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Abstract The effect of surface water movement on methane emissions is not explicitly considered in most
of the current methane models. In this study, a surface water routing was coupled into our previously
developed large-scale methane model. The revised methane model was then used to simulate global
methane emissions during 2006-2010. From our simulations, the global mean annual maximum inundation
extent is 10.6 + 1.9 km? and the methane emission is 297 + 11 Tg C/yr in the study period. In comparison to
the currently used TOPMODEL-based approach, we found that the incorporation of surface water routing
leads to 24.7% increase in the annual maximum inundation extent and 30.8% increase in the methane
emissions at the global scale for the study period, respectively. The effect of surface water transport on
methane emissions varies in different regions: (1) the largest difference occurs in flat and moist regions, such
as Eastern China; (2) high-latitude regions, hot spots in methane emissions, show a small increase in both
inundation extent and methane emissions with the consideration of surface water movement; and (3) in arid
regions, the new model yields significantly larger maximum flooded areas and a relatively small increase in
the methane emissions. Although surface water is a small component in the terrestrial water balance, it plays
an important role in determining inundation extent and methane emissions, especially in flat regions. This
study indicates that future quantification of methane emissions shall consider the effects of surface

water transport.

1. Introduction

Methane (CH,), an important greenhouse gas, has about 22 times larger radiative forcing than CO,. Wetlands
play an important role in global methane budget contributing between 15 and 40% of the total source
budget [Denman et al., 2007]. Recent observations and modeling studies have shown that methane emission
may act as a positive feedback to warming trend [Eliseev et al., 2008; Ringeval et al., 2011]. The future climate
change is closely linked to methane emissions, and thus, quantification of methane emissions is critical in
climate change assessment.

In recent 20 years, many progresses have been made in developing methane models which are particularly
crucial in estimating how methane emissions respond to climate change. Matthews and Fung [1987] started
the methane modeling by considering vegetation types, inundation maps, and the methane emission inten-
sity. Afterward, more key controlling processes, such as methane production (methanogenesis), oxidation
(methanotrophy), and transport have been linked to climate factors, vegetation types, soil texture, availability
of carbon substrate, soil PH, and redox potential [Walter and Heimann, 2000; van Bodegom et al., 2001; Zhuang
et al.,, 2006]. To estimate the methane emissions in high latitudes, the largest soil carbon pool, soil thermal
modules were also incorporated to capture the impact of active layer depth on methane emissions [Wania
et al,, 2009; Zhuang et al., 2006]. Methane is generated under anaerobic conditions that occur in saturated
lands and consumed under aerobic conditions that occur in unsaturated zone. Regional simulation of
methane emissions requires accurate information on the area and period of inundation of land. The inunda-
tion extent, the most important factor in controlling methane release, is currently modeled in two ways: (1)
prescribed or modulated by the static map-based inundation products [Hodson et al., 2011; Riley et al.,
2011; Ringeval et al., 2011, 2012; Spahni et al., 2011; Tian et al., 2011; Wania et al., 2009, 2010], such as the
Global Inundation Extent from Multi-Satellites (GIEMS) [Prigent et al., 2007; Papa et al, 2010] and the
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Surface Water Microwave Product Series (SWAMPS) [Schroeder et al., 2010] and (2) a time varying inundated
area simulated from the hydrological modules contained in the methane frameworks [Avis et al.,, 2011;
Hopcroft et al., 2011; Singarayer et al., 2011].

The recent intercomparison of wetland methane emission models over West Siberia (WETCHIMP-WSL) [Bohn et al,
2015] suggested that the models using inundation products may suffer from large biases in methane emissions,
especially for those relying on the satellite inundation products alone. The reasons are (1) optical remote sensing
lacks the ability to detect water surface under forest canopy or cloud cover, (2) infrequent temporal sampling of
optical sensors, (3) remote sensing by radar may not retrieve large-scale water surface in a short time, and (4) low
spatial resolution of microwave sensors [Norouzi et al., 2015]. Bohn et al. [2007] suggested that uniform water table
depth (WTD) directly derived from soil moisture content may lead to systematic biases. Therefore, the
TOPMODEL-based formulation has been applied to redistribute simulated soil moisture in a coarser resolution
to the finer resolution according to the local topographic information [Lu and Zhuang, 2012]. However, limitations
of TOPMODEL in capturing lateral flow, distributed patterns of the water table, and inundation areas have been
discussed in previous studies [e.g.,, Blazkova et al, 2002; Pike, 1998]. Although many progresses have been
achieved, the recent methane model intercomparison project on the global level (WETCHIMP) [Melton et al,
2013; Wania et al.,, 2013] suggested that lateral movement of water between gird cells, an important process
describing contributions of upland water flow, was not explicitly considered in all the current methane models.
The lack of this mechanism will underestimate both inundation extent and its duration.

On the basis of our previous effort which used the TOPMODEL approach to consider the effect of subgrid topogra-
phy on methane emissions, a water surface routing model is incorporated in our large-scale methane model for the
effect of surface water movement on inundation extent and methane emissions in this study. Using the new
methane model, we then estimated the global methane dynamics from 2006 to 2010 and also analyzed how the
surface water movement affects the inundation extent and methane emissions in different regions. In this study,
we focus on methane emissions from natural ecosystems, while emissions from anthropogenic activities such as
fossil fuels and biomass burning, landfills, rice cultivation, coal mining, and gas flare are not covered in this study.

