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Abstract There is a pressing need to develop earth system models (ESMs), in which
ecosystem processes are adequately represented, to quantify carbon-climate feedbacks. In
particular, explicit representation of the effects of microbial activities on soil organic carbon
decomposition has been slow in ESM development. Here we revised an existing Q10-based
heterotrophic respiration (RH) algorithm of a large-scale biogeochemical model, the Terrestrial
Ecosystem Model (TEM), by incorporating the algorithms of Dual Arrhenius and Michaelis-
Menten kinetics and microbial-enzyme interactions. The microbial physiology enabled model
(MIC-TEM) was then applied to quantify historical and future carbon dynamics of forest
ecosystems in the conterminous United States. Simulations indicate that warming has a weaker
positive effect on RH than that traditional Q10 model has. Our results demonstrate that MIC-
TEM is superior to traditional TEM in reproducing historical carbon dynamics. More impor-
tantly, the future trend of soil carbon accumulation simulated with MIC-TEM is more
reasonable than TEM did and is generally consistent with soil warming experimental studies.
The revised model estimates that regional GPP is 2.48 Pg C year−1 (2.02 to 3.03 Pg C year−1)
and NEP is 0.10 Pg C year−1 (−0.20 to 0.32 Pg C year−1) during 2000–2005. Both models
predict that the conterminous United States forest ecosystems are carbon sinks under two
future climate scenarios during the 21st century. This study suggests that terrestrial ecosystem
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models should explicitly consider the microbial ecophysiological effects on soil carbon
decomposition to adequately quantify forest ecosystem carbon fluxes at regional scales.

1 Introduction

Over the period 1951–2012, the global land and ocean instrumental temperature records show
an increasing trend of 0.12 °C per decade (IPCC 2013). To date, ecosystem models are the
primary tools to quantify carbon (C) dynamics (McGuire et al. 1992; Potter et al. 2007;
Zhuang et al. 2003; Chen et al. 2011; Wieder et al. 2013; Todd-Brown et al. 2014). However,
the response of the terrestrial C dynamics to changing climate remains highly uncertain
(Friedlingstein et al. 2006; Wieder et al. 2013). Much of the uncertainty is due to the
inadequate representation of ecosystem processes that determine the exchanges of water,
energy and C between the land ecosystems and the atmosphere (Wieder et al. 2013). There
is a pressing need to improve our understanding of the feedbacks between terrestrial biosphere
and the atmosphere, and provide critical information to studying long-term biosphere interac-
tions with other components of the Earth system (Law et al. 2006; IPCC 2007; Potter et al.
2007; Xiao et al. 2011). Given the large amounts of soil carbon and intensifying carbon-
climate feedbacks (Davidson et al. 2012), greater attention should be paid on improving the
numerical representation of soil biogeochemistry models at multiple scales in Earth System
Models (ESMs) (Wieder et al. 2013).

Recently, ecosystem models explicitly incorporated the dynamics of microbial enzyme
kinetics are shown to perform well in comparison with observed data (Allison et al. 2010;
Wieder et al. 2013). Further, the effects of environmental factors and substrate availability on
microbial physiology, in turn, affecting soil carbon decomposition have been well investigated
(Xu et al. 2014). While these studies focused on either soil C pool or model performance, they
have been slow to incorporate these microbial mechanisms into large-scale ecosystem models
to quantify soil respiration under future climatic conditions. Heterotrophic respiration (RH) is
an indispensable component of soil respiration and approximates the rate of soil organic matter
(SOM) decomposition (Hanson et al. 2000; Bond-Lamberty and Thomson 2010). Moreover,
SOM decomposition process is closely coupled with soil nitrogen (N) mineralization that
determines soil N availability and affects gross primary production (GPP). However, these
processes have not been adequately incorporated into ESMs to quantify ecosystem C dynam-
ics, especially at large spatial and long temporal scales.

