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ABSTRACT
Soil organic carbon (SOC) is an important indicator to evaluate agricultural
soil quality. Precise mapping SOC can help to facilitate soil and environ-
mental management decisions. This study applied multiple stepwise
regression (MSR), boosted regression trees (BRT) model, and boosted
regression trees hybrid residuals kriging (BRTRK) to map SOC of agricul-
tural lands in Wafangdian City, northeastern China. A 10-fold cross-
validation procedure was used to evaluate the performance of the three
models. The BRTRK method exhibited the best predictive performance and
explained 78% of the total SOC variability. The distribution of SOC was
mainly explained by elevation, followed by soil-adjusted vegetation index
(SAVI), and topographic wetness index (TWI). We conclude that the BRTRK
was the most accurate method in predicting spatial distribution of SOC. In
addition, our study indicated that topographic variables as key factors to
affect SOC should be considered in future SOC mapping.
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Introduction

Soil organic carbon (SOC) and its spatial distribution characteristics are important indicators of soil
quality and soil health (Batjes 1996), which directly determine soil fertility and plant productivity
(Guo et al. 2015). Crop systems are a potential carbon sink in their soils (Batjes 1996). However,
minor changes in the large amount of SOC could greatly affect atmospheric CO2 concentrations
due to its sensitivity to climate changes and human activities (Lal 2004). Therefore, there has been
an interest to understand spatial variations and controlling factors of SOC for soil quality, SOC
accounting, and greenhouse gas emission quantification (Adhikari et al. 2014). Furthermore,
accurate estimates of SOC are essential for analysing the regional-scale carbon balance of agroe-
cosystems and the global carbon cycle (Baldock et al. 2012).

Wafangdian, which is located in the southwest of Liaoning Provence of northeastern China and
rich in hydrothermal resources, has a long history of farming with various ways of farmland
utilization (Wang et al. 2016). As a pioneer area of China’s reform and opening up, its population
grows persistently, urbanization and industrialization and urban infrastructure develops rapidly.
Subsequently, farmlands are fragmented, and the landscape has a high spatial heterogeneity
(Wang et al. 2016). This region becomes an ideal case study area to explore the changes in SOC
content and its dominant factors.
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In agroecosystems, spatial distribution of SOC is affected by natural ecological processes
influenced by a number of factors including climate, soil type, topography and land use. Thus, it
is still a challenge to accurately map SOC at regional scales (Baldock et al. 2012). However, digital
soil mapping (DSM) has been widely used to estimate soil properties including SOC using observa-
tional data and environmental variables (McBratney et al. 2003). A number of DSM techniques were
constructed using soil-landscape models (Wang et al. 2018) to quantify the relationship between
soil properties and easily accessible environment variables (Adhikari et al. 2014). Because the
relationship between them is complicated and non-linear (Minasny et al. 2016); thus, machine
learning techniques have been widely used in predicting soil properties (Wang et al. 2018).

However, an obvious drawback of these machine learning methods is that they only account for
the relationships between SOC and environmental variables, but ignore the influences (spatial
autocorrelation) of neighbouring observed data when predicting the spatial distribution of SOC
(Guo et al. 2015). To overcome this shortcoming, a new approach of BRT hybrid residual kriging
(BRTRK) was proposed to predict and map the spatial distribution pattern of SOC. Actually, BRTRK
model can be considered as an extension of BRT model, which has an analogous design idea with
the hybrid regression kriging approach.

The hybrid prediction methods have been applied in numerous scientific fields including
meteorology, hydrology, remote sensing, environmental science, and soil science (Guo et al.
2015). Compared to the single machine learning method, the hybrid prediction methods are
more powerful and efficient (Wang et al. 2016). Thus, the aim of this study is to apply the BRTRK
to digitally map the spatial distribution of SOC in the northeastern coastal agroecosystems of
China. The specific objectives are to (1) construct a hybrid prediction model; (2) identify environ-
mental controls of SOC content; and (3) validate the performance of the model and analyse its
potential applicability.