2. Method

2.1. Overview of the Current Inundation and Methane Model

In our early studies, Zhuang et al. [2001, 2004, 2006] developed a methane model under the framework of the
Terrestrial Ecosystem Model [Melillo et al., 1993; Zhuang et al., 2003] to simulate the methane emissions from
northern high latitudes. Methane production is assumed to only occur in saturated zones and regulated by
organic substrate availability, soil thermal conditions, soil PH, and soil redox potentials; methane oxidation occurs
in unsaturated zone of soil and is a function of soil methane concentration, soil temperature, soil moisture, and soil
redox potential. The three processes, diffusion, plant-aided transport, and ebullition, are considered in modeling
methane transport. Water table depth that separates saturated and unsaturated zones in soil profile is calculated
by a hydrological module and is assumed equally distributed in each simulation cell. This simple treatment of
water table depth, however, neglects the effect of spatial heterogeneity on water table depth. Lu and Zhuang
[2012] improved the original model in the three aspects: (1) a TOPMODEL-based approach [Beven and Kirkby,
1979] was developed to account for the effects of microtopography on the water table depth (WTD); (2) the
Variable infiltration capacity (VIC) model [Liang et al., 1994], a large-scale hydrology model, was used to simulate
the hydrological processes and effects of freeze/thaw cycles on methane emissions dynamics; and (3) a function
was built for the relationship between the methane emissions transport and soil temperature. The results showed
that the methane model can capture the subgrid variations in the methane emissions and performs well under
the complex freeze/thaw processes. The daily inundated area was described as

WTDvicTopmodel = WTDyic — mx (TWI — VICrw) (M

IVICJrTopmodeI =0, |f WTDVIC+TopmodeI >0 )
Ivic+Topmodel = 1, if WTDvic Topmodel <= 0

where TWI is the local topographic wetness index [Beven and Kirkby, 1979] at the subgrid level (0.25° in this
study) and VICry, is mean topographic index for a specific VIC simulation grid cell (1° in this study). WTDyc is
the water table depth derived from daily simulated soil moisture and porosity, and WTDyic + Topmodel is the
subgrid water table depth used in the methane simulation; m is the decay parameter, which describes the
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change in soil conductivity with depth (meter, see Lu and Zhuang’s paper [Lu and Zhuang, 2012] for its values).
The inundation flag, hic + Topmoders is determined by subgrid water table depth WTDyc . topmodel at 0.25° spatial
resolution (equation (2)): ground surface is inundated if water table depth is equal to or less than zero. The
methane estimated from i + topmodel Was shown that it can capture more heterogeneity effect [Bohn et al,
2007; Ringeval et al., 2012].

The current methane models considered two relevant factors in estimating inundation extent: (1) grid cell’s
water balance and (2) local topographic distribution. Both are independent from other neighbor simulation
cells. The hydrological connection across grid cells, such as lateral water movement, is not considered in
estimating inundation extent. Therefore, current methane models lack the ability to track lateral water
movement and neglect its effect on methane emissions. Runoff moves from upland areas along with eleva-
tion gradient and eventually flows into rivers, which has a large contribution to inundation extent, especially
in lowland areas. Previous studies have shown that water transport across grid cells can largely control the
inundation extent in some large river basins [Kim et al., 2009]. Since groundwater movement has very limited
influence on generating inundated area, we focus on the surface water movement in this study.

2.2. The CaMa-Flood Model and Inundation Extent

To simulate surface water transport, a large-scale routing model is needed to track surface runoff estimated from a
land surface process model on the ground surface and also in rivers. In this study, we used the Catchment-Based
Macro-scale Floodplain (CaMa-Flood) [Yamazaki et al., 2011, 2012a, 2012b] to route runoff generated by the VIC
simulation and track its dynamics. The CaMa-Flood calculates water storage in river and floodplain reservoirs in
each grid, and other variables, such as inundated area, river discharge, and water depth are derived from water
storage. The CaMa-Flood model can be implemented at a different resolution from the VIC simulation. The simu-
lated runoff from the VIC was assigned to each CaMa-Flood grid by the nearest neighbor interpolation. Although
the CaMa-Flood model is usually applied at a relatively coarse resolution (0.25° in this study), the topographic
information determining water transport is fully considered. For a specific 0.25° gird cell, the CaMa-Flood model
provided the daily inundation extent which is denoted as A;c + cama — Flood- NOte that Ayc 1 cama — Flood represents
the flooded areas due to the contribution of surface runoff, and the inundation extent estimated from the
TOPMODEL-based redistribution is still valid and may be overlapped with Ajc 4 cama — Fiood IN SOMe regions.
Therefore, the daily inundation extent (/,ew) Used in the methane model is estimated as

Ihew = U[ IVIC+TopmodeI7 IVIC+CaMa7FIood} 3)

where U represents the union of lyic & Topmodel aNd Nic + cama — Flood- From the equations (1) and (2), hic + Topmodel
is a binary variable: either 1 (inundated) or 0 (not inundated); lic &+ cama — Flood @aNd Inew €an vary from 0.0 to
1.0, standing for the inundated fraction in each 0.25° grid. Soil column in inundated areas under surface
water is assumed to be saturated due to water reinfiltration. Although we do not explicitly model the rein-
filtration process, the water consumed in the reinfiltration should take only a small fraction of surface runoff
and the daily time step should be enough for filling soil column. The lack of infiltration treatment will not
change the surface inundation extent much and can significantly improve the efficiency of the simulation.
See the supporting information for more explanation on the approaches estimating water table.

2.3. Incorporate I,,q,, Into the Current Methane Module

In this study, soil moisture, soil temperature, and runoff were simulated at a 1° spatial resolution using the VIC
model; runoff was simulated at a 0.25° spatial resolution using the CaMa-Flood model; and methane emission
intensity was also calculated at the 0.25° spatial resolution (unit: g CH,/m?d, Figure 1). Other input data sets
for estimating methane emissions (such as NPP, PH, and soil texture) were also available at the 0.25° resolu-
tion. The soil temperature which is an output of the VIC simulation had a 1° resolution and was directly used
in the methane module by the nearest neighbor interpolation (Figure 1).