Terrestrial Ecosystem Model (TEM) is a large-scale biogeochemical model which has been
widely used to evaluate the response of terrestrial ecosystem carbon dynamics to climatic
changes (Felzer et al. 2004; Tang and Zhuang 2009; Zhuang et al. 2010). However, TEM is
lacking the detailed representation of soil microbial physiological effects on RH. In order to
improve the mechanistic robustness of the model, we revised the classic Q10- based RH

algorithms by incorporating the algorithms developed in He et al. (2014) to develop a new
version of TEM (MIC-TEM). The new algorithms explicitly consider the direct impacts of soil
temperature on biochemical reactions and the indirect effects on RH affected by substrate
availability, enzyme activities, and microbial physiology (Appendix 1). MIC-TEM was then
used to estimate the carbon fluxes under changing climates over the conterminous United
States. This study aimed to assess the reliability of MIC-TEM and examine the effects of the
detailed microbial physiological representation on seasonal and annual carbon dynamics at
regional and long-term temporal scales.
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2 Method

2.1 Overview

We first revised RH formula of TEM by incorporating the effects of changing microbial carbon
(MIC), enzyme carbon (ENZ), and soluble carbon (SOLC) as well as soil microbial physiol-
ogy. The model was then calibrated and verified for forest ecosystems with observed net
ecosystem exchanges (NEE) and estimated GPP from eddy covariance flux towers. Next, we
applied the model to estimate forest carbon fluxes for each 0.5°×0.5° grid cell across the
conterminous US under future climate scenarios of RCP 2.6 and RCP 8.5 for the 21st century.

2.2 The revised terrestrial ecosystem model

TEM is a terrestrial ecosystem model to estimate carbon and nitrogen fluxes and pool sizes of
plants and soils using spatially referenced information (Raich et al. 1991; McGuire et al. 1992;
Melillo et al. 1993; Zhuang et al. 2003, 2010). A daily version of TEM (Zhu et al. 2013), which
has been coupled with a Soil Thermal Model (STM) and a Water Balance Model (WBM) to
account for the effects of soil temperature and hydrological dynamics on carbon fluxes, was used.
In TEM, RH is defined as a function of soil organic carbon (SOC), temperature (Q10), soil
moisture (MOIST), and the gram-specific decomposition constant Kd:

RH ¼ Kd � SOC � Q10 �MOIST ð1Þ
More details of RH algorithms can be found in previous publications (e.g., Zhuang et al.

2003, Chen et al. 2011). The revised RH algorithm for MIC-TEM was based on a microbial-
enzyme model (Allison et al. 2010) and the DAMM model (Davidson et al. 2012), where RH

was directly controlled by either microbial biomass (MIC) or enzyme (ENZ) using a
Michaelis-Menten enzyme kinetic function (Table S1) (He et al. 2014):

RH ¼ Vmaxco2 �
Sx½ �

KmSx þ Sx½ � �
O2½ �

kmO2 þ O2½ � �MIC ð2Þ

where VmaxCO2 is the maximum reaction rate of heterotrophic respiration (mg Sx C cm−3

soil). kM (unit substrate C cm−3 soil) is the corresponding Michaelis-Menten half-saturation
constant.MIC is microbial biomass (mg C cm−3 soil). More details on VmaxCO2 , kM, andMIC
calculation could be found in Supplementary Material (Appendix 2).

[Sx] is the concentration of dissolved organic substrates, defined as a function of total
soluble C (i.e., Soluble C pool), volumetric water content of the soil, and the diffusion
coefficient of substrate in liquid phase:

Sx½ � ¼ Sxsoluble½ � � Dliq � θ3 ð3Þ
where [Sxsoluble] is total soluble C, θ is the volumetric water content of the soil, and Dliq is a
diffusion coefficient of the substrate in liquid phase.

[O2] is the concentration of O2, modeled with a simple function of air-filled porosity and the
diffusion coefficient for O2 in air:

O2½ � ¼ Dgas � 0:209� α
4

.
3 ð4Þ

where Dgas is the diffusion coefficient. 0.209 is the volume fraction of O2 in air and a is the air-
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filled porosity of the soil. The total porosity is calculated based on bulk density (BD) and
particle density (PD).

α ¼ 1−
BD

PD
−θ ð5Þ

More details of these algorithms could be found in Supplementary Materials (Appendix 2)
and a previous study (He et al. 2014).

2.3 Model sensitivity analysis and parameterization

A sensitivity analysis focusing on RH dynamics would help identify which processes
are important in simulating RH and was achieved by using a variance-based global
sensitivity analysis technique based on the SOBOL sampling method (Pappas et al.
2013). Ten key parameters were selected to conduct the sensitivity analysis (Table 1;
He et al. 2014; Chen et al. 2011; Zhu and Zhuang 2013). After that, we parameter-
ized MIC-TEM with a global optimization algorithm (Shuffled complex evolution
method developed at the University of Arizona (Duan et al. 1992; Duan et al. 1994)
at six selected AmeriFlux sites which represent major forest types across the con-
terminous US (Table S2, Fig. S1). The parameterization method followed the pro-
cedures described in He et al. (2014). The global optimization method was then used
to minimize the cost functions:

J 1 ¼
Xk

i¼1

NEPobs;i−NEPsim;i

� �2 ð6Þ

J 2 ¼
Xk

i¼1

GPPobs;i−GPPsim;1

� �2 ð7Þ

where NEPsim and GPPsim are the simulated NEP and GPP and NEPobs and GPPobs are the
observed NEP and GPP, respectively. k is the number of data pairs for comparison. We
optimized parameters through minimizing the two cost functions simultaneously (Eqs. (6)
and (7)) with a global optimization method (He et al. 2014).

3 Results

3.1 Model performance at AmeriFlux sites

The parameterized MIC-TEM was able to reproduce the annual dynamics of the observed
NEP and GPP at each verification site (Table S2), with r2 mostly larger than 0.6 and root mean
square errors (RMSE) around 2 g C m−2 day−1 for NEP. r2 was mostly larger than 0.74 and
RMSEs were around 4 g C m−2 day−1 for GPP (Table S2). Specifically, at deciduous forest
sites, MIC-TEM better captured the variation of carbon fluxes and had a significant correlation
(r2>0.70 for NEP and r2>0.87 for GPP) when compared to evergreen forest sites (r2>0.35 for
NEP and r2>0.74 for GPP). At the Niwot Ridge site, there was a relatively weak linear
relationship between simulated and observed NEP (r2=0.35). This discrepancy mainly came
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from RH estimation since the STM only had a crude algorithm for snow dynamics, which was
not able to fully capture the magnitude of soil temperature in winter (Zhuang et al. 2002; Hao
et al. 2014).

Overall, the performance of MIC-TEM was superior to that of TEM as shown in Table S2
at the six sites. Specifically, statistics of MIC-TEM results had notable higher r2 and lower
RMSE than that of TEM at four validation sites (Table S2), showing that MIC-TEMwas better
able to capture the observed variations and magnitudes of NEP and GPP fluxes.

3.2 Comparison between MIC-TEM simulations and other studies

To demonstrate the performance of MIC-TEM, we simulated the carbon fluxes from
2000 to 2005, driven with the global climate dataset from the National Centers for
Environmental Prediction (NCEP) at a 0.5° spatial resolution (Kistler et al. 2001).
Estimated annual GPP, net primary production (NPP), and NEP for the conterminous
United States over the period varied from year to year (Table 2), with GPP varying from
2.02 to 3.03 Pg C year−1. Average GPP is 2.48 Pg C year−1 (Table 3). This value was
close to 1.68 Pg C year−1 estimated by Xiao et al. (2008) over the period 2001–2006 but
lower than 3.93 Pg C year−1 based on MODIS GPP product (Zhao et al. 2005) for the
period 2000–2005. Annual NPP ranged from 1.20 to 2.12 Pg C year−1 during the same
period, average NPP was higher than that of 1.66 Pg C year−1 from MODIS NPP product
over 2000–2005 (Zhao et al. 2005). Our estimated NEP was −0.20 to 0.32 Pg C year−1

with an average of 0.10 Pg C year−1. Overall our estimates of NEP were lower than
0.148 Pg C year−1 from Chen et al. (2011), but were higher than −0.4 Pg C year−1 from
Xiao et al. (2011).

Table 1 Key MIC-TEM Parameters

Parameter Definition Unit Prior Range

Cmax Maximum rate of photosynthesis C g C m−2 day−1 [50, 1500]

Kr Logarithm of plant respiration
rate at 0 °C

g g−1 day−1 [−9.5,−0.2]

Kc Half saturation constant for CO2-C
uptake by plants

μL L−1 [20,600]

Raq10a0 Leading coefficient of the Q10 model
for plant respiration

None [1.35,3.36]

Ea_micup Soluble and diffused Sx uptake
by microbial

J mol−1 [3.5e4, 7.0e4]

Ea_Sx Activation energy of microbes
assimilating Sx to CO2

J mol−1 [3.5e4, 7.0e4]

Ea_SOC Activation energy of decomposing SOC
to soluble C

J mol−1 [3.5e4, 7.0e4]

Vmax_CO20 Maximum microbial respiration
rate

mg respired Sx cm−3 soil h−1 [1.0e6, 1.0e8]

Vmax_uptake0 Maximum microbial uptake rate mg Sx cm−3 soil (mg
biomass cm−3 soil)−1h−1