Materials and methods

Study area

Our study was conducted in Wafangdian City (39.33° to 40.12° N, 121.22° to 122.27° E), which is
located in the southwest of Liaoning Provence, northeastern China. It covers a total area of
3,818 km2, accounting for 71% of the study area with cultivated lands and garden plots. The
study area has a warm temperate semi-humid continental monsoon climate with four clearly
distinct seasons. The mean annual precipitation is 637 mm, and the mean annual temperature is
9.3 °C. Varied topographic conditions lead to the development of different soil types, including
Anthrosols, Argosols, Cambosols, Halosols, and Primosols according to Chinese Soil Taxonomy.
According to FAO-WRB classification system (2014), the main soil types are Anthrosols, Cambisols,
Histosols, Leptisols and Luvisols. The main formation lithology is metamorphic rocks including
quartzite, marble, slate and sort of mixed rocks. Land-use types mainly include woodland, orchard,
cultivated land and grasslands.

Soil samples

Soil sampling was conducted on a 1.6 × 1.6 km grid covered the whole study area between August
and September (growing season) in 2012 (Figure 1). A total of 1195 soil samples were collected
from the topsoil depth (0–20 cm) excluding litter layer, if present. The coordinates and altitude of
each sampling site are recorded by a handheld GPS. One kilogram soil samples were contained at
each sample site for laboratory analysis. The samples were air-dried and then crushed and finally
passed by a 2-mm sieve eliminating non-soil materials like gravel and plant roots. SOC content
(g kg−1) was determined by dry combustion using a Vario EL III elemental analyser (Elementar
Analysensysteme GmbH, Hanau, Germany) (Wang et al. 2018).
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Land-use and soil type data

Land-use data represents land-use and land-cover types in the study area, which are extracted from
a land-use and land-cover map compiled at a cartographic scale of 1:200,000. The data were
provided by National Science and Technology Infrastructure of China, Data Sharing Infrastructure
of Earth System Science (http://www.geodata.cn). Land-use types were classified into cultivated
land, grassland, woodland, and orchard according to the Second National Land Survey and Land
Classification System (Ministry of land and resources, China, 2007).

Soil type data were obtained from the Second National Soil Survey of Liaoning Province conducted
between 1979 and 1990. In addition, according to the Chinese Soil Taxonomic Classification, the soil
types were classified into Anthrosols, Argosols, Cambosols, Halosols, and Primosols.

Environmental variables

Topographic variables
A 30 m resolution of DEM acquired from Shuttle Radar Topography Mission was used to derive
topographic variables. Five topographic variables were selected including elevation, slope gradient,
slope aspect, catchment area (CA), and topographic wetness index (TWI). Elevation, slope aspect,
and slope gradient as the primary terrain attributes were directly derived from ArcGIS 10.1, and the
corresponding secondary terrain attributes of TWI and CA were obtained by the System for
Automated Geoscientific Analyses (SAGA, Hamburg, Germany) GIS software.

Remote sensing variables
Four variables were derived from the Landsat 5 Thematic Mapper (Landsat 5 TM). The data were
acquired from the USGS (https://www.usgs.gov/) between July and September (growing season) in

Figure 1. Soil sample locations overlaid on the digital elevation model of the study area (c) in Liaoning Province (b) of China (a).
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2012. Vegetation variables were derived from RS data from the International Scientific and
Technical Data Mirror Site, Computer Network Information Center, the Chinese Academy of
Sciences (http://www.gscloud.cn) between July and September (growing season) in 2012, with
cloud cover < 10%. From the RS data three primary vegetation attributes―the visible-red band 3
(B3, 0.63–0.69 μm), near-infrared band 4 (B4, 0.76–0.96 μm) and short-wave infrared band 5 (B5,
1.55–1.75 μm), and a secondary vegetation attributes―Soil Adjusted Vegetation Index (SAVI) was
derived. B3, B4, B5 and SAVI were characterized as vegetation growth, coverage, biomass, vegeta-
tion cover and type (Adhikari et al. 2014; Yang et al. 2016). SAVI is defined as (Huete 1988):

SAVI ¼ ½ðB4� B3Þð1þ SÞ�=ðB4þ B3þ SÞ (1)

where ‘S’ is the soil condition factor, and its value is between 0 and 1. ‘0’ and ‘1’ represent two
extreme cases of extremely high and very low vegetation coverage, respectively. Usually, 0.5 is
chosen to reduce the background difference of soil and remove the influence of noise and
sound.