If a 0.25° grid cell with the area of A (m?) is completely inundated (/e = 1) or noninundated (/ew =0), the
methane emissions (E, g CH,/d) are calculated as F1*A and F1 is estimated from the methane model.
However, |,ew can vary from 0 to 1. It indicates that one 0.25° grid cell is partially inundated. In this case,
methane may emit at two different intensities within a specific 0.25° grid cell. Although higher-resolution
data (Aic + Topmodel ® lvic + cama — Flood) are helpful to alleviate this problem, the computation load also
increases at a square order. To reduce the computation time, we calculated two methane emission rates in
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1 Flooded fraction (I,.,,)
Inew=U [ Iyic+ropmodet » Ivic+cama-Fiood |

Methane simulation 1 Methane simulation 2 !
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If Iyscsropmoder <100, E = F1 % Ax (1 = Iney) + F2 % A * (Iney)

Figure 1. Flowchart to estimate the inundation extent and methane emissions in this study. The components with bold
and dashed frame are the parts we newly added to capture the effect of surface water flow on methane emissions.

each 0.25° grid cell: the first rate (F1) is calculated assuming that the whole cell is noninundated and the
second rate (F2) is calculated assuming that the whole grid cell is inundated (Figure 1).

The methane emission for a 0.25° grid cell is then estimated as the sum of emissions from its inundated and
noninundated parts (E=F1 XA X (1 — l,ew) + F2 X A X Ihew). Note that the water table for its unsaturated part
(1 — Inew) is still estimated from the TOPMODEL-based redistribution. In this way, the new methane model
can capture small variations in inundation extent which is finer than the 0.25° resolution (depending on its
significant figure). The assumption needed here is that soil column under inundated surface is always satu-
rated, which may lead to the biases in the very short time simulation. However, this is not an unreasonable
assumption, and the possible negative effects should be minor in this daily study.

3. Simulation Settings and Input Data

The global 1° daily runoff from 2005 to 2010 was generated from the VIC simulation which was used as the
input for the CaMa-Flood model simulation. The required input data for the VIC model including gridded
daily precipitation, maximum and minimum daily air temperatures, and wind speed were acquired from
the National Centers for Environmental Prediction atmospheric reanalysis [Kalnay et al., 1996]. Soil hydraulic
parameters [Nijssen et al, 2001] and other vegetation parameters such as minimum stomatal resistance,
albedo, and rooting depth and fraction specified for each vegetation class were obtained from the VIC model
website (http://www.hydro.washington.edu/Lettenmaier/Models/VIC/). The land cover map was obtained

LU ET AL.

DEVELOPMENT OF A METHANE MODEL 1660


http://www.hydro.washington.edu/Lettenmaier/Models/VIC/

@AG U Journal of Geophysical Research: Biogeosciences

10.1002/2016JG003321

Table 1. Comparison of the Daily River Discharge in the Selected Major Basins®

Basin Station Latitude Longitude Area (1 0> kmz) Period Qobs Qsim R

Amazonas Obidos-Linigrafo —1.9192 —55.513 4680 2007 173964 124356 0.65
Congo Kinshasa 153 3475000 3475 2006-2010 40050 50051 0.71
Ob Salekhard 66.57 66.53 2950 2006-2010 12693 16597 0.76
Mississippi Baton Rouge 3231 —90.91 2916 2006-2010 14965 20305 0.78
Parana do Careiro Careiro —3.1961 —59.834 2583 2006-2009 13376 9701 0.72
Yenisei lgarka 67.48 86.5 2440 2006-2010 20208 17132 0.81
Lena Kyusyur 70.7 127.65 2430 2006-2010 20207 17057 0.83
Mackenzie Arctic Red River 67.4583 —133.74 1660 2006-2010 10087 13601 0.79
Yukon Pilot Station 61.93 —162.88 831 2006-2010 6784 7891 0.80
Columbia The Dalles 4561 —-121.17 614 2006-2010 5085 5689 0.82
Ohio Metropolis 3713 88.73 526 2006-2010 8685 6501 0.73

#Qops and Qsim, are the annual average discharge (m3/s) for observation and simulation, respectively. R is the correlation coefficient, estimated from the daily
values. The Amazonas and Parana do Careiro Basins are in the Southern Hemisphere, and the rest of the basins are in the Northern Hemisphere.

from the University of Maryland’s 1 km Global Land Cover product [Hansen et al., 2000] and processed to
build the vegetation fraction data set in each 1° simulation grid.

The CaMa-Flood model was also run for the period from 2005 to 2010. The first year, 2005, was used as a
spin-up period and excluded for the further analysis. In this study, we run the CaMa-Flood model at the
0.25° spatial resolution and an adaptive time step. The required input data for the CaMa-Flood model
including the global digital elevation model and its derivatives, flow direction map, river width length,
and height are distributed with the model package (http://hydro.iis.u-tokyo.ac.jp/~yamadai/cama-flood).

The input data for the methane module include the daily net primary production (NPP), the land cover types
[Melillo et al., 1993], soil texture [Zhuang et al., 2003], and soil-water PH [Carter and Scholes, 2000]. The daily
NPP was derived from the MODIS NPP monthly product (MOD17A2) and was assumed to be the same
through 1 month. Also see the supporting information for the input data.

4. Results and Discussions

We first evaluated the model’s performance in simulating discharge, flooded extent, and methane emissions.
Then we investigated the effects of incorporating the CaMa-Flood model by comparing against the results
from our previous model and other models.

4.1. Evaluations

We compared the simulated daily river discharge in eleven major river basins against observations at the gau-
ging stations. For each river, the gauging station with available measurements in the study period and also
located the farthest downstream were selected. The location of the gauging stations (latitude and longitude),
upstream drainage area (1 0° km?) and the period used are shown in Table 1. We also calculated the correla-
tion coefficient, R, from the daily observations and simulations in Table 1. The data for the stations in the U.S.
were acquired from the U.S. Geological Survey, and the rest were provided by the Global Runoff Data Center,
available at http://www.bafg.de/GRDC/.

