each pixel. The three different models 

reveal about the same spatial trend, but a careful examination also reveals some differences of the predicted GPPs in 

some areas. 
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Figure  2:   Annual GPP(Units: 
12  yrgCm ) predicted by three models for year 2007: monthly model 

(top), 8-day model (middle) and daily model (bottom). 

 

Next we compare the prediction variances given by the three models at each pixel. Figure 3 plots the standard errors 

given by the three different temporal scale models at each pixel for year 2007. It is evident that the prediction error 

is smaller for finer resolutions, although we cannot justify this theoretically in this case. 
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Figure  3:   Standard error of of GPP(Units: 
12  yrgCm ) at each pixel for year 2007: monthly model 

(top), 8-day model (middle) and daily model (bottom). 

4.   DISCUSSION 
In this paper, we provided some theoretical discussions on the scale issue in linear models. When there is no high 

order terms in the model, the smaller scale model is preferred whenever possible. However, if the model includes 

high order terms of the explanatory variables, direct comparisons are difficult and no explicit conclusions are given 

in this paper. The example revealed that a larger scale model can yield either larger or smaller predictions. For the 

polynomial regression, it would be an interesting problem to provide some conditions under which the larger scale 

model yields larger predictions, or conditions under which the larger scale model yields smaller predictions. It 

would be also interesting to investigate how the scales affect the prediction variance. 
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