Modelling approaches

Three modelling approaches were used in this study, including BRT, BRTSK and multiple stepwise
regression (MSR). BRT was first proposed by Friedman (2001), which consisted of two statistical
techniques of boosting and regression trees (Wang et al. 2016). BRT was a means of optimizing and
regularizing the numerical predictions to achieve rapid and accurate prediction of the correspond-
ing variables (Yang et al. 2016). The BRT model was implemented in R environment (R
Development Core Team 2013) using R packages ‘dismo’ version 0.8–17 (Hijmans et al. 2013).
Four parameters need to be defined, including the learning rate (LR), tree complexity (TC), bag
fraction (BF) and the number of trees (NT). In order to achieve the best prediction performance,
several sets of parameter combinations of LR (0.025, 0.05, 0.1, 0.15), TC (5, 8, 9, 10), BF (0.45–0.85)
and NT (500, 1000, 1500, 2000) were tested. Finally, the optimal settings were 0.025, 9, 0.8, and
1500 for LR, TC, BF, and NT, respectively, based on the highest cross-validated method.

BRTRK was an extension of the BRT model. In BRTRK, the model residuals were obtained by
subtracting the predicted values of BRT and the observed values, and then interpolated using
ordinary Kriging (OK). The SOC in BRTRK is calculated:

SOCBRTSKðiÞ ¼ SOCBRTðiÞ þ εOKðiÞ (2)

where SOCBRTSK (i) is the final predicted SOC content at location i using the BRTRK method, SOCBRT
(i) represents the predicted value of the BRT model at location i, εOK (i) is the predicted value using
OK model to interpolate the residual at location i.

To further demonstrate the robustness of the BRTRK model, we introduce a multiple stepwise
regression model (MSR) and compare their predictive performance. As a classical approach, MSR
has been widely used to predict the response to predictor variables and analyse their interactions
among response and predictor variables (Ishii et al. 2014). This is an iterative process that continues
until no explanatory variables are added or removed from the equation (Ishii et al. 2014), and the
model only contains significant explanatory variables. The final MSR equation is:

SOCMSRðiÞ ¼ 17:9825þ 0:0442ElevationðiÞ þ 0:0021SlopeaspectðiÞ�
0:8079TWIðiÞ þ 0:0051B5ðiÞ þ 1:6373SAVIðiÞ (3)

where SOCMSR (i) is the predicted SOC content at location i using the MSR method.
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Statistical analysis

Descriptive statistical analysis of soil properties and environmental variables was carried out using
SPSS 22.0, including Pearson correlation coefficient, P values, Skewness, Kurtosis, variance inflation
factors (VIF), and Kolmogorov–Smirnov test (K-S test). Pearson correlation coefficient was used to
express the degree of linear correlation between the variables. P values were used to detect
significant levels among variables. Skewness was a measure of the asymmetry of probability
distribution of random variables and the degree of asymmetry relative to the mean value (Wang
et al. 2016). Kurtosis was the characteristic number that characterizes the peak value of probability
density distribution curve at the average value (Yang et al. 2016). VIF is the ratio of variance
between explanatory variables with multiple collinearity and variance without multiple collinearity
(Wang et al. 2018). K-S test is a test method to compare a frequency distribution f (x) with
a theoretical distribution g (x) or two observations. Different from other methods such as t-test,
K-S test does not need to know the distribution of data, so it can be regarded as a non-parametric
test method (Adhikari et al. 2014).

Analysis of spatial autocorrelation and semi-variance of BRT model residuals

Residuals are considered the errors and represent the component of a model that could not be
explained by the deterministic component (Guo et al. 2015). Ideally, residuals of a model should be
identically and independently distributed. In fact, residuals might show spatial autocorrelations in
some cases; and residuals could be added back to the deterministic component to further improve
the model prediction accuracy through geostatistical analysis.

Spatial dependence as a special property of spatial data is different from general attribute data
and is usually measured with spatial autocorrelations (Guo et al. 2015). At present, Moran’s I index
proposed by Moran in 1950 is the most commonly used spatial autocorrelation statistic. The
variation of Moran’s I is from −1 to 1, if the space is no autocorrelation, the value is approximately
equal to 0. Value of Moran’s I for residuals of BRT was calculated in ArcGIS 10.1, and the result was
0.245 (p < 0.000). Consequently, residuals were introduced to BRT model to further optimize the
performance. In addition, the semi-variance analysis of BRT model residuals is carried out by using
GS+7.0 statistical software (Gamma Design Software, Plainwell, MI). Linear, spherical, exponential
and gauss model were compared to obtain the best fitting results of BRT residuals based on
nugget, sill, and range values (Guo et al. 2015).