Annual average discharge for most rivers in the Northern Hemisphere was overestimated using our /e
based framework and was underestimated for the rivers in the Southern Hemisphere (Table 1). The fra-
mework can roughly capture the seasonal pattern of the river discharge with the correlation coefficient
in the range between 0.65 and 0.83. Its performance is affected not only by the algorithm and elevation-
derived data used in the CaMa-Flood model but also the runoff from the VIC model. It is noted that
given limited information on global infrastructure, we did not account for the river discharge regulation
by the dams. This is a common assumption in other large-scale studies [e.g.,, Wu et al., 2014; Nguyen
et al., 2015].

We also evaluated the simulated flooded extent by comparing with the GIEMS data [Prigent et al., 2007; Papa
et al.,, 2010] and SWAMPS dataset [Schroeder et al., 2015]. From the optical, passive and active microwave data,
the GIEMS provides global monthly inundated extent at the 25 km resolution from 1993 to 2007. SWAMPS
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Inundation Extent (VIC+Topmodel)

12|~ | =~ = Inundation Extent (New)
s [nundation Extent (PaPa)
Inundation Extent (SWAMPS)

Inundation extent (k)

I I I I |
2006 2007 2008 2009 2010
Days (2006-2010)

Figure 2. Global daily flooded area estimated from lic 1 Topmodel Inew (dashed), and multisatellite observations (PaPa, bold).
Note that the temporal resolution of satellite observations is monthly and the two simulations are daily time step.

provides a global daily inundation by combining passive/active microwave remote sensing data from
1992-2013 at a 25 km resolution. The time series of global floodplains from the simulations (/yc
+Topmodel and new) and the satellite observation were compared (Figure 2). The seasonal pattern of
the simulated inundated area matches well with the satellite observations. The inundation extent is lar-
ger in the two model simulations than that from the multisatellite observation: the GIEMS data report a
maximum inundation extent of 5.6 x 10%km? during the study period, while our estimation is close to
11.0 x 10% km? (Inew) and 8.5x 10°% km? (Nic + Topmodel)s respectively. The underestimation of the satellite-
derived inundation extent is mainly due to the low sensitivity of the retrieval algorithm in detecting small
flooded area [Prigent et al., 2007; Yamazaki et al., 2011] and the low temporal resolution which may report mini-
mum inundation extent in one month. However, the new inundation extent from SWAMPS has much higher
temporal resolution. It is in good agreement with our simulated result: the annual maximum inundated area
for the global domain estimated from SWAMPS is 11.9 x 10° km? during 2006-2010, which is less than 10%
higher than our estimation.

We validated our algorithms for the methane production and consumption at the site level in previous studies
by comparing against the measurements [Lu and Zhuang, 2012; Zhu et al., 2014]. In this study, we evaluated the
new methane model on a large scale. However, it is important to note that both the forward and inverse models
highly depend on their assumptions and parameters; thus, none of their results can be used as the unbiased
data set. Also as indicated in the WETCHIMP study [Melton et al., 2013], the global CH, observations have large
uncertainties and the lack of reliable global data sets limits efforts to evaluate methane models’ performance.
However, some regions have the airborne-based CH, observations. For example, the annual methane emissions
in the Hudson Bay lowland (HBL) were measured by aircrafts [Harriss et al., 1994; Roulet et al., 1994; Worthy et al.,
2000; Pickett-Heaps et al., 2011] during the period 2004-2008. Most other models reported HBL as a methane
source emitting 2.9-11.3TgCH,yr' (Table 3). Although simulated in different periods, the results from
Nic + Topmodel @nd ey fall in the range of measured methane emissions: 7.9+1.2 and 10.9+1.3Tg CHayr™"
(Table 3), respectively. Another region with methane emissions measurements is the West Siberian Lowlands
(WSL) [Winderlich et al., 2010; Glagolev et al., 2011]. The reference observations in WSL were developed by com-
bining the in situ chamber observations and the statistical model of methane fluxes as function of wetland
types. According to this observation data set, 3.92+1.29TgCH,yr ™' were emitted from the WSL during
1993-2004. WSL was estimated by our methane model ( lyic + topmodel) @5 @ methane source with a magnitude
of 8.74TgCH,yr ™' for the same period. The lyew proposed in this study gives a higher estimate of
11.7 Tg CH, yr ' for the period of 2006-2010. Given that the current methane models are different in estimating
the inundation extent (Table 2), the modeled methane emissions can be more different among them. However,
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Table 2. Comparison of the Mean Annual Maximum Inundation Extent From the Models
Global Maximum

Resolution Inundation Extent  Tropics (30°S-30°N) Extratropics
Model (Longitude X Latitude) (10%km?) (10%km?) (> 35°N) (108 km?) Period References
CLM4Me 2.5°%1.9° 88x1.5 26+0.2 51x14 1993-2004 Riley et al. [2011]
DLEM 0.5°%0.5° 71+£1. 3.1+04 33+0.8 1993-2004 Tian et al. [2011];
Xu and Tian [2012]
GIEMS? 0.25° % 0.25° 126+0.8 6.0+14 52+1.2 1993-2004 Melton et al. [2013]
GIEMS 0.25° % 0.25° 5.6+0.8 2.7+0.1 2.7+0.0 2006-2007 Prigent et al. [2012]
LPJ-Bern 0.5°%x0.5° 81.7+24 38.8+1.8 364+2.8 1993-2004 Spahni et al. [2011]
LPJ-WHyMe 0.5°x0.5° 2.7 NA NA 1993-2004 Wania et al. [2010]
LPJ-WSL 0.5°%0.5° 9.0+1.1 3.8+03 42+09 1993-2004 Hodson et al. [2011]
ORCHIDEE 1.0°x1.0° 8.6+0.9 43+03 34+0.7 1993-2004  Ringeval et al. [2011, 2012]
SDGVM 0.5°x0.5° 269+36 13.2x1.1 120+3.8 1993-2004 Hopcroft et al. [2011]
Singarayer et al. [2011]
UVic-ESCM 3.6°%1.8° 163+ 14 10.6+04 50+1.2 1993-2004 Avis et al. [2011]
VIC + Topmodel 0.25°x 0.25° 8522 14+0.1 6.7x0.1 2006-2010 Lu and Zhuang [2012]
VIC + Topmodel + CaMa 0.25° % 0.25° 106+1.9 2.1+0.1 7.9+0.2 2006-2010 This study