[1.0e6, 1.0e8]

Vmax_SOC0 Maximum rate of converting
SOC to soluble C

mg decomposed SOC cm−3

soil (mg Enz cm−3 soil)−1h−1
[1.0e6, 1.0e8]
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3.3 Sensitivity study

We found that the magnitudes of the first order sensitivity index (Si) followed the order of
Ea_Sx>Ea_micup>Ea_SOC>Vmax_SOC0>Vmax_CO20>Vmax_uptake0 (Fig. S2). The

Table 3 MIC-TEM estimated an-
nual GPP, NPP, and NEP across the
conterminous United States over
2000–2005. The units of the carbon
fluxes are Pg C year−1

Year GPP NPP NEP

2000 2.02 1.85 −0.20
2001 2.34 2.06 0.32

2002 3.03 1.81 −0.16
2003 2.44 2.12 0.25

2004 2.98 1.38 0.24

2005 2.12 1.20 0.18

Average 2.48 1.73 0.10

2

RCP2.6 RCP8.5

Fig. 1 Projected dynamics of carbon fluxes and stocks projected by TEM and MIC-TEM under the RCP 2.6 and
8.5 scenarios for the conterminous United States from 2006 to 2100. Left panels are the simulations under the
RCP2.6 scenario while right panels under RCP8.5. GPP represents gross primary production, NPP represents net
primary production, NEP represents net ecosystem production, RA represents autotrophic respiration, RH

represents heterotrophic respiration, SOC represents soil organic carbon, VEGC represents vegetation carbon.
Positive NEP values represent carbon sinks while negative values represent carbon sources to the atmosphere

Climatic Change



Jan Feb Mar AprMay Jun JulyAug Sep Oct NovDec
1.8

1.85

1.9

1.95

2

2.05

2.1

2.15
S

O
C

(k
g

C
m

2 )

aa

Jan Feb Mar AprMay Jun JulyAug Sep Oct NovDec
5

10

15

20

25

30

35

40

45

R
H

(g
C

m
2

m
on

1 )

bbRCP2.6

RCP8.5

Fig. 2 Seasonal variations in mean soil organic carbon (SOC) and heterotrophic respiration (RH) simulated with
TEM under RCP 2.6 and 8.5 scenarios

10

0

10

20

30

So
il 

T
em

pe
ra

tu
re

(d
e

g
C

)

aa

0

20

40

60

80

R
H

(g
C

m
2

m
o

n
1

)

bb

Jan Feb Mar AprMay Jun JulyAug Sep Oct NovDec
0

500

1000

1500

So
il 

m
ic

ro
bi

al
 b

io
m

as
s

(g
C

m
2

)

cc

Jan Feb Mar AprMay Jun JulyAug Sep Oct NovDec
0

20

40

60

80

E
nz

ym
e 

bi
om

as
s

(g
C

m
2

)

dd

RCP2.6

RCP8.5
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enzyme biomass simulated with MIC-TEM under RCP 2.6 and 8.5 scenarios
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first three high-sensitivity parameters were Ea_Sx, Ea_micup and Ea_SOC, and the last three
were Vmax_SOC0, Vmax_CO20 and Vmax_uptake0. Herein, the activation energy and the
maximum reaction rate were the most and secondary sensitive parameters in MIC-TEM.
Microbial assimilation and enzyme decay processes, with which the six parameters are
associated, determined the magnitudes of SOLC (Sx). Thereby RH dynamics might be
controlled by substrate availability. Vmax also played an important role in RH affected by
soil temperature (Appendix 2).

To quantify the impact of changes in temperature, MIC-TEM simulations were conducted
by varying air temperature at an evergreen and a deciduous forest, respectively (Fig. S3). For
these forests, air temperature had a positive effect on RH and SOLC, but a negative effect on
MIC. Two ecosystems were comparably sensitive to air temperature. In the evergreen forest,
SOLC was most sensitive to air temperature, where a 10 % air temperature increase caused a
25 % increase of SOLC and a 16 % decrease of MIC. RH was least sensitive to air temperature,
only 7 % RH changed due to a 10 % air temperature change. In the deciduous forest, SOLC
was still most sensitive to air temperature, and a 10 % temperature change caused a 24 %
SOLC change.