Model validation

Overall performance of MSR, BRT and BRTRK methods was evaluated using a 10-fold cross-
validation method in the R version 3.2.2 (R Development Core Team 2013). Different measured
and predicted levels of SOC content were calculated in four classical validation indices, i.e. absolute
mean error (AME), mean error (ME), root-mean-square error (RMSE), and coefficient of determina-
tion (R2). These indices were defined as below:

AME ¼ 1
n

Xn

i¼1
ðPi � OiÞj j (4)

ME ¼ 1
n

Xn

i¼1
Pi � Oið Þ (5)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
ðPi � OiÞ2

r
(6)

ARCHIVES OF AGRONOMY AND SOIL SCIENCE 5



R2 ¼
Pn

i¼1 ðPi � OÞ2Pn
i¼1 ðOi � OÞ2

(7)

where Pi, Oi andO are the predicted values, the observed values and themean value of the observations at
site i, respectively. n is the number of samples.

Results and discussion

Descriptive statistics of SOC content

Descriptive statistics of the measured SOC content and values of environmental variables at sample
sites are summarized using SPSS 22.0 (Table 1). Average SOC content at sites was 18.8 g kg−1. The
standard deviation (SD) of SOC was 6.3 g kg−1. In addition, the data sets of SOC have a generalized
skewed distribution based on the skewness coefficients of −0.3. In Dalian, Wang et al. (2018) found
the average SOC content in the topsoil was 14.4 ± 4.5 g kg−1. Distribution of SOC could be
described well under generalized skewed distribution with the skewness coefficient of 0.87. In
addition, because previous studies revealed that soil organic carbon was mainly stored in surface
soils, the soil depth was limited to 0–20 cm in this study. In Liaoning Provence of China, Wang et al.
(2017) found that 69% of SOC was stored in topsoil. This conclusion had been confirmed by Liu
et al. (2012), indicating that 43% of the stocks of SOC are in the upper 30 cm. Furthermore, Adhikari
et al. (2014) predicted that, in Denmark, 59% of SOC stock was in the upper 30 cm of soils.

Correlation coefficients between the measured values of SOC (g kg−1) with the selected
environmental variables are listed in Table 2. SOC was positively correlated with elevation (0.71),
slope gradient (0.55), slope aspect (0.12), CA (0.23), and SAVI (0.23), but negatively correlated with
TWI (−0.54) and B3 (−0.18). Correspondingly, B4 and B5 had a negative influence on SOC. To check
the multicollinearity problems, variance inflation factors (VIF) were calculated for all environmental
variables using SPSS 22.0 software. All environmental variables have VIF values less than 5.0,
suggesting that multicollinearity does not exist in our studies.

Geostatistical analysis of model residuals

Typically, residuals contained the most important information in model construction. Assuming
that the model was constructed sufficiently accurate, the residuals of the model were determined
by the measurement error. Consequently, the information contained in the residuals was used to
detect the performance of model and the stability of data (Wang et al. 2018). Ideally, the residuals
of all the values in the model are identical. In reality, residuals usually have spatial autocorrelations.
Therefore, in order to improve the prediction accuracy of model, residuals were usually

Table 1. Descriptive statistics of soil organic carbon (SOC) data, and environmental variables at the sampling sites.

Property Parameter Unit Min. Median Mean Max. SD CV Skewness

Soil SOC g kg−1 1.51 19.01 18.82 31.31 6.32 33.58 −0.31
Topography Elevation m 1.00 63.52 85.41 646.00 81.6 95.54 2.62
　 Slope gradient Degree 0.00 4.33 7.11 45.12 7.71 108.44 1.71
　 Slope aspect Degree 0.00 158.21 161.32 356.21 110.93 68.76 −0.01
　 CA m2 m−1 375.22 856.42 1225.61 12,137.52 1231.91 100.51 3.32
　 TWI 　 1.43 4.43 4.81 9.01 1.82 37.84 1.03
Remote Sensing B3 Digital number 0.00 87.01 92.42 255.00 55.92 60.51 0.52
　 B4 Digital number 0.00 145.02 143.83 255.00 59.51 41.38 −0.23
　 B5 Digital number 0.00 89.00 94.13 255.00 58.30 61.94 0.51
　 SAVI 　 0.00 0.31 0.31 1.00 0.23 77.42 1.01