#The GIEMS inundation data set contain rice agriculture.

the higher methane emissions from the hc 1 topmoderr Which has similar inundation extent to other models,
suggest that our algorithms and parameters controlling methane production, oxidation, and transport could
be one of factors leading to the higher estimation. The I, With even larger flooded areas tends to have higher
estimation of methane emissions than other models.
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Figure 3. Comparison of the daily inundation extent in the (a) global, (b) Asia, (c) North America, and (d) South America estimated by the lc 4 Topmodel (solid line)
and Inew (dash).
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4.2. Inundation Extent

The daily inundation extent estimates in continents with large flooded area including Asia, North America,
South America, and global from the k¢ 4 Topmodel and the Iney, are illustrated in Figure 3. During 2006-2010,
the global maximum and minimum flooded areas from the /e, are 1.0 x 107 km? and 2.8 x 10% km?, respec-
tively (Figure 3a). Both of them are approximately 1.0 x 10° km? larger than those from Nic + Topmodel- The
fundamental reason for the difference is how surface runoff contribution to the inundation extent is
assumed in the two schemes: lyic 1 Topmodel lacks the ability to represent horizontal water movement,
and its saturated area is determined only by water balance in a local grid, while /.o, estimates inundation
extent from both soil moisture and water transport. Therefore, the two schemes report large difference of
flooded areas in summer and winter periods. The large difference in summer is mainly due to snow melt-
ing in Asia (Figure 3b) and North America (Figure 3c): snow melt usually leads to floods in spring and the early
summer time; the disagreement in winter time is the result of heavy precipitation in tropical regions, such as
South America (Figure 3d). The large difference of estimated inundation extent from these two schemes in
South America lasts almost all year round. The reasons are (1) the runoff does not rely on snow melt and (2) some
large basins, such as parts of Amazon Basin, are relatively flat and the inundation duration can last longer than
other regions.

The spatial distribution of the inundation area during the period 2006-2010 estimated from hyc + Topmodels
Inews and their difference are shown in Figure 4. Note that the inundation fraction from hc 4 topmodel is binary
values: 0 (no inundated) or 1 (inundated). Snow melt is the major factor influencing the inundation extent,
especially in Northern Asia and North America. In fact, the inundated area detected by the lc . Topmodel iS
mostly likely located in the place where the /e, also reported 100% inundated. The explanation is that
the inundated area estimated from Iyc . Topmodel IS Primarily determined by the soil moisture and
topographic information (Figure 4a) which are also considered in the /,e\. The places where estimations from
these two schemes are different (Figure 4c) usually have the inundation fraction around 30% or below and
are even the upland areas with short flood duration. The lyic 4 Topmodel has no mechanism for the surface lat-
eral flow, and thus, it can only capture the inundation extent in the lowland areas, while I,,ew, as we can see in
the Figure 4b, cannot only capture the lowland inundated areas but also track the short-term flooded upland
areas. This point is particularly distinct in Australia: only a small fraction of Northern Australia was saturated
according to the lyic & Topmodel: While most arid regions, mainly in the western and southern part, were never
saturated during the study period (Figure 5a); /,,ew reported more inundated areas (Figure 5b) with short
duration, less than 10days in 1year.

The Iew also performs differently compared to the lic 4 topmodel in the flat regions as shown in western
Europe and Eastern China. Both of the two regions are relatively flat and the inundated areas mainly located
along the downstream areas of the Danube River (Figure 5¢) and the Yangtze River (Figure 5e), respectively.
The performance of the TOPMODEL-based water table redistribution method is reduced due to the relative
coarse resolution and flat topography: WTDyc + Topmodel IS almost equal to WTDy,c everywhere except in
regions with a large upstream drainage area.

The mean annual maximal inundation extent from eight models in WETCHIMP was compared in Table 2:
CLM4Me [Riley et al., 2011], DLEM [Tian et al, 2011; Xu and Tian, 2012], LPJ-Bern [Spahni et al., 2011], LPJ-
WHyMe [Wania et al., 2010], LPJ-WSL [Hodson et al., 2011], ORCHIDEE [Ringeval et al., 2011, 2012], SDGVM
[Hopcroft et al., 2011; Singarayer et al., 2011], and UVic-ESCM [Avis et al., 2011]. LPJ-WHyMe is the only model
using static inundation extent; two models, SDGVM and UVic-ESCM, fully rely on their hydrological modules
to determine the saturated areas, and the rest of the five models used the GIEMS data set to represent their
inundation distribution. More details about model difference can be found in Wania et al's paper [Wania
et al, 2013]. The GIEMS values used in the Melton’s study [Melton et al, 2013] (also Table 2) is annual
maximum wetland extent which is the sum of annual maximum inundated areas for all grid cells. Thus, the
inundated area, 12.6 x 10> km?, is much higher than that in Figure 2 (“Inundation extent PaPa”). LPJ-Bern has
significantly higher inundation extent than other models and observations. The soil parameterization used in
this model is likely the main reason for this overestimation [Melton et al., 2013]. The two models, SDGVM
and UVic-ESCM, also report the relatively larger flooded areas possibly due to the simple hydrological mod-
ules [Melton et al., 2013]. The other models constrained by the GIEMS observation simulated the inundation
extent in the range from 7.1 t0 9.0 x 10% km?, which is below the maximum inundated area from the GIEMS.
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Figure 4. Spatial distribution of the mean maximum inundation extent during the period 2006-2010 estimated from the
(@) hic + Topmodels (b) Inew: and their (c) difference (lnew — Iic + Topmodel)-
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Figure 5. Comparison of the spatial distribution of the mean annual maximum inundation extent during 2006-2010 estimated from the hc + Topmodel in (a)
Australia, (c) Eastern China, and (e) western Europe and the /,,e\ in (b) Australia, (d) Eastern China, and (f) Western Europe.