3.4 Projected carbon fluxes

TEM simulated GPP and NPP increased slowly at first but decreased sharply after the 2090s
due to decreasing air temperature (data not shown) in the RCP 2.6 experiment (Fig. 1a), while
NEP had a similar trend (Fig. 1e), but slightly decreased after the 2090s. In the RCP 8.5
experiment, GPP, NPP and NEP all showed an increasing trend (Fig. 1b, d and f). Overall, RH

in both experiments showed an increasing trend. Moreover, autotrophic respiration (RA) and
RH are both significantly correlated to the air temperature trends (Fig. 1g, h, i and j) (r=0.85,
p<0.05, n=94).

MIC-TEM simulated GPP and NPP continuously increased during the 95-years period
(2006–2100) in both experiments (Fig. 1a, b, c and d). In the RCP 2.6 experiment, NEP
showed a fluctuating trend (Fig. 1e). Compared to the fluctuating trend of NEP in the RCP 2.6
experiment, NEP decreased sharply in the middle of the 2010s, but slightly increased after the
2020s, which is similar to NPP in the RCP 8.5 experiment (Fig. 2d). In both experiments, RH

trends did not change with air temperature increasing, but RH in MIC-TEM fluctuated
comparing to a RH steady change in TEM (Fig. 1i and j), which might be due to oversensitivity
of RH in MIC-TEM to high air temperature.

The magnitudes of the estimated carbon fluxes were different between TEM andMIC-TEM
models. In the RCP 8.5 experiment, MIC-TEM estimated that GPP, NPP and NEP were 0.98
(0.2 %), 0.42 (0.1 %) and 0.34 (0.5 %) Pg C year−1 higher than those estimated by TEM,
respectively (Appendix 2). MIC-TEM estimated that RH was 0.07 Pg C year−1 (0.03 %) higher
than that estimated with TEM. In the RCP 2.6 experiment, the differences were similar to that
in the RCP 8.5 experiment, except MIC-TEM simulated RH was 0.05 Pg C year−1 (0.02 %)
lower than that estimated by TEM. The cumulative difference between simulations with two
models during the 95-years period was 17.1 Pg C. Under both future climate scenarios, both
models predicted that the conterminous United States forest ecosystems acted as a carbon sink
during the study period.

TEM RH was directly controlled by both SOC and soil temperature, while MIC-TEM RH

was directly controlled by SOLC and indirectly by soil temperature. TEM RH was modeled as
a function of Q10 and SOC (Eq. (1)). The seasonal TEM RH had a similar trend with soil
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temperature (Figs. 2b and 3a). Specifically, the seasonal TEM RH slowly increased and started
to decline from July. TEM RH in the RCP 8.5 experiment was higher than that in the RCP 2.6
experiment (Figs. 2a and 3a). Some modeling studies suggested that there is no significant
relationship between RH and soil temperature when soil temperature ranged from −5 to 0 °C
(Zhou et al. 2010). But our results showed that there was still a high correlation between soil
temperature and RH in TEM (r=0.65; p<0.05, n=470). MIC-TEM RH showed the same trend
in both future climate scenario experiments (Fig. 3b) and there was a significant correlation
between SOLC and RH (r=0.73; p<0.05, n=18).

3.5 Interactive effects of warming and soil microbial physiology on seasonal RH

Soil microbial biomass varies seasonally, leading to different correlations between RH

and soil temperature (Bradford et al. 2010; Davidson et al. 2012). MIC-TEM simula-
tions showed that both soil microbial biomass and RH varied seasonally. In both future
climate scenario experiments, the simulated RH is high from June to August and low
in fall and increases from March to May due to increasing ENZ (r=0.67) (Fig. 3b).
Filed studies have also showed that increasing enzyme activity due to rising soil
temperature can stimulate CO2 effluxes (Ostroumov and Siegert 1996; Hanson et al.
2003; Hubbard et al. 2005; Hopkins et al. 2014) (Fig. 3d). RH and soil temperature
has a similar trend, reaching a peak in July (Fig. 3a and b). RH and soil microbial
biomass has a similar trend, sharply decreasing from July to August (Fig. 3b). From
May to June, RH and soil temperature show an increasing trend, while soil microbial
biomass and enzyme biomass have a decreasing trend. Warm summer temperature
leads to higher microbial RH but lower soil microbial biomass (Fig. 3b and c), which
is consistent with the findings from field studies (Bradford et al. 2008; Frey et al.
2008; Rousk et al. 2012; Weedon et al. 2012). The seasonality of the simulated soil
microbial biomass is high in early spring and low in fall, which is consistent with the
findings of Xu et al. (2014) (Fig. 3c).