SOC, Soil organic carbon; CA, catchment area; TWI, topographic wetness index; B3, Landsat TM band 3; B4, Landsat TM band 4;
B5, Landsat TM band 5; SAVI, soil-adjusted vegetation index; Min. minimum; Max. maximum; SD, standard deviation; CV,
coefficient of variation.
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incorporated into the model by means of geostatistical analysis (Wang et al. 2018). The residual of
BRT model range, skewness, and kurtosis was −7.88–8.76 g kg−1, 0.079, and 0.158, respectively. And
the residual of the model passed the K-S test, which was suitable for geostatistical interpolation.

Correspondingly when the value was less than 0, indicating the process was negatively spatially
autocorrelated (Wang et al. 2018). Value of Moran’s I for residuals of BRT was calculated in ArcGIS
10.1, and the result was 0.245 (p < 0.000). Consequently, residuals were introduced our model to
further optimize the performance of the BRT model. Linear, spherical, exponential and gauss model
were compared in GS+7.0 software to obtain the best fitting results of BRT residuals, the final
exponential function with best fit, and the ratio of nugget/still only 0.103, representing a strong
spatial dependence for the BRT residuals. This spatial correlation indicated that variability among
samples is less likely to be caused by stochastic factors, and the residuals of the model can be
further reduced using the BRTRK method.

Model performance and uncertainty

A 10-fold cross-validation procedure was used to evaluate the model performance. The model
performance is summarized in Table 3 using statistics of AME, ME, RMSE, and R2. The BRTRK
method performed well to predict SOC content, better than using the BRT and using MSR. The
MSR, BRT, and BRTRK methods explained 51%, 59%, and 78% of the total SOC variability, respec-
tively. In order to further compare the predictive performance of the BRTRK model for different
land use patterns and soil types, we calculated the model validation indicators (Table 4). Table 4
shows that BRTRK model had the best prediction performance in cultivated land and Cambosols,
which can explain 81% and 85% of the spatial variation of SOC, respectively. This may be due to
the widest distribution area of the two kinds of soil in the study area and the largest number of
sampling sites (462 VS 674), respectively. However, the prediction performance on grassland and
Primosols is poor, which is due to the minimum distribution area of the two types and the scarcity
of sampling sites. The number of sampling points will affect the accuracy of model prediction
(Wang et al. 2017).

Table 2. Pearson correlation analysis between TSN and environmental variables based on 1195 samples.

Property SOC Elevation Slope gradient Slope aspect CA TWI B3 B4 B5

Elevation 0.71**
Slope gradient 0.55** 0.68**
Slope aspect 0.12** 0.13** 0.14**
CA 0.23** 0.21** 0.17** 0.18**
TWI −0.54** −0.56** −0.73** −0.38** −0.30**
B3 −0.18** −0.20** −0.17** −0.03 −0.08* 0.16**
B4 0.01 −0.03 −0.03 −0.05 0.01 0.02 0.39**
B5 −0.06* −0.10** −0.07* −0.03 −0.02 0.07* 0.70** 0.12**
SAVI 0.26** 0.20** 0.19** 0.02 0.08* −0.15** −0.68** −0.12** −0.54**

*Correlation is significant at the 0.05 level.
**Correlation is significant at the 0.01 level.
SOC, Soil organic carbon; CA, catchment area; TWI, topographic wetness index; B3, Landsat TM band 3; B4, Landsat TM band 4;
B5, Landsat TM band 5; SAVI, soil-adjusted vegetation index.

Table 3. SOC prediction performance of the BRT, BRTRK and MSR methods.