The inundated areas simulated from Ayc + Topmodel @Nd hew are 8.7 £2.2x 10° and 109+ 1.9% 10> km?, respec-
tively. With consideration of water flow from upland areas, the /., has a larger estimation of inundated area than
Nic + Topmodel (Table 2) and most of the other models. We noticed that 80% of the inundated areas from the /new
located in the extratrophic region (>35°N, Table 2) and the high-latitude regions contribute a large fraction. Also,
the inundated area in the trophic region (30°5-30°N) is smaller than most of the other studies. In our simulation,
many high-latitude regions have high soil moisture due to the low evapotranspiration; the ice melt in the spring
leads to the large-scale flood. The inundation extent could be different because of model's assumptions,

LU ET AL. DEVELOPMENT OF A METHANE MODEL 1666



@AGU Journal of Geophysical Research: Biogeosciences  10.1002/2016/G003321

Table 3. Simulated Annual Mean Methane Emissions (Tg CHg yr

1)3

Resolution
Model (Longitude x Latitude) Global Tropicsb Extratropics® HBLY Period References
CLM4Me 2.5°%1.9° 206+ 6 134+5 62+6 34+03 1993-2004 Riley et al. [2011]
DLEM 0.5°x0.5° 141+ 11 85+7 39+3 29+0.2 1993-2004 Tian et al. [2011] and Xu and Tian [2012]
LPJ-Bern 0.5°% 0.5° 181+15 106+2 65+ 13 11.3+£7.9 1993-2004 Spahni et al. [2011]
LPJ-WHyMe 0.5°%0.5° 27+2 55+1.0 1993-2004 Wania et al. [2010]
LPJ-WSL 0.5°%0.5° 17410 122%7 42+2 3.9+03 1993-2004 Hodson et al. [2011]
ORCHIDEE 1.0°%1.0° 264+12 184%11 714 9.1+£17 1993-2004 Ringeval et al. [2011, 2012]
SDGVM 0.5°%0.5° 199+5 1356 59+3 22+0.2 1993-2004 Hopcroft et al. [20111Singarayer et al. [2011]
Iic +Topmodel 0.25°x 0.25° 227+9  81%7 129+6 79+12 2006-2010 Lu and Zhuang [2012]
- 0.25°% 0.25° 297 £11 126+9 1417 109+ 13 2006-2010 This study

Inverse Model Estimation

Bloom 2010 3°%x3° 171£52 92+28 74 £22 49+14 2003-2007 Bloom et al. [2010]
Bousquet201 1R 1°%1° 145+10 9111 43+4 1993-2009 Bousquet et al. [2006, 2011]
Bousquet201 1 1°x1° 15110 97+10 43+4 1993-2009 Bousquet et al. [2006, 2011]

*The standard deviation represents the interannual variation in the model estimates. R and K are global inversions using LMDZ with emissions from Matthews
and Fung [1987] and Kaplan [2002] as the wetland prior, respectively.

b30°5-30°N.
Z>35°N.
50°N-60°N, 75°W-96°W.

algorithms, boundary conditions, and parameters. Above analysis shows that it is helpful with our new
incorporation of surface water movement to capture inundated areas occurring in flat and arid regions.

4.3. Methane Emissions

4.3.1. CH, Emissions

The annual global methane emitted to the atmosphere for the period 2006-2010 is estimated to be 297+ 11 and
227 +£9TgCH, yri1 by the hew and hic + Topmodet respectively. Although our estimate from Ayc 4 Topmodel is Within
the range of the selected forward model results which are between 141 and 264 Tg CH, yr~' (Table 3), its estima-
tion is higher than all the model’s results except ORCHIDEE. The /,,ew, however, gave an estimate about 30% higher
than lic + Topmodelr Which is expected because the inundation extent from the /e, is broader than that from the
Nic +Topmodel- As indicated in the evaluation section, we tend to give high methane emission estimation using
lhew due to the increase in inundation extent and the methane module. The simulation based on the /e, reports
that the trophic region contributes less emissions than the extratrophic region (126 TgCH,4 yr’1 versus
141 Tg CH,yr~ ") (Table 3), which is contrary to most of the other models. The difference in their hydrological mod-
ules is one of the reasons that the VIC has the comprehensive mechanism to track the dynamic of snow pack and
the phase change of soil moisture. The effect of spring flood occurring in high latitudes is well considered in the VIC
model, while some of the other models may underestimate this effect due to the lack of soil thermal component.
4.3.2. Spatial Distribution of Methane Emissions

As expected, the spatial pattern of methane emissions is highly dependent on the distribution of inundated area
(Figure 6). In high-latitude regions, previous studies [Rofaier et al., 2013; Zakharova et al.,, 2013] have shown that soil
moisture (ice or liquid water) is usually at relatively high level. With temperature increase in summer time, ice
melt in soil and the thawing of snowpack lead to large-scale saturated zones. Moreover, the low loss from
evapotranspiration keeps soil moisture at high level until soil frozen in late September or October.