4 Discussion

4.1 The effect of soil temperature on RH

In Q10 based models, raising soil temperature would increase RH (Eliasson et al. 2005;
Davidson and Janssens 2006). For example, TEM RH in the RCP 8.5 experiment is higher
due to higher soil temperature in comparison with the RCP 2.6 experiment. In microbial
physiology models, soil temperature indirectly affects soil respiration via the effects on
substrate supply (Davidson and Janssens 2006). This indirect effect may explain why SOLC
is more sensitive than RH to raising air temperature (Fig. S3). Recently, laboratory experiments
have showed that the temperature sensitivity of microbial community varies with temperature
changes (Wei et al. 2014). Thus, future models shall include the effects of soil temperature on
microbial community, to adequately quantify microbial biomass, thereby RH.

In microbial physiological models, microbial carbon use efficiency (CUE) is an important
parameter of carbon decomposition process (Tang and Riely 2014). However, to reduce model
uncertainties, our study did not consider CUE. Instead, we only assessed the RH considering
the effects of soil microbial biomass and activity (Shi et al. 2006). Further, our model did not
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simulate winter RH because of microbial dormancy in winter (Davidson et al. 2012). However,
snow cover insulates the soil surface from cold air temperature and allows heterotrophic
respiration to continue through much of the winter (Raich et al. 1991). Therefore, the winter
microbial physiology shall be represented in MIC-TEM to improve future model predictions.

4.2 Evaluation of MIC-TEM and its uncertainties

The performance of MIC-TEM was better than that of TEM in simulating carbon fluxes at six
AmeriFlux sites (Table S2). Both models are calibrated using the same data and optimization
method. Therefore, we could attribute the MIC-TEM performance superiority to its model
structure that explicitly considers soil microbial physiology. Meanwhile, compared to previous
studies for the same region and similar period, the incorporation of soil microbial processes
into TEM shall provide more convincing estimation of carbon fluxes. The models having not
explicitly considered the impacts of microbial activities might have provided good estimates.
However those seemingly reasonable results might have been due to an inadequate represen-
tation of mechanistic processes of terrestrial ecosystems in those models.

The interannual variability of MIC-TEMRH differs significantly from TEMRH because RH

in MIC-TEM is controlled by MIC, SOLC and ENZ that changed significantly with time.
These differences in RH may explain the differences in NEP between two models
(Appendix 1).

MIC-TEM development is an important step forward to considering the effects of microbial
biomass and activities on soil decomposition. However the shift in microbial community
structures could also alter the temperature sensitivity of RH (Bradford et al. 2008, 2010). The
microbial community composition changes induced by warming, fire, and soil freeze-thaw
processes could also affect soil decomposition (Billings and Ballantyne 2013). These complex
feedbacks were not yet included in MIC-TEM. In addition, the NCEP data used to drive MIC-
TEM could be another uncertainty source for our estimation. As indicated by Zhao et al.
(2005), the NCEP reanalysis data overestimated solar radiation and underestimated tempera-
ture. The errors in temperature might introduce errors in carbon fluxes because of the nonlinear
relationship between temperature and ecosystem respiration (Chen et al. 2011).

A number of recent studies concluded that better understanding of the temperature
response of the processes that control substrate availability, depolymerization, micro-
bial carbon use efficiency, and enzyme production is important to predicting the fate
of soil carbon stocks in a warmer world (Eliasson et al. 2005; Allison et al. 2010;
Wieder et al. 2013; Hopkins et al. 2014). Thus, future development of MIC-TEM shall
incorporate these processes to adequately quantify ecosystem carbon dynamics.

5 Conclusions

We incorporated a number of microbial physiological processes into a process-based
biogeochemistry model TEM to more adequately quantify ecosystem carbon fluxes
during the 21st century for the conterminous United States. Multiple eddy flux tower
data were used to parameterize and verify our models. Ensemble simulations with
posterior parameters were conducted at both site and regional levels. The site-level
comparisons indicated that the revised TEM performs better. The regional extrapola-
tion of new model across the conterminous United States for the 21st century shows

Climatic Change



that the seasonal trends of RH are dominated by the changes of soil microbial biomass
and enzyme biomass other than soil temperature. Our study suggests that quantifying
the future net carbon exchange should explicitly consider soil microbial physiological
effects. To improve the microbial physiologically-based soil decomposition models,
developing more observational data of soil respiration, soil microbial biomass, and
enzyme biomass of terrestrial ecosystems should be a research priority.
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