Model AME ME RMSE R2

BRT 3.44 3.22 4.14 0.59
BRTRK 2.79 2.14 3.60 0.78
MSR 3.51 3.32 4.18 0.51

SOC, soil organic carbon; BRT, boosted regression trees; BRTRK, boosted regression trees hybrid residuals kriging; MSR, multiple
stepwise regression model; AME, absolute mean error; ME, mean error; RMSE, root-mean-square error; and R2, model
efficiency.
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Our prediction is also consistent with previous SOC mapping studies. Martin et al. (2011)
developed a BRT model that explained 50–58% of the SOC variability in France. Using geographi-
cally weighted regression (GWR) and geographically weighted regression kriging (GWRK)
approaches, Kumar et al. (2012) captured 23% and 36% of the SOC variability, respectively, in
the state of Pennsylvania (PA), USA. Other machine learning tools and geostatistical methods such
as random forest (RF) and ordinary kriging (OK) were also common in DSM (Wang et al. 2017).
Typically, Guo et al. (2015) used three models of stepwise linear regression (SLR), RF, and RF plus
residuals kriging (RFRK) to predict the spatial distribution patterns of soil organic matter (SOM) in
a rubber plantation of Hainan Province, China, and RFRK model was proved to have the efficiently
and steadily predictive performance. BRT model can flexibly deal with various data types, default
values, outliers, and thus was widely applied to solve different scientific problems (Yang et al.
2016). Such complexity coupled with its microclimates would very often lead to the emergence
and extension of a local ecological niche or pedogeomorphological units (Yang et al. 2016) with
a diverse soil and vegetation types, making soil variability predictions more challenging. In such
conditions, the BRT hybrid residuals kriging could be an effective method for SOC mapping.

In order to explore the uncertainty of the BRT model, a mean-standard -deviation (SD) map
(Figure 2(a)) was generated through 100 iterations. The BRT model estimates have a small uncer-
tainty with a mean SD of 0.58 g kg−1. In addition, The R2 is from 0.55 to 0.60, indicating the BRT
model had stable prediction ability (Figure 2(b)). Similarly, the lower values of AME, ME, and RMSE,
and higher R2 also indicated that the BRTRK method was stable in predicting the SOC content. In

Table 4. Summary statistics of SOC prediction performance of BRTRK under different land-use patterns and soil type.

Name Area (km2) Number AME ME RMSE R2

Land-Use Patterns
Woodland 904.5 412 3.01 2.31 3.31 0.72
Orchard 497.6 226 3.21 2.46 3.06 0.66
Cultivated land 1015.8 462 2.68 2.05 3.74 0.81
Grassland 208.1 95 3.38 2.59 2.84 0.62

Soil types
Anthrosols 50.9 19 3.49 2.68 2.7 0.59
Argosols 1137.9 417 2.85 2.18 3.53 0.76
Cambosols 1839.8 674 2.54 1.95 3.92 0.85
Halosols 197.0 72 3.29 2.53 2.95 0.64
Primosols 36.3 13 3.6 2.76 2.56 0.55

Figure 2. Standard deviation maps of the predicted topsoil organic carbon (g kg−1) derived from 100 times boosted regression
trees (BRT) models (a) and histogram showing the R2 response to a number of model iterations for SOC (b).
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addition, there also exist some uncertainties in this study such as sampling error, experimental
error, and model error (Wang et al. 2016).

Relative importance of environmental variables

Selected environmental variables presented different importance levels in the SOC prediction
(Figure 3). The relative importance (RI) of each variable was obtained by iterating the BRT model
estimation for 100 times. In the prediction of SOC, terrain-related variables (69% of RI) were
considered as major explanatory variables, followed by vegetation-related variables (31% of RI).
As one of the five soil forming factors, topography affects the soil moisture and temperature
conditions (Jenny 1941), and controls water and energy flow regulating spatial distribution of soils
at a landscape scale (Bonfatti et al. 2016). Throughout all terrain variables, elevation played
a decisive character in predicting SOC. In a hilly region of central Iran, Tajik et al. (2012) used soil
and topographic attributes to predict the activity of three soil enzymes using artificial neural
networks (ANNs) and multiple linear regression (MLR) approaches, concluding that DSM can be
applied to predict spatial distribution of soil enzymes at the hillslope scale. In addition, TWI and
slope gradient were also recognized as important environment variables in our model (Figure 3).
TWI represents potential features of topography and soil hydraulic characters, playing an important
role in spatial distribution of SOC (Yang et al. 2016). Similarly, slope gradient impacts the move-
ment and accumulation of surface water and mineral carbon loss in a landscape (Martin et al.
2014). In China and Denmark, a strikingly similar conclusion about slope gradient was drawn
(Adhikari et al. 2014; Yang et al. 2016). However, a negative effect of slope gradient on SOC
distribution was reported by Tsui et al. (2004) where slope gradient played a major role in
determining prevailing land-use types. Slope aspect was also found as an important variable in