On the other hand, the soil moisture estimated from VIC simulation is relatively low in the trophic region, due
to high evapotranspiration loss. Contrary to other methane models, this study shows that the methane
emissions in the trophic region are slightly lower than that in the extratrophic region. The soil moisture in
the trophic region is largely determined by precipitation and evapotranspiration. Different from the high
latitudes with water stored in soil, soil moisture in the low latitudes will decrease rapidly when rainfalls stop.
The strong methane emission zones are usually located in places near to river networks where soil can get
water supply from flood water regularly.

The distribution of mean methane emission during 2006-2010 in Australia, Eastern China, and western
Europe is shown in Figure 7. Although the methane emissions in Australia from the /,,e,, sShow broader extent
than that from the lyic + Topmodel (Figure 6), the flux intensity in the new source areas is usually at a low level
because most of them are located in the western arid region with poor organic substrate availability. Also,
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Figure 6. Spatial distribution of the mean methane emissions estimated from (a) Ayic + Topmodels (b) lnews and (c) their difference
(lhew — MC + Topmodel) during the period of 2006-2010. The unit is g CHa/m” yr.
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Figure 7. Comparison of the spatial distribution of the mean methane emissions during 2006-2010 estimated from the lyic + Topmodel in (@) Australia, (c) Eastern
China, and (e) western Europe and from the /ey in (b) Australia, (d) Eastern China, and (f) western Europe. The unit is g CHs/m* yr.

precipitation is low and evapotranspiration is high in most new inundated areas, which lead to a short
duration of inundation. These factors contribute to significant increase of total methane emissions in
Australia with incorporation of the surface routing module. The annual methane emissions from the Iy c
+Topmodel @nd Ine,, during the study period are estimated to be 6.8 and 11.5 Tg CH,/yr, respectively.

Following the inundation extent pattern in Eastern China, the methane source area from the I, is also larger
than that from the lic + Topmodel (Figure 7). Although the high methane emissions zone around the Yangtze
River can be roughly recognized from the methane emissions map generated from the hc + topmodels it is
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Figure 8. Mean ratio between surface water and soil liquid water during 2006-2010.

hard to differentiate the channel networks of the Yellow River and Pearl River from this map. It suggests that
the TOPMODEL-based method at the 0.25° resolution may be still limited in terms of topographic heteroge-
neity. The inundation areas derived from the /,ew, however, clearly illustrate most channel nodes of the
Yellow River, the Yangtze River, and the Pear River (Figure 5). Particularly, there is a large methane source
region locating in the Middle-Lower Yangtze Plain due to the East Asian rainy season while this region is
barely shown in the map generated from the lc + Topmodel- The flat topography limits the performance of
the lic + Topmodel: and the water table depth is almost equal to the uniform one estimated directly from
the VIC simulation. The map from the /,¢\, has the same spatial resolution to that from the lic + Topmodels €ach
grid cell, however, has a inundated fraction rather than a binary inundated flag used in the lyc 4 Topmodel- This
feature can significantly improve the model to capture the local heterogeneity without increasing the grid
cell's resolution and computing time. At the same time, relatively dense vegetation in Eastern China produces
enough organic substrate availability for methane production. Therefore, similar to Australia, methane emis-
sions are larger with consideration of surface water in Eastern China: 5.4 and 7.2 Tg CH,/yr during 2006-2010
from the lic + Topmodel aNd Inews respectively.

The terrain in western Europe is generally flat and undulating, but there is no intense rainy season. The extent
of flooded area is relatively small and less variant. Although there are large inundated areas reported by the
GIEMS data set, most of them are flooded agricultural lands rather than natural wetlands [Melton et al., 2013].
Surface water does not have the similar duration and extent compared to that in Eastern China; thus, the sur-
face water routing did not lead to large difference in the methane emissions between lyc . Topmodel aNd Inew-
It emits 0.6 and 0.1 Tg CH4/yr during 2006-2010 from the k¢ 4+ Topmodel @Nd Inew, respectively. In addition to
Northern ltaly, which is found to be a major methane source by the lyic . Topmodel @and lnew (Figure 7e), another
high flux region around the outlet of the Danube River is found in the /., simulation (Figure 7f).

4.3.3. Contribution of Surface Water to Inundation Extent and Methane Emissions

Since liquid water plays an important role in the methane emissions, we calculated the mean ratio between
liquid water stored in ground surface (not including river water and lake water) and that in soil (in upper
1.6 m soil layer) in summer time of the study period. The spatial distribution of this ratio was shown in
Figure 8. Surface water only occupies a small fraction of the total liquid water storage, about 1.28% for
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the global during 2006-2010. Surface water contributes a higher fraction in high-latitude regions due to
relatively higher ice content in soil and large melted water from snowpack. Surface water also occupies
a relatively higher fraction in areas close to streams. When the surface water is taken into account in
estimating inundation extent, it leads to 24.7% and 30.8% increases in the maximum inundation extent
and methane emission in the global scale. It indicates that although surface water is a relatively small
component in the terrestrial water balance, it can play a significant role in controlling the inundation extent
and the methane emissions.