Figure 3. Relative importance (RI) of each predictor from 100 iterations using the boosted regression trees (BRT). CA: catchment
area; TWI, topographic wetness index; B3, Landsat TM band 3; B4, Landsat TM band 4; B5, Landsat TM band 5; SAVI, soil adjust
vegetation index.
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predicting SOC. Bonfatti et al. (2016) considered slope aspect affecting vegetation community
while impacting regional microclimate.

Vegetation is one of the main factors influencing SOC variability (Minasny et al. 2016). On the
Qinghai Tibet Plateau, Yang et al. (2016) found that vegetation-related variables played an impor-
tant role in mapping SOC. Curiously, our conclusion showed that vegetation variables had a weak
correlation with topsoil SOC compared with topographic variables. Our analysis suggested that
vegetation variables might be mediated by topographic variables, and there was usually better

Figure 4. Distribution of topsoil organic carbon (g kg−1) derived from boosted regression tree (BRT) model (a) and BRT hybrid
residuals kriging (BRTRK) (b); c), and d) small areas outlined with black colour in left large areas for showing detail information.
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vegetation cover at high altitudes in our study areas. Of all the vegetation variables, SAVI and B3
were the crucial variables in SOC prediction in hilly dominated areas (Wang et al. 2016). The
simultaneous effect of B4 and B5 could reflect the present situation of land use, thus different land-
use patterns have different levels of SOC content. Similar to Adhikari and Hartemink (2015), our
study indicated that SAVI, B3 and B4 were major predictor variables in predicting the spatial
distribution of SOC. In addition, the higher resolution RS data better characterize the spatial
heterogeneity of vegetation types in the study area, especially in the region with dense vegetation
cover, which help increase our prediction accuracy.

Spatial distribution of SOC content

Average predicted SOC contents were 17.68 g kg−1 using the BRTRK method and 17.60 g kg−1

using the BRT (Figure 4). The northeastern mountain areas were estimated with the highest SOC
content. Elevation was the main predictors in this area (Figures 1 and 4). Generally, high altitude
areas usually have better vegetation coverage, which corresponds to the increase of plant litter
returned to the soil, thus increasing SOC (Figure 5). The effect of elevation on SOC has been
demonstrated in several researches (Martin et al. 2014; Adhikari and Hartemink 2015). Wang et al.
(2016) reported that SOC significantly increased with elevation. Differences in elevation gradients
might have affected the input and loss of soil carbon mainly through indirect measures such as its
influence on precipitation and temperature (Lal 2004; Martin et al. 2014).

The spatial distribution of SOC content indicates that the woodland had the highest content,
followed by orchard, grassland and cultivated land, which is consistent with previous studies
(Tsui et al. 2004; Tajik et al. 2012). In all land-use types, soil under cultivated land had the lowest
SOC content (16.2 g kg−1), confirmed by Yang et al. (2016). Argosols had the highest SOC
content (18.1 g kg−1). Most of the cultivated lands are on Cambisol (1839.8 km2). There was
a spatial link between soil types and land-use patterns with SOC distribution in the region
dominated by agroecosystems.

Conclusion

This study used the BRTRK method to map spatial distribution of SOC in the northeastern
coastal areas of China. The results indicated that BRTRK was effective in predicting spatial

Figure 5. Spatial distribution map of SAVI and (a) and Land-use map (b).
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distribution SOC with low AME, ME, and RMSE and high R2 explaining 78% of the SOC
variability. The northeastern areas had higher SOC levels than anywhere else. We found that
topographic variables were the main factors for the spatial distribution of SOC in the north-
eastern coastal area of China. Consequently, topographic variables such as elevation shall be
considered in future SOC mapping in the coastal hill areas in China. Woodlands and Argosols
have the highest SOC content. The predicted SOC distribution is valuable information for soil
conservation, environment protection, and agricultural production planning in the northeastern
coastal agroecosystems of China.
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