The importance of surface water varies in different regions: (1) while difference in inundated areas from the
Inew @and lic + Topmodel is considerably large in many regions, their difference in inundated fraction is relatively
small in the high-latitude regions. The reason is that most of the soil is already saturated due to the melting of
soil ice in summer and surface snowpack and runoff is mainly generated by saturation excess (Dunne runoff
[Dunne and Black, 1970a, 1970b; Dunne et al., 1991]). Both the /ey and lic + Topmodel Can capture most of
such inundated areas, the difference mainly occurs in the uplands; (2) most differences from two schemes
occur in flat and humid regions with heavy rainfalls. As we discussed above, flat topography limits the
TOPMODEL-based approach and high-intensity rainfalls lead to more surface water. In other words, the
Nic + Topmodel €an probably degenerate into the scheme estimating inundation extent directly from the uni-
form water table scheme. In this case, the lic + Topmodel does not respond to surface water and has a poor
performance in water table redistribution. The /e, however, has the mechanism to capture surface water
dynamic, and thus, it can still perform well in flat topography. According to the example in the Eastern
China, the new scheme can produce 47.4% and 33.3% more in the inundation extent and methane emis-
sions, respectively. Because western Europe does not have the similar long-term rainy season, the new
scheme only estimates 38.2% and 30.4% more inundation extent and methane emissions, respectively;
(3) in arid regions, inundated area is mainly caused by intense rainfalls and most of surface water is pro-
duced from the Horton runoff [Horton, 1933]. Moisture deficit can be large, and unsaturated zones may
exist under overland flow in these regions. In comparison to moist soil, more surface water will lose in
the reinfiltration process, and the /., may overestimate inundation extent and also its duration.
Moreover, our “always saturated” assumption may lead to an overestimation of methane production zone
in arid regions. However, the low carbon substrate availability can reduce this overestimation to some
extent. The example in Australia indicates that the new scheme yields 137.0% and 83.8% raise in the inun-
dation extent and methane emissions, respectively.

5. Discussions
We are also aware of the limitations in our model:

1. The redistribution function (equation (1)) is highly dependent on the decay parameter m which is a
function of soil temperature, surface slope, and soil texture. The values were assigned for each grid cell accord-
ing to previous study rather than calibration, which may introduce biases in water table redistribution.

2. The hydrological model can largely influence the performance of methane model. The validation shows
that the VIC model used in this study may overestimate the soil moisture in high-latitude regions and
underestimate that in trophic regions.

3. The description of methane production, oxidation, and transportation processes may have inherent
uncertainties. For example, NPP is used as the proxy for the availability of organic carbon substrate in
our model. However, the vegetation in the arctic regions usually has low carbon uptake ability and high
carbon storage due to the low decomposition rate. In this case, our model can be potentially improved by
using soil organic carbon directly.

4. Wetland is simply defined as inundated areas, but wetland-specific vegetation types (e.g., boreal peat-
lands, marsh, and mangroves) are not explicitly modeled. Our model can be further improved with con-
sideration of more detailed microtopograhical variations such as hollows or hummocks in peatlands.

5. Seasonal change of vegetation cover may have large effect on controlling precipitation arriving at ground
surface and flow velocity. In this study, their influences are partially considered by using seasonal leaf area
index in the VIC model simulation. However, the manning'’s coefficient describing surface roughness is
assumed constant (0.1). We will improve our future work in this area by cooperation with the developers
of the CaMa-Flood model.
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Moreover, the loss of surface water in evaporation or reinfiltration was not considered in our model. Although
surface runoff may be not enough to fill unsaturated zones along its pathway in arid and dry regions, its low
soil organic carbon may reduce possible errors in methane emissions. The assumption of always saturated
soil column under inundated area may be not true especially for short time applications, while the simulation
at the daily time step in this study can reduce the potential bias. Moreover, the detailed modeling of
reinfiltration process usually requires a short time step (second or minute) which limit its applications at a
large scale. For better validation of inundation extent, remote sensing technologies, which can provide
large-scale inundated area at frequent temporal resolutions, is needed. The sensors, which are insensitive
to dense canopy and clouds, are particularly useful in monitoring inundated area. The site-level calibration
of methane models is important to reduce uncertainties in parameters [Zhu et al., 2014], and more measure-
ments of long-term methane fluxes are required. However, the scale issue associated with site-level data is
still an open question. The methane concentration observations from satellites provide a good way to vali-
date large-scale methane emissions [Miller et al., 2013]. More data of accurate a priori methane source are
required to reduce errors in converting measured concentrations to emissions estimations. At the same time,
more efforts are needed to reduce uncertainties in inverse models [Locatelli et al., 2013; Miller et al., 2013].

6. Conclusions

The recent two methane model intercomparison projects in the global and region scales [Melton et al., 2013;
Bohn et al., 2015] showed that existing schemes in estimating inundation extent lack the ability to capture
flooded area due to horizontal movement of surface water. This limitation leads to an underestimation of
inundation extent and thus tends to underestimate methane emissions. Our study found that the methane
emissions model without surface routing module leads to 24.7% and 30.8% lower in estimating inundation
extent and methane emissions at the global scale. The largest difference between the TOPMODEL-based
approach and our proposed model in this study occurs in flat and moist regions, such as the Eastern China
where the new methane model estimates 47.4% and 33.3% larger of the inundation extent and methane
emissions than our previous methane model does. It was found that the impacts of surface water on the
inundation extent and methane emissions vary with climate and topography: (1) compared to the current
widely used TOPMODEL-based approach, the maximum inundation extent is larger from the proposed
approach in this study almost for the whole global except for the high-latitude regions where snow melt
mainly determines the inundated area; (2) the largest difference of estimated methane emissions between
the two schemes occurs in flat regions with high precipitation.

In the light of wide recognition on the effects of methane emissions on climate change, accurate quantifica-
tion of methane emissions is imperative for climate mitigation, and thus, improvement in methane emission
models with consideration of critical processes such as surface water transport is indispensable. The scheme
of coupling surface routing in this study only requires additional information of surface runoff without mod-
ifying model structure; thus, it will be applicable in most of the current methane models. Moreover, the sur-
face routing method used in this study is publicly available, and the elevation-derived input data sets are also
provided in the package. Here we provide an optional way for the community to analyze the effect of surface
water transport on methane emissions. Finally, other than highlighting the significant effects of surface water
transport on inundated area and methane emissions to the model community—Ilack of this component in
methane model may lead to large bias—we stress that the estimates from our improved model can be used
to better inform climate mitigation policies.
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